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Robust Efficient Localization of Robots in Pipe Networks using a

Particle Filter for Hybrid Metric-Topological Space

Rob Worley1, Sean Anderson1

Abstract— Water distribution and drainage pipe inspection
and maintenance is costly, and could be improved by using
robots to locate faults from within the pipes. Robot localiza-
tion is critical in this operation, but is challenging due to
the constraints of the pipe environment. An efficient, robust
algorithm is needed for localization using limited sensors. A
novel particle filter algorithm is proposed for localization, which
estimates the robot’s position in a hybrid metric-topological
state space, allowing efficient computation and relocalization.
The algorithm is demonstrated in simulation at a large scale,
considering substantial uncertainty in motion, measurements,
and the map of the environment, showing an improvement over
a benchmark algorithm developed for this application.

I. INTRODUCTION

Buried pipe infrastructure such as water and drainage pipes

needs constant inspection and maintenance, the efficiency of

which might be improved by using robots to persistently

monitor a pipe network. However, this environment is chal-

lenging for robots due to constraints on power and size. An

important aspect of the robot operation is localization, which

allows the robot to navigate autonomously, accurately locate

faults in the network, and avoid becoming unrecoverable.

For long-term operation, a localization algorithm back-end

should be robust to false positives and false negatives in

measurements, and recover from outlier measurements and

mislocalization [1]. This is especially important in pipes as

the robot has limited front-end information, and an unrecov-

erable robot would be a critical failure in the operation.

Localization in pipes is challenging due to the unavail-

ability of GPS, the lack of a reliable magnetic field for a

magnetometer, the limited perspective of sensors, and the

sparseness of recognisable features. Despite this, localization

has been demonstrated using a range of sensors, including

vision [2], acoustics [3], [4], [5], [6], and radio waves [7].

However, in practice, front-end sensor information is ex-

pected to be uncertain and unreliable. Metric measurements

will inevitably have some error, which is exacerbated in this

application as the quality of typical sensing is limited by

constraints on the hardware and computing power. Measure-

ments may also be infrequent, occluded, and result in false

positives and negatives. However, the robot’s environment is

reasonably well mapped and the pipe network topology and

some metric information is available, as in Figure 1.
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Fig. 1. An example water distribution network map from a town in the
UK. The map is approximately 1.6 km from top to bottom.

The aim of this paper is to evaluate an efficient and robust

robot localization algorithm specialized for pipe networks.

As in related work [8], our approach assumes the use of only

odometry and a binary measurement of detection of features

such as corners and junctions, along with a map of the

environment. The aim is to show that effective localization

in a pipe network is possible even with this limited set of

measurements. Additional challenges presented in this work

are from larger uncertainty in measurements, false positive

and negative measurements, and error in the environment

map. The approach developed is therefore different from

previous methods for pipe networks, recent demonstrations

of localization methods for pipe networks [9], [10], and other

recent developments in localization in similar environments

such as mines [11] and tunnels [12], which show effective

localization with a large range of sensors. Here the aim of

localization is to provide a sufficient position estimate to

allow navigation and reporting of faults in the pipes, rather

than for precise mapping and control.

Hybrid metric-topological localization [13], as applied

previously in network environments [14], would be useful

in a pipe environment; as the pipe network is well described

as a set of connected spaces, a hybrid metric-topological

representation offers advantages to performance from the

use of topology, but without less loss in precision from

discretization. Inspired by this previous work, this paper

describes the pipe network as a hybrid metric-topological

map, with both discrete and continuous aspects. This idea

has been applied to localization in road networks [15], [16],

[17], and similarly in pipe applications this can be done

without much abstraction, as the networks are well described

by topological connections and metric distances alone.

The algorithm presented here uses a particle filter to

estimate the robot position, as the non-parametric distribu-

tion works in the discontinuous network environment and

can give a multi-modal estimate [18]. The hybrid metric-



topological representation reduces the dimension of the state

space compared to a continuous metric representation. This

gives a reduction in size of the space, which has been shown

to improve the efficiency of particle filtering [19], [20]. The

use of map topology facilitates global localization which

improves robustness of the particle filter.

