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Abstract

The direction of arrival (DOA) estimation problem for sources with known

waveforms in the presence of impulsive noise is studied. To solve the prob-

lem, the impulsive noise is decomposed into Gaussian and sparse parts, and

a generalized ℓ2-ℓp minimization based cost function is developed by setting

generalized Gaussian distribution (GGD) as the prior distribution of sparse

part. Then, to solve this nonconvex problem, the generalized ℓ2-ℓp problem

is decoupled into multiple independent and dimension reduced simple ℓ2-ℓp

optimization problems with respect to the sparse part, and solved under the

accelerated proximal gradient framework. Finally, DOAs and complex ampli-

tudes are estimated from the cleaned data. As demonstrated by simulation

results, the proposed method has a better performance than existing ones in

the presence of Gaussian mixture model (GMM) and GGD noise, while it is

comparable for symmetric α stable (SαS) noise.
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1. Introduction

Direction of arrival (DOA) estimation has a wide range of applications in

wireless communications, radar, and sonar, etc [1]. There are many conven-

tional methods developed, such as maximum likelihood (ML) [2], subspace

fitting (SF) [3], multiple signal classification (MUSIC) [4], and estimation of

signal parameters via rotational invariance technique (ESPRIT) [5].

To further improve their performance, many researchers have utilized the

known signal waveform for angle estimation and better performance has been

achieved [6–18]. According to the required waveform information, there are

two main types: one is for the ideal waveform scenario, such as decoupled

maximum likelihood (DEML) [7], subarray beamforming (SB) [8], linear re-

gression (LR) [9], and structured least squares (SLS) [11]; the other one is

for waveforms disturbed by some unknown factors, such as Doppler shift and

time delay [16–18]. Importantly, all of these methods have assumed that the

noise follows a Gaussian distribution.

However, it has been witnessed that the non-Gaussian and impulsive noise

model may fit the real-world scenario better for many applications [19–25].

To model the impulsive property, many typical probability density functions

(PDFs) have been developed, including the Gaussian mixture model (GMM)

[19], the generalized Gaussian distribution (GGD) [20], the symmetric α-

stable (SαS) distribution [21], spherically invariant random process (SIRP)

[24], and complex elliptically symmetric (CES) distributions [25], where the

former three models are considered in this paper. With the aid of waveform

information, an ln-ℓεp method was proposed to estimate DOAs in the presence
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of SαS noise [26]. However, the method can only suppress the outliers, and

cannot utilize the potential property of impulsive noise to improve estimation

performance further.

To estimate the DOAs for sources with known waveforms in the presence

of impulsive noise better, inspired by the work in [27, 28], we divide the

impulsive noise into two components: the Gaussian part and the remain-

ing sparse part. Following the principle of maximum a posteriori (MAP),

a generalized ℓ2-ℓp nonconvex minimization cost function is constructed by

considering GGD as the prior distribution of sparse noise. Then, using or-

thogonal projection and the component additivity of ℓp norm, we decouple

the generalized ℓ2-ℓp problem into multiple independent and dimension re-

duced conventional ℓ2-ℓp optimization problems with respect to the sparse

noise, and obtain the estimate of sparse part via the accelerated proximal

gradient (APG) framework. Finally, with the aid of estimation of the sparse

noise part, the original noise is reduced to Gaussian and the DOAs and com-

plex amplitudes are then calculated in the usual way for Gaussian noise.

Simulation results show that the proposed method has better performance

than the state of the art under GMM and GGD noise, and comparable to

the existing methods under SαS noise. Moreover, the performance of the

proposed method can approach the Cramer-Rao bound (CRB) in the pres-

ence of GMM noise at high SNR with a large number of snapshots. Further,

there is no specific restrictions to the impulsive noise model for the proposed

method, and other impulsive or heavy-tailed noise models, such as SIRP and

CES noises, could also be used.

