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Abstract

Arbitrary voice conversion, also referred to as zero-shot voice

conversion, has recently attracted increased attention in the lit-

erature. Although disentangling the linguistic and style repre-

sentations for acoustic features is an effective way to achieve

zero-shot voice conversion, the problem of how to convert to a

natural speaker style is challenging because of the intrinsic vari-

abilities of speech and the difficulties of completely decoupling

them. For this reason, in this paper, we propose a Two-Pathway

Style Embedding Voice Conversion framework (TPSE-VC) for

realistic and natural speech conversion. The novel feature

of this method is to simultaneously embed sentence-level and

phoneme-level style information. A novel attention mechanism

is proposed to implement the implicit alignment for timbre style

and phoneme content, further embedding a phoneme-level style

representation. In addition, we consider embedding the com-

plete set of time steps of audio style into a fixed-length vector to

obtain the sentence-level style representation. Moreover, TPSE-

VC does not require any pre-trained models, and is only trained

with non-parallel speech data. Experimental results demon-

strate that the proposed TPSE-VC outperforms the state-of-the-

art results on zero-shot voice conversion.

Index Terms: voice conversion, zero-shot learning, attention

mechanism, adversarial learning

1. Introduction

Voice conversion (VC) is a pervasive task in many areas of

speech processing, and aims to convert a certain characteristic

of the speech while preserving its linguistic content. The intrin-

sic variabilities of speech pose different challenges to the VC

task, including speaker identity [1], accent [2], emotion [3, 4]

and pronunciation [5, 6], etc.

Early work on speaker identity conversion was focused on

parallel training data, where the speech of the same linguistic

content for different speakers is available. Thus, it is possi-

ble to learn direct mapping when the acoustic features of the

source speech and the target are aligned. However, there was

a major problem since the above methods all require parallel

data with frame-level alignment, which is both difficult and

time-consuming to collect and limits the generalizability of the

learned model. Therefore, it is important to develop a method

that is capable of adopting the non-parallel training data. Re-

cently, generative models have enjoyed great success, such as

variational autoencoders (VAEs) [7] and generative adversarial

networks (GANs) [8], and these have performed well on non-

parallel training corpus [9, 10, 11, 12, 13]. However, when en-

countering unseen speakers (not present in the training data),
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Figure 1: SPAttention module.

they have demonstrated limited conversion capabilities.

In zero-shot learning, the learners can handle the classes

not previously seen at the training stage. Many approaches have

been explored for dealing with unseen data in the VC task. In

particular, disentangling the linguistic content information and

speaker style information from an input has been proved to be

an effective way to achieve zero-shot voice conversion. The

proviso here is that the source speaker style representation is re-

placed by that of the target in the conversion stage. Instance

normalization layer [14], carefully designed bottleneck [15],

phoneme transcription guidance [16], and vector quantization

[17] all implement feature disentanglement in one form or an-

other. However, most of them only embed the speaker style

information into a fixed-length vector, which is an average style

representation over all time steps. This leads to several prob-

lems. For instance, silence segments affect the representation

because they contain almost no useful information. On the other

hand, synthetic speech has poor naturalness and similarity mea-

surements, which usually accounts for the lack of specific style

changes in phonemic content. Moreover, it is often too difficult

to decouple the style and content information completely. The

residual content information in style may contaminate the rep-

resentation, so that it limits the quality of the converted speech.