This paper contributes the development and evaluation of

a robot localization algorithm with several key distinctions:

1) The particle filter in hybrid metric-topological space

is applied where sensing is limited to only binary

detection of features such as corners and junctions.

2) Robot motion is highly uncertain, including a time-

varying bias in the error between motion and odometry

representing fluid flow, gradient, and varying pipe

conditions not found in previous work.

3) Robot sensing is prone to false positives and negatives,

which have not been investigated in previous work.

4) Error in the knowledge of the environment is included,

investigating the performance of the algorithm in the

case that the buried network has been mapped poorly

due to difficulties in observing the pipes.

II. PROBLEM DEFINITION

A. Environment Definition

Water and drainage networks are made up of pipes con-

nected by corners, junctions, valves and manholes. These

networks cover tens of kilometers in combined length. In

this work, maps are derived from a water distribution pipe

network map for a 100 square kilometer part of the UK.

This map is divided into towns and simplified somewhat:

Valves, which are inaccurately represented as sections of

pipe, are combined with adjacent pipes, and curved pipes,

which are inaccurately represented as several short pipe

segments, are replaced with straight pipes. In practice, valves

might be undetected by a robot, or might be useful features

which aid localization. Calculating the distance from a point

to a curved pipe might pose some extra challenge to the

continuous space algorithm described later, while the hybrid

space algorithm could simply consider a curved pipe the

same as any other one-dimensional pipe.

An environment therefore consists of around 1000 nodes

(junctions and corners) connected by a similar number of

links (pipes). Robot motion can be simulated in this envi-

ronment, allowing experimentation over a scale and topology

that is difficult to create experimentally.

B. State Definition

The robot’s motion is evaluated at discrete time steps

where the robot moves and makes a localization estimate.

The robot’s pose xt at time t is defined in a hybrid one-

dimensional-two-dimensional coordinate system as the triple

x
h
t =

(

it, xt, dt
)

(1)

where it ∈ I is the discrete index of the link or node the

robot is in from the set of all indices I = {L,N} where

L and N are the sets of all link and node indices. xt is the

distance from the origin of the link or node. dt is the discrete

direction of the robot in the link, where dlt ∈
{

−1, 1
}

, or

node, where dnt ∈
{

1, 2, . . . , Dn,−1,−2, . . . ,−Dn
}

where

there are Dn adjacent links at node n and where the negative

and positive indices correspond to the robot arriving from or

leaving from a direction respectively. In this case only the

position of the robot along the axis of the pipe is considered,

and the position of the robot in three dimensions with respect

to this axis is not estimated. Similar definitions of robot state

are found in the literature [16], [13].

The time steps t do not need to be at regular intervals, and

instead a localization estimate is made either after a period

of time or whenever new information is available. This could

be after the robot has executed a turn or when it arrives at

a node.

The pose in this coordinate system can be converted to a

two-dimensional representation of pose in global coordinates

x
g
t =

[

xgt , y
g
t , θ

g
t

]T
(2)

using the map of the poses of each link and node.

C. Motion and Measurement Definition

Two models for linear robot motion are used in this work.

In both models, the robot moves along link l according to

xlt = xlt−1
+∆xtdt + vt (3)

where ∆xt is used as an odometry measurement for localiza-

tion, and where vt is the motion noise. In the first model, vt
is normally distributed noise with zero mean and covariance

σx∆xt, giving the uncertainty in motion typical in mobile

robots. In the second model, vt is given by

vt = kvvt−1 + (1− kv)ṽt (4)

where ṽt is uniformly distributed noise in the range

[−ux, ux]. This models a more challenging noise distribu-

tion, acting like a slowly changing bias which could model

fluid flow, gradient, or varying pipe surface conditions. ∆xt
is usually equal to a fixed command input, except when the

robot stops as it arrives at a node, where it will be smaller.