Notations: matrices and vectors are denoted by boldfaced capital letters
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and lower-case letters, respectively. (·)T (·)H , (·)−1, (·)†, ⊗, and ◦ stand for

transpose, conjugate transpose, inverse, Moore-Penrose inverse, Kronecker

product, and Hadamard product, respectively. vec{·}, diag{·}, ‖·‖p, and ‖·‖F
denote the vectorization, diagonalization, ℓp norm, Frobenius norm, respec-

tively. angle{·}, Re{·}, and Im{·} represents the phase, real and imaginary

parts of a complex number, respectively.

2. Data Model

Consider a uniform linear array (ULA) of M sensors with inter-sensor

spacing d. There are Q narrowband far-field uncorrelated sources with known

waveforms {sq(n)}Qq=1 (n = 0, · · · , N − 1, with N being the number of snap-

shots) of wavelength λ impinging from unknown directions {θq}Qq=1 with un-

known complex amplitudes {gq}Qq=1. The received data matrix ofN snapshots

can be expressed as

X = A(θ)G(g)S+W = B(θ,g)S+W (1)

where

X = [x(0),x(1), · · · ,x(N − 1)],

x(n) = [x1(n), x2(n), · · · , xM(n)]T ,

A(θ) = [a(θ1), a(θ2), · · · , a(θQ)],

a(θq) = [1, e−j2πd sin θq/λ, · · · , e−j2π(M−1)d sin θq/λ]T ,

θ = [θ1, θ2, · · · , θQ]T ,

G(g) = diag{g1, g2, · · · , gQ},

g = [g1, g2, · · · , gQ]T ,

S = [s(0), s(1), · · · , s(N − 1)],
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s(n) = [s1(n), s2(n), · · · , sQ(n)]T ,

W = [w(0),w(1), · · · ,w(N − 1)],

w(n) = [w1(n), w2(n), · · · , wM(n)]T .

A(θ), a(θq), and g are often called as the array manifold matrix, steering

vector, and complex amplitude vector.

Similar to [20, 26], we assume the additive noise W is statistically uncor-

related with the signal S, and follows one of the three mentioned impulsive

noise distributions. Besides, without causing confusion, B(θ,g) is simplified

to B in the following derivations.

3. Proposed Method

3.1. Cost function construction based on generalized ℓ2-ℓp optimization

According to [27, 28], the data model in (1) can be rewritten as

X = BS+U+V (2)

where U and V represent the Gaussian part of noise, and the remaining

sparse outlier part, respectively. 1 Moreover, V is of row sparsity.

Now vectorize (2) as follows

x = (ST ⊗ IM)b+ u+ v (3)

where x = vec(X), b = vec(B), u = vec(U),v = vec(V). IM is the identity

matrix of size M .

1There is no specific restrictions to noise model as long as the noise can be decomposed

into Gaussian plus sparse outliers with some acceptable approximation errors.
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Since U is Gaussian, we assume u ∼ CN(0, σ2
uIMN), and its PDF can be

expressed as

p(u) =
1

πMNσ2MN
u

exp

{

− 1

σ2
u

uHu

}

(4)

where σ2
u denotes the variance of Gaussian noise part.

Then, the conditional PDF of p(x|v;b) also follows the multi-variate

complex Gaussian distribution, i.e.,

p(x|v;b) = 1

πMNσ2MN
u

exp

{

− 1

σ2
u

||x− (ST ⊗ IM)b− v||22
}

(5)

According to the MAP principle, an assumption about the a priori PDF of

sparse noise v is needed. As discussed in [29], the i.i.d. zero-mean Laplacian

distribution prior is of particular interest for sparse signals. However, to be

more general, the i.i.d. zero-mean complex GGD is used as the prior

p(v) =

[

βΓ(4/β)

2πσ2
vΓ

2(2/β)

]MN

exp

{

− 1

σβ
v

[

Γ(4/β)

Γ(2/β)

]β/2

||v||ββ

}

(6)

where β, σ2
v , and Γ(·) denote the shape parameter, variance and Gamma

function. For β = 2, GGD represents the Gaussian distribution; when β > 2

, GGD models short-tailed noise, while for 0 < β < 2, it yields the heavy-

tailed one, i.e., impulsive noise. For β = 1, GGD becomes the Laplacian

distribution.