In this paper, we contribute to solving problems encoun-

tered with zero-shot voice conversion. To our knowledge, only

a few methods (e.g. AdaIN-VC [14], AutoVC [15]) can process

zero-shot voice conversion, but most of them cannot obtain the

availability of both local and global style information. There-

fore, the proposed method not only achieves the zero-shot trans-

fer, but also simultaneously models for both local and global

style information. For local style, we propose a novel attention

mechanism, which we refer to as “Style to Phoneme Attention

(SPAttenton)”, which both implements an implicit alignment

and embeds the most similar speaker style representation for

each content phoneme. This fine-grained phoneme-level style
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Figure 2: The generator architecture of TPSE-VC. (a) The content encoder. (b) The style encoder. (c) The decoder. Where X1 and X2

indicate the source and target utterances respectively. According to Eq. (2), the outputs of encoders in different time resolutions will be

fed into the SPAttention modules, and Z
(3)
2 will be averaged to get the sentence-level style representation Z2. Finally, in (c), we fuse

U1 and Ẑ2 to restore the original time steps gradually, then we use the AdaIN operator to embed Z2 into the converted speech.

information mainly encapsulates the target style which depends

on source content. For global style, we also embed the com-

plete set of time steps of speaker style information into a fixed-

length vector, which gives a coarse-grained style information

representation. The resulting sentence-level style information

encapsulates the style of the whole utterance. To preserve the

content information while making significant transformations

of the target style, we use a U-Net like [18] multi-scale archi-

tecture. We sample or fuse different features at each individual

time resolution, and following this, we add sentence-level style

information using the AdaIN [19] operator. To further enhance

the universality and performance of the method, we only use

non-parallel data for training. We encapsulate our voice con-

version framework into an adversarial architecture, and use the

neural-network-based vocoder MelGAN [20] to construct the

transformed speech waveform. Our method does not require

any pre-trained models, and generates the speech spectrogram

in a non-autoregressive manner. Experimental results indicate

TPSE-VC outperforms other SOTA approaches in both subjec-

tive and objective evaluations.

2. Style to Phoneme Attention

To obtain phoneme-level style information, the key idea is an

attention mechanism [21] relating style to content [22, 23]. Our

approach similarly assumes that the style information is related

to the content, so instead of only using a fixed-length vector to

represent the style of the whole utterance, the style information

should rely on the content and change with time.

As shown in Figure 1, a novel attention module (SPAtten-

tion) has been developed to meet the hypothesis above. Accord-

ingly, let Z2 denote the speaker style information of a target

utterance and this should depend on the source content repre-

sentation U1. First, we normalize the input features and trans-

form them linearly, giving Query(U1), Key(Z2), and Value(Z2)

denoted by q, K, and V respectively. Then we use q and K

to calculate the attention heatmap to align different phonemic

speech content implicitly. Subsequently, we calculate the cor-

responding speaker style feature Ẑ2 which depends on U1 by

taking the dot product of V and the attention heatmap. Mathe-

matically, we express this as follows:

Ẑ2(t) =

∑T ′

t′=1 exp(q
T (t)K(t′))V (t′)

∑T ′

t′=1 exp(q
T (t)K(t′))

·Wo (1)

where q = Wf · IN(U1), K = Wh · IN(Z2) and

V = Wg · Z2, and IN indicates a mean–variance channel-

wise normalization to eliminate style information [14]. Ẑ2(t) is

the tth time step of Ẑ2, and the length of Ẑ2 is the same as U1.

Let T ′ denote the length of Z2, then t′ is the index that enu-

merates all time steps of the target style feature. Further, Wf ,

Wg , Wh, and Wo above indicate the learned weight matrices,

which are implemented as Conv1d layer in which both kernel

and stride are of unit length. For each time step of U1, this atten-

tion mechanism can automatically align the most similar phone-

mic pronunciation of target speech, and appropriately generate

the target style feature which depends on source phonemic con-

tent in a learnable manner. Due to our multi-scale architecture,

we create different SPAttention modules to obtain the style rep-

resentations at the corresponding time resolutions.