After arriving at a node, the robot turns according to dnt ∈
Dn, and correspondingly θnt ∈ Θn where Θn is the set of

directions at node n. A measurement of change in angle ∆θt
is made for use in localization, given by

∆θt = θnt − θnt−1
+ wt (5)

with normally distributed noise wt with variance σθ∆θt. This

models the relative angular measurement that could be made

using a gyroscope in an IMU, without the use of an absolute

measurement from an IMU compass which is expected to be

unavailable in the application environment.

There is therefore a double of motion observations

ut =
(

∆xt,∆θt
)

(6)

Finally, a binary measurement zt is made, equal to L if

the robot detects that it is in a link, and equal to N if it

detects that it is at a node. This kind of measurement can be



made using visual [21], [22], [23], [24], [25], acoustic [26],

[4], or inertial [27], [28] sensing, as has been demonstrated

in previous work. This binary measurement contains no

other information about the link or node it has detected,

and represents the minimal measurement of this type that

could be made. To model errors in this measurement, a false

positive and false negative rate (βp and βn) can be specified.

It is assumed that if the measurement is a false negative, then

there is also no measurement of change in angle ∆θt, since

this could otherwise be used to detect the node.

D. Metric Map Definition

For localization, the robot can use a map, Mmetric, of the

environment. This map contains the positions of each node

x
g
n =

[

xn, yn
]

which represent junctions in the pipes, and the

positions of each end of each link x
g
l =

[

xl,1, yl,1, xl,2, yl,2
]

which represent the pipes connecting each node.

Measurements ζt can be made between an estimated robot

pose x̂
g
t =

[

x̂t, ŷt, θ̂t
]

and the map, given by

ζt =







min
n∈N

f(x̂gt ,x
g
n), if zt = N

min
n∈N

g(x̂gt ,x
g
l ), if zt = L

(7)

where the function f gives the distance between two points,

finding this distance to a node, and the function g gives the

distance between a point and a line of finite length, finding

the distance to a link.

There is therefore a double of environment observations

zt =
(

zt, Zt
)

(8)

which can be used in localization, where Zt is the set of

measurements ζt for each estimated robot pose.

E. Topological Map Definition

An alternative to a metric map is a hybrid metric-

topological map, Mhybrid. The map is made up of two parts:

a map of the links, and a map of the nodes. For each link,

the map contains the link index i, the two adjacent node

indices, the length of the link xLi , the position of the origin

of the link, and the heading angle of the link. Every position

in every link is therefore uniquely defined, with one end of

each link defined as a relative position of xt = 0, and the

other defined as a relative position of xt = xLi . For each

node, the map contains the node index, the position of the

node, the indices of each adjacent node, the indices of each

adjacent link, and the direction to each adjacent node.

A measurement ξt can be made between an estimated

robot pose x̂
h
t =

(

ît, x̂t, d̂t
)

and features in this map. The

only measurement is the distance to the nearest node which

is found when zt equals N . This can be simply found using

ξt = min
{|x̂t|, |xLî − x̂t|

}

(9)

There is therefore a double of environment observations

zt =
(

zt,Ξt
)

(10)

which can be used in localization, where Ξt is the set of

measurements ξt for each estimated robot pose.

III. LOCALIZATION ALGORITHM IN CONTINUOUS SPACE

A localization algorithm similar to what has been pre-

viously reported [8] is described here. The state of the

robot is estimated in the two-dimensional global coordinate

frame x
g
t defined by equation 2, with the map Mmetric, and

environment observations zt defined by equation 8. In this

section, the state is written as xt = x
g
t for simplicity.

As in typical robot localization, the posterior distribu-

tion p(xt|u:t, z:t) is desired, which is the probability

distribution over possible states xt given the sequence of

observations u0:t and z0:t. A particle filter is used to estimate

the pose of the robot [18], which uses a set of M particles as

random samples of the posterior distribution. The likelihood

of a hypothetical state x
m
t for particle m being included in

the particle set Xt is proportional to the posterior, given by

x
m
t ∼ b(xt) = p(xt|u1:t, z1:t) (11)

The distribution b(xt) is recursively estimated using

b(xt) ∝ p(zt|x̃t)
∫

p(x̃t|ut,xt−1)b(xt−1)dxt−1 (12)

with four steps, as follows.