Following the MAP principle, the posteriori PDF of sparse noise v can

be expressed as

p(v|x;b) ∝ p(x|v;b)p(v)

= C1 exp

{

− 1

σ2
u

||x− (ST ⊗ IM)b− v||22 −
C2

σβ
v

||v||ββ
}

(7)

where C1 = [βΓ(4/β)]MN/[2π2σ2
uσ

2
vΓ

2(2/β)]MN , and C2 = [Γ(4/β)/Γ(2/β)]β/2

are constants.
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Applying negative logarithmic operation to (7) and ignoring constants

and irrelevant items, b and v can be obtained by

{b̂, v̂} = arg min
b,v

||x− (ST ⊗ IM)b− v||22 + µ||v||ββ (8)

where µ is a tunable parameter. In reality, since the true approximated shape

parameter β of sparse noise v cannot be easily obtained, we can replace β in

(8) by a general parameter p with 0 < p < 2, leading to the following result

{b̂, v̂} = arg min
b,v

||x− (ST ⊗ IM)b− v||22 + µ||v||pp (9)

The above formulation is called a generalized ℓ2-ℓp minimization, since the

conventional ℓ2-ℓp minimization problem contains only one unknown vector,

while (9) has two unknown vectors b and v.

3.2. Solution with dimension reduction

Based on extensive simulations similar to Example 1 in Section 4, to

obtain a better performance, 0 < p < 1 is required. When 0 < p < 1, (9)

becomes nonconvex and nonsmooth, where its global minimum cannot be

easily guaranteed.

Many algorithms have been developed to solve the conventional ℓ2-ℓp

minimization problem, such as alternating direction method of multipliers

(ADMM)[30, 31], and iteratively reweighted least squares (IRLS)[32–34]. Al-

though ADMM can be applied directly to solve the problem in (9), it has a

very slow convergence rate. An accelerated proximal gradient (APG) frame-

work was proposed for nonconvex optimization with a fast convergence rate

in [35]. To apply it here, we need to transform (9) into the conventional ℓ2-ℓp
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minimization problem. First, by fixing v, (9) can be written as

arg min
b

||x− (ST ⊗ IM)b− v||22
= arg min

B

||X−BS−V||2F
= arg min

B

||(XT −VT )− STBT ||2F (10)

The least squares estimate of BT can be obtained as

B̂T = (ST )†(XT −VT ) (11)

Substituting (11) into (10), we have

||x− (ST ⊗ IM)b− v||22
= ||(XT −VT )− ST (ST )†(XT −VT )||2F
= ||P⊥

STV
T −P⊥

STX
T ||2F

=||(IM ⊗P⊥
ST )ṽ − (IM ⊗P⊥

ST )x̃||22 (12)

where P⊥
ST = IN − ST (ST )†, ṽ = vec{VT}, and x̃ = vec{XT}.

Utilizing (12), (9) can be expressed as

v̂ = arg min
v

||(IM ⊗P⊥
ST )ṽ − (IM ⊗P⊥

ST )x̃||22 + µ||ṽ||pp (13)

where the estimates of b and v are decoupled and the dimension of optimiza-

tion is reduced. (13) is a standard ℓ2-ℓp minimization problem and can be

solved using the nonconvex APG framework [35]. However, the vectorization

operator generates a very large matrix (IM ⊗P⊥
ST ) and long vectors x̃ and ṽ.

To estimate the sparse noise part with lower computational complexity

further, recalling that the ℓp norm of a vector is ||v||pp =
∑MN

i=1 |vi|p, (13) can
be rewritten as

v̂ = arg min
v

M
∑

m=1

||P⊥
ST ṽm − x̃m||22 + µ||ṽm||pp (14)
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where ṽm = VT
m,: and x̃m = P⊥

STX
T
m,: with Vm,: and Xm,: denoting the mth

row ofV andX, respectively. Since ||P⊥
ST ṽm−x̃m||22+µ||ṽm||pp is nonnegative,

the optimization problem can be solved in parallel with M independent small

scale ℓ2-ℓp minimizations.