3. Methodology

Our proposed framework is based on GAN [8] which is com-

posed of a generator and a discriminator typically, the generator

is an encoder-decoder module in our work. The generator con-

sists of four modules, a content encoder Enc(·) which captures

the linguistic content information from the source utterance;

a style encoder Ens(·) that produces a speaking style repre-

sentation from target speech; SPAttention(·, ·) modules, which

are detailed in Section 2 above, it can generate the content-

dependent style information; and a decoder De(·, ·, ·), it takes

the content embedding, the phoneme-level style representation

and the averaged sentence-level style representation as inputs,

and then synthesizes the converted speech by only changing the

source speaking style to the target one.
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3.1. Network architecture

The architecture of the generator is illustrated in Figure 2. Here

the generator is made up entirely of convolution layers in or-

der to operate in a non-autoregressive generative manner. For

capturing and restoring speech features at different time res-

olutions, we adopt a multi-scale architecture similar to U-Net

[18]. To enlarge the receptive field and capture long-time-scale

information, we also employ the ConvBank layer [24] which

stacks convolution layers of different kernel sizes. A set of con-

volution operations is defined as shown in the bottom right of

Figure 2. The ConvBlockbase consists of two Conv1d layers.

Then ReLU nonlinear activation is applied after each convolu-

tion layer. Both ConvBlockdown and ConvBlockup are based

on ConvBlockbase, the differences are that we append an Avg-

Pooling layer for downsampling or a PixelShuffle1d layer [25]

for upsampling, and the residual connection [26] will be pro-

cessed to the corresponding time resolution by using average

pooling or nearest neighbor interpolation. In addition, we adopt

Instance Normalization (IN) after each convolution layer of the

content encoder to eliminate speaking style information [14].

The exceptions here are the ConvBank layer and the last output

layer. Note we did not design the speaker encoder specifically to

eliminate content information. Due to the fact that SPAttention

can embed the most phonetically similar style representation for

source content, the residual content information in style may be

ignored.

In our work, we adopt different time resolutions. The pro-

cedure can be written as follows:

U
(1)
1 , ..., U

(l)
1 = Enc(X1), Z

(1)
2 , ..., Z

(l)
2 = Ens(X2),

Ẑ
(1)
2 , ..., Ẑ

(l)
2 = SPAttention

(1)(U
(1)
1 , Z

(1)
2 ), ...,

SPAttention
(l)(U

(l)
1 , Z

(l)
2 ),

Z2 = AvgPooling(Z
(l)
2 ),

XZ1→Z2
= De(U

(1)
1 , ..., U

(l)
1 ; Ẑ

(1)
2 , ..., Ẑ

(l)
2 ;Z2)

(2)

where X1 and X2 are the source and target utterances respec-

tively, the superscript (l) denotes different time resolutions.

Both the U
(l)
1 and Ẑ

(l)
2 are fed into the decoder gradually to gen-

erate speech spectrogram in a U-Net like manner. To fuse the

global style information, we first use average pooling for differ-

ent length utterances to obtain fixed-length representations, then

feed it into several linear transformations. Later, the AadIN op-

erator is used to embed the sentence-level style.

Unlike the generator, the discriminator is constructed with

2d convolution layers like [27, 28] to better capture the acoustic

texture. There are 5 convolution layers with stride 2 and ker-

nel size 5 to downsample the feature map gradually. Then an

output layer is appended to match the target channel. Instance

Normalization [29] and Leaky ReLU [30] are applied after each

convolution layer except the final output layer.

3.2. Loss functions

As discussed above, we train this model using only non-parallel

data in an unsupervised manner. Thus, we adopt the L1 recon-

struction loss between the predicted and ground-true spectro-

grams when the inputs are the same. We calculate the L2 con-

tent loss between the source content features and the converted

ones. And the corresponding style distances are computed using

the target style features and the converted ones. In adversarial

training, the WGAN-GP loss [31] is adopted to mitigate against

the training instability issue. The weight of reconstruction loss

is fixed at 1, all the rest rely on different weighting parame-

ters denoted by λ1, λ2 and λ3 respectively. The mathemati-

cal formulations can be found on https://github.com/

XXxin1/tpse-vc/blob/main/Loss_Function.pdf

3.3. Training details

As shown in Figure 2, we employed a pre-trained MelGAN

vocoder [20] to implement the transformation from speech

spectrogram to speech waveform. For this, we process the orig-

inal speech signals in the required format of the MelGAN input.

