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Abstract: This article presents the analysis of degradation rate over 10 years (2008 to 2017) for six 10 

different photovoltaic (PV) sites located in the United Kingdom (mainly affected by cold weather 11 

conditions) and Australia (PV affected by hot weather conditions). The analysis of the degradation 12 

rate was carried out using the year-on-year (YOY) degradation technique. It was found that the 13 

degradation rate in the UK systems varies from -1.05% and -1.16 %/year. Whereas a higher 14 

degradation ranging from -1.35% to -1.46%/year is observed for the PV systems installed in 15 

Australia. Additionally, it was found that in the Australian PV systems multiple faulty PV bypass 16 

diodes are present due to the rapid change in the ambient temperature and uneven solar irradiance 17 

levels influencing the PV modules. However, in cold weather conditions (such as in the Northern 18 

UK) none of the bypass diodes were damaged over the considered PV exposure period. 19 

Furthermore, the number of PV hot spots have also been observed, where it was found that in the 20 

UK-based PV systems the number of hot spotted PV modules are less than those found in the 21 

Australian systems. Finally, the analysis of the monthly performance ratio (PR) was calculated. It 22 

was found that the mean monthly PR is equal to 88.81% and 86.35% for PV systems installed in the 23 

UK and Australia, respectively. 24 

Keywords: photovoltaic systems; degradation; hot-spots; performance analysis; performance ratio. 25 

 26 

1. Introduction 27 

The ability to precisely predict the output power delivery over the course of time is of vital 28 

importance to the growth of the photovoltaic (PV) industry. Two key cost drivers are the efficiency 29 

with which sunlight is converted into actual energy and how this relationship fluctuations over time. 30 

An accurate quantification of power decay over time, also known as degradation rate [1], is critical 31 

to all stakeholders/utility companies, investors, integrators, and researchers alike. 32 

Economically, PV modules degradation rates are equally important, because a higher 33 

degradation rate interprets directly into less output power produced by the system, thus reducing 34 

future cash flows [2]. Inaccuracies in determined degradation rates lead to amplified financial risks 35 

in the PV sector. Technically, degradation mechanisms are important to understand because they 36 

could lead to PV system failures [3]. Typically, a 10% decline is considered a failure, but there is no 37 

compromise on the definition of failure [4], because a high-efficiency module degraded by 50% may 38 

still have a higher efficiency than a non-degraded module from a less efficient technology. 39 

The documentation of the degradation mechanisms through modeling and experiments in 40 

principle directly leads to lifetime improvements of PV modules as suggested by S. Kawai et al. [5]. 41 

Outdoor field testing has played a significant role in measuring long-term lifetime and behavior for 42 
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at least two reasons: it is the typical functioning environment for PV installations, and it is the only 43 

way to correlate indoor testing apparatuses to outdoor results to forecast field performance. 44 

There are various references in the literature that include the degradation rate of PV systems 45 

worldwide. However, there are a lack of references found in the literature describing the behavior 46 

and degradation analysis of an existing PV systems in the United Kingdom and Australia. Therefore, 47 

in this article, the degradation rate of six PV sites installed in three different locations in the UK and 48 

Australia are examined over a period of ten years (2008 to 2017). Before moving to the methodology, 49 

it is indeed important to have an overview of the degradation rate across multiple regions in the 50 

world, which will be summarized as follows: 51 

• United States of America (USA): The USA is placed on the top five countries leading the PV 52 

technology worldwide [6]. In 1977, the Department of Energy established the Solar Energy 53 

Research Institute in Golden, Colorado. In 1991, it was renamed as the NREL. Outdoor testing 54 

of modules and sub-modules started at the Solar Energy Research Institute in 1982. When 55 

amorphous silicon (a-Si) modules first became commercially available, NREL began to report 56 

degradation rate that were considerably higher than -1.0%/year [7]. In [8] and [9], similar results 57 

of the PV degradation were found in small (<10 kWp) size PV installations, followed by a yearly 58 

degradation rate of approximate -0.8% to -1.25%/year. 59 

• Europe: The terrestrial focus of PV industry in Europe can be traced to the oil crisis of the 1970s. 60 