Table 1: Solution to (14) via APG.

Input:{x̃m}Mm=1, P
⊥
ST , {ṽ(0)

m }Mm=1, p, µ, κ, maxIter, ε, ρ(0)

Ouput:{ṽm}Mm=1

1: FOR m= 1 to M

2: Set t = 0, ρ(−1) = ρ(0), z
(−1)
m = ṽ

(0)
m , ṽ

(1)
m = ṽ

(0)
m ;

3: WHILE (t ≤maxIter)

4: y
(t)
m = ṽ

(t)
m + ρ(t−1)

ρ(t)
(z

(t)
m − ṽ

(t)
m ) + ρ(t−1)−1

ρ(t)
(ṽ

(t)
m − ṽ

(t−1)
m );

5: z
(t+1)
m = proxh,κ(y

(t)
m − 1

2κ
(P⊥

ST )
H(P⊥

STy
(t)
m − x̃m));

6: r
(t+1)
m = proxh,κ(ṽ

(t)
m − 1

2κ
(P⊥

ST )
H(P⊥

ST ṽ
(t)
m − x̃m));

7: F (z
(t+1)
m ) = ||P⊥

ST z
(t+1)
m − x̃m||22 + µ||z(t+1)

m ||pp;
F (r

(t+1)
m ) = ||P⊥

ST r
(t+1)
m − x̃m||22 + µ||r(t+1)

m ||pp;
8: IF (F (z

(t+1)
m ) ≤ F (r

(t+1)
m )) ṽ

(t+1)
m = z

(t+1)
m ; ELSE ṽ

(t+1)
m = r

(t+1)
m ;

9: IF (
||ṽ

(t+1)
m −ṽ

(t)
m ||22√

||ṽ
(t+1)
m ||2·||ṽ

(t)
m ||2

≤ ε) BREAK;

10: ρ(t+1) =

√
4(ρ(t))

2
+1+1

2
;

11: t = t+ 1;

Now the nonconvex acceleration framework in [35] is utilized M times

to solve (14), and the corresponding algorithm is listed in Table 1. κ is the

Lipschitz constant of the gradient of ||P⊥
ST ṽm − x̃m||22 with respect to ṽm,

and can be obtained by the maximum eigenvalue of (P⊥
ST )

HP⊥
ST . In Lines
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5-6, “prox” denotes the proximal operator of a function, defined as

proxh,κ(f) = arg min
ṽm

h(ṽm) +
κ

2
||f − ṽm||22 (15)

where h(ṽm) = µ||ṽm||pp. With the proximal mapping, proxh,κ(f) reduces to

solving N univariate minimization problems. Moreover, for 0 < p < 1, the

solution to (15) can be expressed as follows [29, 36]:

proxh,κ(f)n =







0 |fn| ≤ τ

sign(fn)ξn |fn| > τ
(16)

where n = 0, 1, · · · , N−1, sign(·) is the sign function with sign(c) = c/|c| for
a complex number c, and | · | represents the modulus of a complex number.

τ = ϑ+µpϑp−1/κ, and ϑ = [2µ(1− p)/κ]1/(2−p). ξn can be obtained from the

root of h̃n(ξ) = µpξp−1 + κξ − κ|fn| within the range (ϑ, |fn|), which can be

solved via the Newton algorithm since h̃n(ξ) is convex [37].

The algorithm requires initializations {ṽ(0)
m }Mm=1 in Table 1, and we can

obtain reliable initial values via setting p = 1 firstly, i.e., solving the convex

ℓ2-ℓ1 optimization. For p = 1, there is a closed-form solution to (15)

proxh,κ(f)n = sign(fn)max{|fn| − µ/κ} (17)

Moreover, with the estimate {v̂m}Mm=1 of sparse noise part via the method

in Table 1, we can obtain the data model in Gaussian noise,

X̃ = X− V̂ ≈ BS+U (18)

where V̂ = [v̂1, v̂2, · · · , v̂M ]T .