We convert the sample rate of audio into 22,050Hz and perform

the short-time Fourier transform (STFT) with 1024 STFT win-

dow size, then we transform the magnitude of the spectrograms

to 80-bin mel-scale and take logarithm.

We trained the proposed TPSE-VC by ADAM optimizer

with 0.0001 as learning rate, and β1 = 0.9, β2 = 0.999. We

set the weight decay to 0.0001 to prevent the model from over-

fitting. The weighting parameters are simply set as λ1 = 1,

λ2 = 1 and λ3 = 0.01 in our experiment. We trained the model

for 200k iterations (mini-batch = 128). Further details can be

found on: https://github.com/XXxin1/tpse-vc

4. Experiments

4.1. Experiment conditions

We conduct experimental evaluations on the CSTR VCTK Cor-

pus [32], which contains about 44 hours of utterances produced

by 109 English speakers with different accents. For the zero-

shot non-parallel conversion setting, we randomly selected 20

speakers as the testing set, where they were denoted as unseen

speakers. And the rest 89 speakers’ utterances will be used to

train our proposed model. We first trimmed the audio to reduce

the training difficulty, then transformed it into the correspond-

ing acoustic feature. Later, we randomly cropped the acous-

tic features with the segment length of 128 during training, the

variable-length inputs can be processed in the inference stage

due to our fully-convolution architecture.

Three baselines, the state-of-the-art arbitrary voice conver-

sion approaches, were adopted for the performance comparison

named AutoVC [15], AdaIN-VC [14] and VQVC+ [33]. We re-

produced these methods by their open source implementations

or the official pre-trained models also trained o VCTK corpus.

To fair comparison with the SOTA methods, the testing

pairs were guaranteed that they all were spoken by unseen

speakers. The four conversion scenarios were average con-

sidered (intra/inter-gender), we randomly sampled 2000 testing

pairs. Note these pairs have different transcriptions.

Table 1: Subjective evaluation: The MOS results.

MOS (a) Proposed (b) AutoVC (c) AdaIN-VC (d) VQVC+

Nat. 3.24 ± 0.06 2.57 ± 0.06 2.65 ± 0.06 2.76 ± 0.07

Sim. 3.36 ± 0.06 2.26 ± 0.05 2.55 ± 0.06 2.70 ± 0.06

4.2. Subjective evaluation

The converted speech was evaluated subjectively in both natu-

ralness and similarity. We randomly and averagely selected 80

testing pairs in the previous pairs for each scenario, and we en-

sured each scenario with at least 8 subjects. Then we converted

these pairs using different methods and ordered them randomly.
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Table 2: Objective evaluation: The speaker (cosine) similarity (10−2) generated by a third-party speaker verification system.

Similarity
Comparison with SOTAs Ablation Studies Lower and Upper Bounds

(a) Proposed (b) AutoVC (c) AdaIN-VC (d) VQVC+ (e) -adv (f) -sentence (g) -phoneme (h) ST (i) vocoder

Average (10−2) 77.46 62.88 76.54 68.06 64.99 74.26 66.86 55.87 93.48

* ST & vocoder: the similarity between target utterances and source ones, and between target utterances and the vocoder-reconstructed ones.

We conducted the Mean Opinion Score (MOS) test to evalu-

ate the perceptual quality for speech naturalness and speaker

similarity. In the naturalness test, each converted utterance was

presented to the listeners who were asked to give a 5-scale opin-

ion score from 1 to 5 how natural the speech sounded (5 is the

best). And in the similarity test, each listener was asked to lis-

ten to the converted speech and the corresponding target speech,

and marked 1 to 5 regarding how confident they thought these

two utterances were said by the same speaker. Note such sub-

jective evaluation was conducted on unseen speakers, which is

considered more important in the real world.