1) Prediction. The predicted state is sampled from

x̃
m
t ∼ p(xt|ut,xmt−1

) (13)





x̃mt
ỹmt
θ̃mt



 =





x̃mt−1

ỹmt−1

θ̃mt−1



+





(∆x+ ψt) cos(θ
m
t−1

)
(∆x+ ψt) sin(θ

m
t−1

)
(∆θ + ωt)



 (14)

for each particle m, where ψt and ωt are estimates

of the normally distributed noise variables vt and wt,
and are sampled from normal distributions with a mean

of zero and a variance equal to σψ∆xt and σω∆θt +
σω,min respectively. This gives a set of particles X̃t.

2) Weighting. Each particle is then weighted according to

αmt ∝ p(zt|x̃mt ) (15)

αmt =

{

(σl
√
2π)−1e−ζ

2

t /σ
2

l , if zt = N

(σn
√
2π)−1e−ζ

2

t /σ
2

n , if zt = L
(16)

where ζt is defined in equation 7, and σl and σn are

parameters which control how strongly the algorithm

weights particles that are closer to the elements in the

map.

Rather than searching all links and nodes to find the

nearest to each particle separately, the efficiency is im-

proved by using k-means clustering to find the centroid

of any distinct parts of the particle distribution, and a

subset of the links or nodes near to these centroids is

searched to find the value for ζt as in equation 7. The

number of clusters is chosen arbitrarily here, k = 10,

and is simply sufficiently high so that all particles are

likely to be near to a cluster centroid.



3) Resampling. M particles are sampled from the existing

set using sequential importance resampling. Particles

are drawn from X̃t creating Xt, which is distributed

approximately according to equation 11, using

p(xmt ∈ Xt) ∝ αmt (17)

4) Estimation. The mode of the distribution is used as

an estimate of robot pose. In this case, the mode is

estimated by an approximation of the median particle

in two dimensions, which is the particle with the

smallest total distance to all other particles. Clustering

could also be used to do this more efficiently, but

would require the optimal number of clusters k.

IV. ROBUST LOCALIZATION IN HYBRID

METRIC-TOPOLOGICAL SPACE

A novel algorithm is described in this section which gives

a more efficient, robust estimate. The previously reported

particle filter in continuous space functions well. The particle

representation of the posterior distribution is useful in the

discontinuous network environment, where parametric repre-

sentations such as a Kalman filter might fail. The algorithm

is effective even with the reduced sensing compared to the

original application with a powerful robot [8].

However, the algorithm has some weaknesses in the appli-

cation to smaller robots. Firstly, a large number of particles

is required, with a large computational cost prohibitive to a

robot with limited power. Secondly, the algorithm is seen to

have low robustness with the limited sensing in this problem

definition. Despite the general ability of the particle filter

to model an arbitrary distribution where particles could be

spread in any configuration across the state space, with this

implementation the particles tend to be distributed in a single

region, observed anecdotally. Therefore, if mislocalization

occurs it is unlikely that the algorithm can relocalize.

The state of the robot is estimated in the hybrid metric-

topological coordinate system as xt = x
h
t given by equation

1, using the map Mhybrid. In this case, the posterior dis-

tribution p(xt|u:t, z:t,Mhybrid) is desired, where zt is in

this case defined by equation 10, and a particle filter is used

to recursively estimate this posterior using equations 11,12,

13, and 15. Each particle in the particle set Xt is modelled as

having a Gaussian distributed uncertainty in state, resulting in

an estimator which shares properties between a particle filter

and a multi-hypothesis filter. The steps of the algorithm and

the function of each aspect will be described here.