Then, we can obtain the estimate of B via the least squares method

B̂ = X̃S† (19)
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Utilizing the structural information of B̂ and inspired by [16], DOA and

complex amplitude can be estimated as follows

θ̂q = arg min
θ

|b̂H
q P

⊥
a(θ)b̂q| (20)

ĝq =
1

M

M
∑

m=1

B̂m,q

exp{−j2π(m− 1)d sin θ̂q/λ}
(21)

where b̂q and B̂m,q represent the qth column and (m, q)th element of B̂,

respectively. P⊥
a(θ) = IM − a(θ)a†(θ).

3.3. Summary of the proposed method

Steps of the proposed method is summarized as follows:

Step 1: Setting p = 1, obtain the initial estimation of {ṽ(0)
m }Mm=1 by the

proposed approach in Table 1, where the initial values {ṽ(0)
m }Mm=1 for p = 1

can be a zero vector.

Step 2: Following the method in in Table 1, with {ṽ(0)
m }Mm=1 and 0 < p < 1,

obtain the final estimate {v̂m}Mm=1.

Step 3: Utilize (19) to obtain B̂, and calculate the estimates of DOAs

and complex amplitudes from (20)-(21).

Remark 1: Similar to DEML [7] and WCDEML [13], for common sce-

narios, the proposed method can hold for Q < N,M < N , while Q can be

smaller than, equal to or larger than M .

Remark 2: The tuning parameters p and µ are obtained in an empirical

way via simulations in Section 4.
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4. Simulation Results

In this section, numerical simulations are conducted to demonstrate the

performance of the proposed method compared with those of EM [19], ℓp

[20], SC [23], IMLE [24], ln-ℓεp[26], and the CRB for known waveforms in

impulsive noise ( see the supplementary material for detailed derivation). 2

Since the proposed method has split the noise into Gaussian and sparse

components, we called it NGSC (Noise Gaussianization with Sparse Con-

straint) for short. The common parameters are M = 4, and d = λ/2, and

the known waveforms of all sources are of unit power. For NGSC, simulations

are performed to determine the best values for p and µ (see the following Ex-

ample 1 for details), where maxIter = 1000, ε = 10−6, and ρ(0) = 103. Three

types of impulsive noise, namely, GMM, GGD, and SαS distributions, are

utilized for simulations. 3

1) GMM: The PDF of the two-term complex circular Gaussian mixture

2The original ℓp [20] and SC [23] cannot be applied directly to DOA estimation for

sources with known waveforms. Here, we only use them to estimate B with known S,

and the DOAs and complex amplitudes are obtained from (20)-(21). For EM [19], the

estimation of waveform in (22) of [19] is replaced by complex amplitude estimation, i.e.,

g = (ST ⊙A)−1vec{X}, where ⊙ denotes the Khatri-Rao product. In terms of IMLE

[24], the signal waveform s(t) in (1) of [24] is known.
3It can be shown that SIRP and CES noises could also be decomposed into Gaussian

plus sparse outliers in (2) with some acceptable approximation errors. Therefore, the

effectiveness of the proposed method can also be examined for these two noise models. For

consistency with the compared methods, ℓp, SC and ln-ℓεp, here they are not considered.
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noise w(n) is given by

pw(w) =
2

∑

i=1

ci
πσ2

i

exp

(

−|w|2
σ2
i

)

(22)

where 0 < ci ≤ 1 and σ2
i are the probability and variance of the ith term,

respectively, with c1 + c2 = 1. If σ2
2 ≫ σ2

1 and c2 < c1 are chosen, samples

of larger variance σ2
2 occurring with smaller probability c2 are treated as

outliers in the presence of Gaussian background noise of smaller variance σ2
1

with larger probability c1. In the following simulations, σ2
2 = 103σ2

1, c2 = 0.2,

and σ2
w = c1σ

2
1 + c2σ

2
2 = 0.1. The corresponding signal to noise ratio (SNR)

is defined as SNR = σ2
s/σ

2
w with σ2

s being the power of source signal.