The development and institution of PV sites can be divided into publicly and privately funded 61 

projects. The publicly funded portion in Europe can be additionally divided into the umbrella 62 

organization of the Commission of the European Communities and individual national 63 

programs. Never the less, various references indicate that the annual degradation rate in Spain 64 

and Italy is between -0.8% to -1.1%/year [10–12], in Germany between -0.5% to -0.7%/year [13,14], 65 

in Cyprus between -0.8% to -1.1%/year [15], in Greece between -0.9% to -1.13%/year [16], and 66 

finally in Poland is always greater than -0.9%/year [17]. 67 

• Asia: Chandel et al. [18] studied the degradation rate in India based on 28 year filed exposes 68 

mono crystalline PV modules, with the degradation rate found to be -1.4 %/year. Similar results 69 

were found by Thotakura et al. [19]. In this study, the degradation rate in southern India is 70 

observed at -1.3 %/year. Furthermore, in Thailand, the degradation rate was widely different, 71 

ranging between -0.5% to -4.9%/year [20]. However, C. Dechthummarong et al. [21] found that 72 

the degradation rate based on 15 years of PV exposure in northern Thailand is equal to -73 

1.5%/year. The degradation rate of PV modules in many other countries such as Japan, 74 

Singapore, and Republic of Korea are reported in [22–24], the PV degradation rate is equal to -75 

1.15%/year in Japan [22], -2.0%/year in Singapore [23], and -1.3%/year in Republic of Korea [24]. 76 

It is worth noting that degradation rates in PV modules may differ too between lower and higher 77 

irradiance levels dependent on cause, for example: 78 

1. Encapsulate browning - may be similar at low and high irradiance levels 79 

2. Series resistance increase - will be worse at high irradiance conditions 80 

3. Shunt resistance decrease - will be worse at low irradiance conditions 81 

4. Random failures such as faulty bypass diodes - will give an even higher variability between PV 82 

installations 83 

Worldwide point of view the PV degradation rate various between -0.4% to -2.0%/year. 84 

However, there is not enough evidence based on the annual degradation rate across the UK and 85 

Australia. Therefore, this article tries to fill-in this gap of knowledge by evaluating three different PV 86 

sites located in various locations in the United Kingdom (specifically in Scotland) and Australia. It 87 

was found that the average annual degradation rate of the PV installations varies between -1.05% to 88 

-1.16%/year in the UK, whereas the degradation rate in the PV systems installed in Australia ranges 89 

from -1.35% to -1.46%/year. 90 

This paper is organized as follows: Section 2 presents the methodology including the description 91 

of the examined PV systems and the degradation rate analysis technique. In Section 3, the results of 92 

the degradation rate for all examined PV systems are described. Sections 4 and 5 present the overall 93 

discussion and conclusions of the article, respectively.  94 
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2. Methodology  95 

3.1. Description of the examined PV systems 96 

In this work, six different PV installations have been examined. The geographical distribution of 97 

the PV sites is shown in Figure 1a,b) and summarized as follows: Group 1 – United Kingdom: PV site 98 

A located in Glasgow; PV site B located in Edinburgh, and PV site C located in Aberdeen. Group 2 - 99 

Australia: PV site D located in Albury; PV site E located in Sydney and PV site F located in Newcastle. 100 

The PV sites have been categorized in two groups; the first group contains PV sites A, B and C 101 

(located in the UK), whereas the second group consist of PV sites D, E and F (located in Australia). The 102 

solar irradiance (G) and ambient temperature (T) play major role on the performance and annual energy 103 

production for the PV panels. Since the examined PV sites are located in different locations, it is worthy 104 

to address the locations weather and ambient temperature data. 105 

The average values of the solar irradiance in all studied locations between the years 1981 – 2010 is 106 

taken from [25] and reported in Figure 1a,b. As can be noticed, the irradiance in the UK and the 107 