A. Improved Efficiency: Particle Prediction and Weighting

1) Prediction: The particles are constrained to the net-

work, using the topological information contained in the map

Mhybrid. For each particle m in set Xt−1, the predicted state

is sampled as in equation 13 using

x̃l,mt = x̃l,mt−1
+∆xtd̃

l,m
t−1

+ ψt (18)

where ψt is sampled from a normal distribution with a

variance equal to σψ∆xt, approximating the noise variable

vt. If x̃l,mt is greater than xLi or less than zero, the particle

has passed a node at the corresponding end of the link. The

particle moves to a new link by choosing an index ĩt with

uniform probability from the links adjacent to the appropriate

node, and updating d̃t and x̃l,mt accordingly.

This prediction algorithm constrains each of the particles

to be in the network, and the movement of particles to

different adjacent links results in a multimodal distribution

which should be more robust than a unimodal distribution.

When zt indicates that a node has been detected, particles

may be transitioned to a node index. The probability of a

particle transitioning to the nearest node in is given by

p(imt = in) = e−ξ
m
t

2/2σ2

n (19)

If the particle transitions to a node, or if a particle is in a

node and the robot turns, the direction index d̃nt is updated.

2) Weighting: The particle weights depend on zt. In this

algorithm, the weights are computed using both equation 15

and 13 in a form of mixture distribution sampling, using the

available information in x
m
t−1

and ut where it is suitable as

well as the typical information in x̃
m
t and zt.

For zt = N and zt = L respectively the weights are

αmt,N =

{

1− βp, if ĩmt ∈ N
βp + ǫα, if ĩmt ∈ L (20)

αmt,L =











1− βn, if ĩmt ∈ L, imt−1
∈ N

1− βn, if ĩmt = imt−1
, imt−1

∈ L
βn + ǫα, if ĩmt 6= imt−1

, imt−1
∈ L

(21)

where ǫα has a value around 0.1 which gives all particles

a nonzero weight, adding robustness to noise and errors.

The function of equations 20 and 21 is that the particles are

weighted high, αmt = 1−β, when the particle state matches

the measurement, and low, αmt = β + ǫα, when the particle

state does not match the measurement or when the particle

has moved past a node when the robot has not detected one.

When zt = N and the robot has turned, giving a

measurement of angle ∆θt, the weights of the particles are

determined as follows. If the particle transitioned backwards

into the node, its weight is set to a fixed value. If the particle

transitioned forwards into the node, the predicted continuous

direction is found using the uncertain ∆θt with

θ̃nt = θ̃nt−1
+∆θt (22)

The angular differences δθn,mt,k between θ̃nt and the angles of

each particle are found and are used to compute the weights.

The weights for each particle are therefore given by

αmt,θ =







e
−δθn,mt,k

2
/2σ2

ρ , if d̃n,mt < 0

1/2, if d̃n,mt > 0
(23)

depending on whether the particle transitioned forwards or

backwards given by the particle direction d̃n,mt , where σρ
determines the width of the distribution in angle. Note that

this weight is computed using both equation 15 and 13.

The particles are therefore weighted higher when the angle

they have turned is close to the measured angle ∆θt. Over all



nodes, this has the effect of giving lower weights to particles

in nodes where there is no possible turn with an angle close

to ∆θt, allowing the algorithm to determine to some extent

how likely it is that the robot is at a given node.
The weights αmt,L, αmt,N , and αmt,θ are used in particle

resampling as in equation 17. To improve on sequential

importance resampling, a combination of stratified and low

variance resampling is used in this algorithm [18].
A comparison of efficiency between the two algorithms

can be made. The core particle filter algorithms have the

same order of computational complexity in terms of the

number of particles, which is linear, O(M), for the prediction

and weighting, and linear using low variance resampling,

and log-linear, O(M log(M)), using sequential importance

resampling [18]. However, the lower dimensionality of the

1D hybrid space compared to the 2D continuous space means

that the number of particles needed to estimate the posterior

distribution in hybrid space is smaller [29].