2) GGD: Following (6), the PDF of circular zero-mean GGD with variance

σ2
w is given by

pw(w) =
βΓ(4/β)

2πσ2
wΓ

2(2/β)
exp

{

−
[

Γ(4/β)

Γ(2/β)

]
β

2 |w|β
σβ
w

}

(23)

where the parameters are set to β = 0.3 and σ2
w = 0.1. Its SNR has the same

definition as that of GMM noise.

3) SαS: Since there is no closed-form expression for the PDF of SαS

distribution except for α = 1 and α = 2, it is often represented by its

characteristic function ϕ(ω) = exp(−γα|ω|α), where α ∈ (0, 2] is called the

characteristic exponent, and γ > 0 denotes the scale parameter. When α = 1,

SαS distribution reduces to the Cauchy one, while α = 2, to Gaussian.

Because the second-order and higher-order moments of the SαS distribution

are infinite for α < 2, the generalized SNR (GSNR) is used instead, i.e.,

GSNR = σ2
s/γ

α. In our simulations, α = 1.0 and γ = 0.1.

Example 1: The optimal tuning parameters p and µ are determined in

the presence of GMM noises. The DOAs and complex amplitudes of two
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Figure 1: RMSE versus p and µ for GMM noises, with Q = 2, M = 4, SNR = 5 dB, and

N = 100.

sources are set to 10◦, 15◦, ej0.3π, and e−j0.4π, respectively. With SNR = 5

dB and N = 100, the root mean square error (RMSE) results based on 500

Monte Carlo trials for each fixed p and µ are shown in Fig. 1. It can be

seen that the estimation performance can be improved with suitable p and

µ, especially for 0 < p < 1. Moreover, the best parameters under current

settings are p = 0.3, and µ = 0.01, which are chosen for Examples 2 & 3.

Similarly, the best parameters for ℓp and ln-ℓεp are determined p = 1.1,

and ε = 0.01 for GMM, GGD, and SαS noises. For parameter determination,

ℓp and ln-ℓεp have shown more robustness than NGSC.

Example 2: The performance with respect to SNR in the presence of

GMM noises is investigated. The settings are the same as those in Example

1 except that SNR varies from 0 dB to 30 dB with an interval of 5 dB. Fig.

2 shows the results.

Examples 3: The performance against the number of snapshots is exam-

ined. The settings are the same as those in Example 1 except that SNR = 5

dB, and N varies from 10 to 1000. The results are provided in Fig. 3.
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Figure 2: RMSE versus SNR for GMM noises, with Q = 2, M = 4, and N = 100.
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Figure 3: RMSE versus the number of snapshots, with Q = 2, M = 4, and SNR = 5 dB.

As shown in Figs. 2 and 3, NGSC can work for ranges of SNR from 0dB

to 30dB and N from 10 to 1000 effectively. Moreover, it outperforms the

other four methods, has similar angle estimation performance to EM under

GMM noises, and can approach CRB for high SNR values and with a large

number of snapshots in the presence of GMM noises.

Examples 4: Now consider GGD noises. p = 0.8 and µ = 0.01 are

determined via simulations similar to Example 1. The other settings are the

same as those in Example 2. Fig. 4 shows the results. Similar to Fig. 2,

NGSC can also be effective in GGD noise and has achieved better angle and
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Figure 4: RMSE versus SNR for GGD noises, with Q = 2, M = 4, and N = 100.
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Figure 5: RMSE versus GSNR for SαS noises, with Q = 2, M = 4, and N = 100.

complex amplitude estimations than the other five methods. However, since

there is a relatively large difference between the mechanisms of GMM and

GGD, NGSC can not provide a very close performance to CRB for GGD

noise.