Australian sites are relatively equal to 850 kWh/m2 and 2300 kWh/m2, respectively. 108 

Additionally, the weighted temperature for all PV sites in the UK is equal to 11.2 °C, while it is 109 

equal to 21.4 °C for the Australian PV sites. The weighted temperature is calculated using Equation (1) 110 

[26]: 111 Tweighted =  ∑ TPV  × G∑ G    (1) 

where Tweighted is the weighted temperature of the PV site, TPV is the actual temperature measured in the 112 

PV system in °C, and G is the solar irradiance affecting the PV system in W/m2. 113 

Figure 1c presents a real picture of the examined PV system located at Glasgow (PV site A). All 114 

examined PV systems are residential rooftop systems and have an identical configuration which is 115 

demonstrated in Figure 1d, as well as identical azimuth (-3° due to South) and tilt angle of (39°). The 116 

PV installations are comprised of crystalline silicon PV modules with a peak power of 220 W, they are 117 

configured in 2 PV strings connected in parallel, each comprised 9 PV modules connected in series. All 118 

have the same PV capacity of 3960 W. The electrical characteristics at standard test conditions (STC) 119 

including the peak power, voltage and current at maximum power point for the examined PV modules 120 

are shown in Table 1. 121 

Furthermore, all observed PV systems are fitted with an ICONICA maximum power point 122 

tracking (MPPT) unit. This device has the capability of enhancing the output power during partial 123 

shading conditions, with the MPPT efficiency ranging from 97.5% to 99.2%.  The MPPT unit is 124 

connected to a hybrid pure sine wave inverter linked to the grid, with the inverter efficiency is ranging 125 

from 90% to 94%. 126 

All examined PV sites have a weather station manufactured by the Davis Company. The weather 127 

station measures the ambient temperature, wind speed, humidity, and solar irradiation. Onsite 128 

measurements of DC voltage and current are recorded at the inverter input with a sampling rate of 5 129 

min, thus the number of samples collected in each year was equal to 52,560 sample. The PV modules 130 

are fitted in 2008, or at the end of 2007, therefore the comparison between degradation rates of the PV 131 

sites will be studied starting from 2008 to 2017; 10 years of exposure. 132 

Table 1. PV modules electrical parameters. 

PV module parameter Value 

PV peak power 220 W 

One PV cell peak power 3.6 W 

Voltage at maximum power point (Vmpp) 28.7 V 

Current at maximum power point (Impp) 7.67 A 

Open Circuit Voltage (Voc) 36.74 V 

Short Circuit Current (Isc) 8.24 A 
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3.2. Year-On-Year (YOY) Degradation Analysis Technique 133 

In this article, we have used a new model called year-on-year (YOY) developed by the national 134 

renewable energy laboratory (NREL). The open access software (RdTools) allows us to analyze the 135 

degradation rate for PV installations [2]. The degradation calculations consist of several steps discussed 136 

in the following processes: 137 

• Import data and preliminary calculations: at this step, the time series of the energy yield, PV 138 

temperature, and solar irradiance will be processed. 139 

• Normalization: since PV data is randomly distributed, normalization process is required in order 140 

to transform the data into a normal distribution mode. This step calculated a unitless performance 141 

ratio (PR) metric with less variability than raw power production data. The PR is typically based 142 

on the rated power of the PV system, measured PV power, and site irradiance (measured by 143 

weather station). The normalization is done using the following Equation [27]: 144 𝑃𝑅 =  𝑃𝑃𝑆𝑇𝐶,𝑟𝑎𝑡𝑒𝑑  ×  𝐺𝑝𝑜𝑎𝐺𝑟𝑒𝑓  × (1 +  𝛾 (𝑇𝑃𝑉 − 𝑇𝑟𝑒𝑓)   (2) 

where P is the measured dc or ac power of the PV systems in watts, PSTC,rated is the rated dc or ac power 145 

of the PV system in watts, Gpoa is the plane-of-array irradiance, Gref is the reference irradiance 1000 146 