B. Improved Robustness: Mixture Distribution Sampling

One method of achieving relocalization in the case of

estimation error is to use a mixture proposal distribution

in the particle filter [30], [18]. The roles of the prediction

and weighting processes from the typical particle filter are

reversed for a subset of the particles. As well as predicting

particles from the particle set Xt−1, particles can also be

predicted from the measurement model as

x̃
m
t ∼ p(zt|xt) (24)

This is done at every time step, in case of estimation error,

and a particle is sampled in each discrete state adjacent to

each discrete state currently containing a particle.
In other applications this can be somewhat difficult, how-

ever in this case is very simple: when zt = N , particles

can be sampled at all nodes i ∈ N in all discrete directions

dn. A similar use of mixture distribution sampling could

also be applied to the algorithm in continuous space as

well as in discrete space. However, if the knowledge of

the environment’s discrete nature and topology is not used,

sampling will be inefficient as particles could be placed at

nodes which are nearby but not connected, and placed in

directions which do not correspond to any of the discrete

links, which will likely be soon weighted low. With this

knowledge, the resulting algorithm would be similar to the

discrete space algorithm presented by this paper.
The corresponding weight can be calculated using

αmt =

∫

p(x̃mt |ut,xt−1)b(xt−1)dxt−1 (25)

With the particle representation of the posterior distribution

p(xt−1|u1:t−1, z1:t−1), the integration over the possible pose

estimates at time t− 1 can be done as follows by summing

over all particles x
k
t−1

in Xt−1, giving

αmt =
∑

k

p(x̃mt |ut,xkt−1
) (26)

This probability is found for each new particle x̃
m
t for each

particle x
k
t−1

using a similar measure to equation 19.

For this weight computation, a Gaussian kernel is applied

to each particle. The weight is then computed as the integral

of the product of this kernel and equation 19 over space xl.
The Gaussian kernel probability density is given by

p(x̃kt = xl) =
1

σg
√
2π
e−(x̃kt − xl)2/2σ2

g (27)

and therefore the weight for the new particle x̃
m
t is given by

αmt =
∑

k

∫

p(ikt = im)p(x̃kt = xl)dxl (28)

The particle position x̃kt is taken after the particle has moved

according to the motion model, and before the particle

transitions to a node. This integral can be simply computed as

the product of two Gaussian functions is a Gaussian function,

for which the integral is known analytically. It takes a value

in the range 0 to σg
2σn(σg

2 + σn
2)−

1

2 .

Only particles in links adjacent to each node add to the

weight of a particle at that node, and particles sampled in

nodes with no particles in adjacent links will have a weight

equal to 0. For efficiency, particles can be sampled as in

equation 24 only in nodes with a possible non-zero weight.

The weighted set of particles from both the typical predic-

tion and the mixture distribution prediction are combined.

V. EXPERIMENTS AND DISCUSSION

Two algorithms are compared in this experiment:

1) Localization in 2D continuous space, described in

section III (2D), based on previous work.

2) Newly developed localization in hybrid 1D metric-

topological space, described in section IV (1D).

The algorithms are designed for minimal sensor measure-

ments which could be extracted from a range of sensors in

a practical dataset. An example of this is shown in Figure

2, which shows a trajectory estimated from sensor data in

a dataset collected by the SIAR platform [9]. The trajectory

is estimated using the odometry measurements from wheel

encoders and IMUs, and the detection of manhole features.

However, rather than attempting to evaluate the algorithms

on a small set of practical data, simulation is used to assess

the performance of the algorithms over a large number
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Fig. 2. A trajectory estimated using the 1D algorithm using the exper-
imental dataset acquired from the SIAR platform. Odometry and manhole
detection data is input to the algorithm.



of measurements, allowing testing on a large number of

trajectories with a range of magnitudes of uncertainty. The

aim of the experiments is to demonstrate the algorithms with

a large set of data, to determine how susceptible they are

to various sources of uncertainty, and to determine what

magnitudes of uncertainty cause them to fail. The simulated

environment is built from a map of a real pipe network.