Examples 5: the performance of the proposed method with respect to

GSNR under SαS noises is studied. Its optimal parameters are p = 0.8 and

µ = 0.01. The other settings are the same as those in Example 1. The estima-

tion results are presented in Fig. 5, where the proposed NGSC method shows

a similar performance to ℓp and ln-ℓεp, and better than SC, EM, and IMLE.
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Compared with Example 1, possible reason for the performance degradation

may be the same as in Example 3, i.e., the relatively large difference between

the mechanisms of GMM and SαS.

5. Conclusions

A novel DOA estimation method for sources called NGSC with known

waveforms in the presence of impulsive noise has been introduced. Based on

the MAP principle and by dividing the impulsive noise into Gaussian and

sparse parts, a generalized ℓ2-ℓp minimization cost function was constructed.

With orthogonal projection and the component additivity of ℓp norm, multi-

ple independent and dimension reduced simple ℓ2-ℓp optimization problems

were formulated and solved through the APG framework; finally, the DOAs

and complex amplitudes were obtained based on the cleaned data via remov-

ing the sparse noise part. As demonstrated by computer simulations, NGSC

has outperformed existing algorithms for GMM and GGD noise, and with

a comparable performance for SαS noise; it can achieve the CRB for cases

with a high SNR and a large number of snapshots in the presence of GMM

noise. In addition, the proposed solution is general and can be applied to

other impulsive or heavy-tailed noise models, such as CES and SIRP.
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Appendix : Derivation of the CRB

Similar to [1, 2], we firstly construct a vector consisting of all real-valued

unknown variables of the data model in (1) of the corresponding paper

µ = [θT , ξT ,ηT ]T (1)

where ξ = [ξ1, · · · , ξQ]
T = [Re(g1), · · · , Re(gQ)]

T , η = [ξ1, · · · , ξQ]
T =

[Im(g1), · · · , Im(gQ)]
T .

For simplicity, A(θ) and G(g) are denoted as A and G, and we have

x0(n) = AGs(n).

Similar to [1, 2], the corresponding Fisher information matrix can be

derived as follows,

I(µ) =
1

Ic
Re








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


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Iθθ Iθξ Iθη
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where

Iθθ = N · (GHȦHȦG) ◦RT
ss (3)

Iθξ = IHξθ = N · (GHȦHAĠξ) ◦R
T
ss (4)

Iθη = IHηθ = N · (GHȦHAĠη) ◦R
T
ss (5)

Iξξ = N · (ĠH
ξ A

HAĠξ) ◦R
T
ss (6)

Iξη = IHηξ = N · (ĠH
ξ A

HAĠη) ◦R
T
ss (7)

Iηη = N · (ĠH
η A

HAĠη) ◦R
T
ss (8)

where Ȧ = [∂a(θ1)
∂θ1

, · · · ,
∂a(θQ)

∂θQ
], Ġξ = [∂G1

∂ξ1
, · · · ,

∂GQ

∂ξq
], Ġη = [∂G1

∂η1
, · · · ,

∂GQ

∂ηq
],

Rss = 1/N ·
∑N−1

n=0 s(n)sH(n). Besides,

Ic = π

∫

∞

0

(p′w(ρ))
2

pw(ρ)
ρdρ (9)

where ρ = |w| denotes the modulus of the complex variable w, and p′w(ρ)

represents the first-order derivative of pw(ρ).

Therefore, with the relationship between CRB and the Fisher information

matrix, we have

CRBθ =

√

√

√

√1/Q

Q
∑

q=1

∆q,q (10)

CRBg =

√

√

√

√1/Q

Q
∑

q=1

(∆Q+q,Q+q +∆2Q+q,2Q+q) (11)

where CRBθ and CRBg represent the Cramer-Rao bounds for DOAs and

complex amplitudes, respectively. ∆ = I−1(µ), and ∆p,q denotes the (p, q)th

element of ∆.
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