The scores are presented with the 95% confidence intervals

in Table 1. Our proposed method achieved the best performance

among other approaches in human perceptual evaluations. This

result demonstrated that TPSE-VC can synthesize more natural

and realistic speech signals than other baselines because of the

multi-scale feature fusion, the adversarial training strategy, and

the two-pathway style embedding.

4.3. Objective evaluation

In objective evaluations, an extra speaker verification system

Resemblyzer1 was employed to embed the speaker character-

istics into a fixed-length feature. For each sampled pair (2000

pairs total mentioned above), we fed both the target speech and

the converted speech into Resemblyzer to get speaker represen-

tations. Then we calculated the cosine similarity between them

to measure the speaker similarity. Meanwhile, the similarity

of the target vocoder-reconstructed utterances and source utter-

ances were also evaluated to become the upper and lower bound

for the speaker similarity respectively.

The results are reported in Table 2 (a) ∼ (d). As we can

see, among the SOTA any-to-any voice conversion methods,

TPSE-VC (our proposed) achieved better or comparable per-

formances. The similarity of AdaIN-VC [14] is pretty much the

same as ours, but in human perception (i.e. subjective evalua-

tions or demo page2), the converted utterances generated by our

proposed method are much more similar to the target speech.

4.4. Ablation studies

In this section, the ablation studies were conducted by remov-

ing the different roles in turn. For investigating the effects of the

adversarial training, we canceled this strategy by removing the

discriminator and the adversarial loss, then we trained the whole

generator like a vanilla autoencoder. To indicate the advantages

of our phoneme-level and sentence-level style embeddings, we

separate these two different style modes. We only used one of

them to embed style information for the whole framework by

removing the corresponding modules and connections. The dif-

ferent strategies were denoted by -adv, -sentence (i.e. only

phoneme-level), and -phoneme (i.e. only sentence-level) re-

spectively. Table 2 (e) ∼ (g) show the objective evaluations of

1https://github.com/resemble-ai/Resemblyzer
2https://xxxin1.github.io/TPSEVC-Demo/
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Figure 3: Attention heatmap visualization. For each source

phoneme, the SPAttention tries to generate the most phoneti-

cally similar style by referring to the target utterance.

ablation studies by removing different roles, which can confirm

the effectiveness of different roles to some extent.

4.5. Attention analysis

To present the performances of SPAttention, we analyzed and

visualized the heatmap after the softmax activation function to

gain meaningful insights. The last attention module was cho-

sen, and we considered two different scenarios: the different

speakers with the same and different content.

VCTK corpus has a small amount of parallel data (rainbow

passage and the elicitation paragraph). As shown in Figure 3

(a), this visualization was produced by the utterances that were

spoken by different speakers with the same content. In the si-

lence (sil) parts, we can see the heatmap is averaged, the SPAt-

tention cannot obtain any style information because there were

no phonemes that can be recognized. Besides the silence part,

diagonal attention can be easily observed due to the same con-

tent. In Figure 3 (b), we selected another testing pair with dif-

ferent content from different speakers. It can be found that the

phonetically similar corresponding positions are lit, the SPAt-

tention tends to find the phonetically similar style representa-

tion for each content phoneme (e.g. /EH1/ and /IH1/, /AAI N/

and /AAI R/, and /T N EH1/ and /T R IY0/ & /IH1/) and then

constructs the phoneme-level style information.

5. Conclusions

In this paper, we have proposed TPSE-VC, a zero-shot non-

parallel voice conversion framework, by embedding the fine-

grained and coarse-grained style information simultaneously.

The proposed TPSE-VC achieved comparable or even better

performance than other arbitrary voice conversion methods in

both subjective and objective evaluations. In addition, such an

attention-based VC framework does not need to ensure the style

and content embedding are completely independent of each

other, and it can easily achieve zero-shot voice conversion.
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