In the following experiments, the number of particles is

assumed to reflect the computational cost required. However,

it should be noted that it is difficult to translate between

these measures. In testing, the computation time per particle

for the 1D algorithm is seen to be approximately half that

of the 2D algorithm. The computation time depends on the

implementation of the algorithms, and the efficiency of both

algorithms may be improved further. It is assumed here that,

as both algorithms are based on the particle filter, they will

have approximately the same computational cost per particle.

For illustration, simulation over 10000 time steps, around

44 km in distance, is shown in Figure 3 (for 1000 and 100

particles respectively for the 2D and 1D algorithms). For

evaluation of the localization algorithms, simulation of 100

trajectories of 1000 time steps, around 4.5 km of distance

each trajectory, is used. These distances are of the same order

of magnitude as distances covered by inspection systems

such as Pure’s SmartBall and WRc’s Sahara.

The two localization algorithms are used to estimate the

robot’s position, each with 100, 200, and 400 particles. Five

sources of uncertainty are tested, and three magnitudes of

each source of uncertainty are compared in Figure 4. In

each case, the error rate, defined as the proportion of time

for which the error is greater than a threshold 25 m, is

shown, using a violin plot to show the normalized probability

density and median of the error rate for the 100 trajectories.

The default parameters used to describe the robot operation

as defined in section II are shown in Table I. The default

localization parameters are given in Table II.
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Fig. 3. Illustrative results showing the performance of the two algorithms.
(a) An illustration of the two estimates of the robot’s trajectory over 10000
steps, corresponding to a total distance of around 44 km. (b) The absolute
error of the trajectory estimate over the first 2000 steps of the trajectory.

The five sources of uncertainty are:

1) Gaussian motion noise using the motion model in

equation 3, with variation in σx.

2) Angular measurement noise using the measurement

model in equation 5, with variation in σθ.

3) Integrated uniform motion noise using the motion

model described by equation 4, with variation in ux. A

given value of ux gives approximately the same overall

noise frequency as 0.2 times the same value of σx.

4) False positive and false negative rates of detection of

nodes, βp and βn.

5) Error in the maps Mmetric and Mhybrid. In reality,

maps of pipe networks will be largely correct with

occasional errors. However, in this experiment the

entire map is somewhat distorted to usefully test the

performance of the algorithms in the case of an error in

the map. Map errors are expected to be smooth over

space, i.e. nearby points will all have similar error,

and are expected to be relatively small in magnitude

compared to the size of the map. To model this, each

node with position x
g
n =

[

xn, yn
]

is moved in both

xn and yn with displacement given by

δxgn = ∆xM(sin kMxn + sin kMyn) (29)

where kM = 0.01 is a constant determining the spatial

frequency of the distortion, and ∆xM is the magnitude

of the distortion. For nonzero distortion, the particle

filter uncertainty parameters are increased as follows:

σψ = 0.4, σω = 0.2, σl = 10, σn = 10, σρ = 2.5.

From Figure 4, it can be seen that in almost all the mea-

surements, the average error rate decreases with increasing

number of particles, but with less improvement at larger

number of particles. In practice, the number of particles could

be chosen based on the required performance and cost.

TABLE I

DEFAULT PARAMETERS FOR THE ROBOT MOTION AND MEASUREMENT.

Parameter Symbol Value

Command input motion ∆x (normal) 5
Normal motion noise σx 0.2

Angular measurement noise σθ 0.1
Uniform motion noise ux 1 m
Motion noise constant kv 0.8

False positive rate βp 0
False negative rate βn 0

Map distortion ∆xM 0

TABLE II

DEFAULT PARAMETERS FOR THE LOCALIZATION ALGORITHMS

Parameter Symbol Value

2D

Motion model noise σψ 1.2σx
Angular motion model noise σω 1.2σθ
Angular motion model noise σω,min 0.1 rad

Link measurement std. σl ∆x m
Node measurement std. σn ∆x m

1D

Motion model noise σψ 1.2σx
Node transition std. σn ∆x m
Angular weight std. σω 10σθ

Kernel std. σg 5∆x m
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Fig. 4. For the two algorithms (red: 1D, blue: 2D), the error rate for
variation in: (a) the Gaussian motion noise magnitude. (b) the angular
measurement Gaussian noise magnitude. (c) the magnitude of integrated
uniform noise in motion. (d) the measurement error rate. (e) the error in the
knowledge of the environment map.

For the lowest uncertainty in all aspects when Gaussian

motion noise is used, the 2D algorithm performs equal to or

better on average than the 1D algorithm, showing that it is an

effective algorithm when uncertainty is low, which is more

likely to be the case for larger, more capable robots. For

integrated uniform noise, which models unmeasured drift in

robot velocity, the 1D algorithm performs better on average.

Larger magnitudes of uncertainty in all aspects reduces

the performance of both algorithms, but less so for the 1D

algorithm. This is most prominent for angular measurement

noise and false measurement rate, where the 1D is robust.

While the error from the 1D algorithm is lower on average,

both algorithms show poor performance at high magnitudes

of either motion noise, indicating that good measurement of

linear motion is important. Both algorithms give only a slow

increase in error for increasing map error, showing that both

are robust even in this extreme case of error over the entire

map, although the 1D algorithm performs better on average.

Overall, it can be seen that the two algorithms presented

here have similar performance when uncertainty is low.

As uncertainty increases in all aspects tested, the proposed

1D algorithm is seen to have a better performance, at a

similar computational cost, showing that the algorithm is

more efficient than the 2D algorithm in these cases.

Considering the practicality of the proposed algorithm,

acquiring the minimal measurements required as inputs is

possible with any of a range of possible sensors; reference to

the literature on robotic sensing for pipes is given in section

II-C. Similarly, with small modifications to the algorithm, the

robot’s locomotion could be modelled for a variety of designs

not considered in this work. For example, if the robot were

able to turn around in a pipe, this could be incorporated into

the algorithm as a possible change in direction dt.
The proposed algorithm uses only input from odometry

and binary feature detection. However, use of more sensing

developed for pipes is allowed by the robot state definition,

such as visual odometry and junction classification [2], [25],

[23], tactile sensing of pipe joints [31] and corners [32],

detection of junctions using acoustic echoes [4], and junction

classification using a scanning rangefinder [26].

The results have practical implications. The aim with these

algorithms is to provide an efficient estimate of the robot’s

position, which is of sufficient accuracy for navigation and

for reporting the approximate location of faults found in the

pipe network. An acceptable rate of error in the position

estimation depends on the operation and broad characteristics

of the robotic system. For example, a high rate of error in

localization might be acceptable if the robot is extracted from

the network frequently for data collection, or if beacons are

installed in the pipe network to facilitate relocalization. If a

very low rate of error is required for a particular application,

these results offer a measure of the level of uncertainty that

is therefore required. Conversely, the results offer a measure

of the error that would be expected for a given level of

uncertainty, even when the rate of error is high.

Active detection of mislocalization and a subsequent

method of attempting relocalization would improve robust-

ness to the various sources of uncertainty. The particle fil-

tering (and perhaps any filtering) approach might be limited

in performance, and smoothing or other formulations of the

use of a sequence of measurements rather than recursive

estimation may be needed to achieve a high robustness.

VI. CONCLUSIONS

Robot localization is challenging in a buried pipe environ-

ment due to restricted sensing and computation power. This

paper has presented an efficient, robust particle filter localiza-

tion algorithm where the position of the robot is defined by a

hybrid metric-topological state. This state definition allows

efficient prediction and weighting of particles, robust mix-

ture distribution sampling and relocalization. Experiments in

simulation over a very large scale over variation in a range

of sources of uncertainty show the algorithm has a lower rate

of error than a benchmark algorithm.
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