W/m2, γ is the maximum power temperature coefficient in relative %/°C, TPV is the PV system 147 

temperature in °C, and Tref is the PV system reference temperature 25 °C. 148 

           

                         (a)                                           (b) 

 

                           (c)                                           (d) 

Figure 1. Examined photovoltaic (PV) systems: (a) geographical distribution of the examined PV 

systems located in the United Kingdom including the average irradiance and weighted temperature 

over the last 30 years; (b) geographical distribution of the examined PV systems located in the Australia 

including the average irradiance and weighted temperature over the last 30 years; (c) real picture of the 

examined PV system installed in Glasgow site PV site A; (d) PV sites configurations, comprising two 

parallel PV strings each consisting of nine series connected PV modules. 
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• Data Filtering: PV data filtering is used to exclude data points that represents invalid data, create 149 

bias in the analysis, or introduce significant noise. Often, low irradiance conditions are associated 150 

with night-time data or with errors due to PV components startup such as the MPPT unit. An 151 

example of the data filtering output is shown in Figure 2a. 152 

• Aggregation: PV data is aggregated with an irradiance and temperature weighted average. This 153 

step reduces the impact of high-error data points in the morning and evening time. The 154 

aggregation time-period was selected at one day period. Therefore, the final yield data has a 155 

resolution of 1 day. Example of output aggregation is shown in Figure 2b. 156 

• Degradation analysis: the degradation analysis step processes the remaining data to compute a 157 

degradation rate based on year-on-year method. The rate of change is calculated between two 158 

points at the same time in subsequence years. Calculating such a rate of change for all data points 159 

and all years, results in a histogram (as shown in Figure 2c) of rates of change, the central tendency 160 

of which representing the overall system performance. 161 

     

                            (a)                                                 (b) 

 

  (c) 

Figure 2. Example of the year-on-year (YOY) degradation process: (a) data filtration; (b) daily 

aggregation procedure; (c) the result of the degradation rate. 
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3. Results 162 

3.1. Degradation rates in the UK PV installations (A, B and C) 163 

The YOY degradation analysis technique was applied to calculate the degradation rate of the 164 

examined PV systems based on their output dc power. Figure 3a-c shows the normalized output 165 

energy and the histogram of the degradation rate analysis in sites A, B, and C. Accordingly, in the 166 

Glasgow PV site, the mean degradation rate over the last 10 year is -1.05%/year. Grater degradation 167 

mean of -1.11%/year is observed for PV system installed in Edinburgh. Furthermore, the highest 168 

mean degradation rate is found in Aberdeen at -1.16%/year.  Remarkably, this large degradation rate 169 

in the PV systems is related to the fact that the PV sites (A, B, and C) are in cold areas. The heavy 170 

snow, rain and high wind speed impact the surface of the PV modules, thus there is a higher risk for 171 

PV hot spots, micro cracks, and damage in the surface of the PV modules due to hoarfrost, which 172 

subsequently will increase the degradation rate of the PV modules. 173 

        

(a) 

        

(b) 

 

        

(c) 

Figure 3. Normalized energy and annual degradation of the examined PV systems in the UK: (a) PV 

site A - Glasgow; (b) PV site B - Edinburgh; (c) PV site C – Aberdeen. 

 



Electronics 2020, 9, x FOR PEER REVIEW 7 of 14 

 

Since the PV site C has the highest degradation rate (-1.16%/year) compared to PV site A and B, 174 

this site has been inspected. Interestingly, a broken glass due to a hoarfrost was found in one of the 175 

PV modules. In addition, three adjacent PV modules affected by hot spots were identified. Figure 4 176 

shows the thermography image for the hot-spotted PV modules captured using FLIR E4 thermal 177 

imaging camera. Fundamentally, hot spots reduce the output power production of the PV modules. 178 

Thus, it will increase the degradation rate of this PV site. 179 

In order to analyze the impact of these hot-spots affecting the PV system performance, we have 180 

divided the dataset used for the degradation rate analysis into two main parts: 181 

• First PV array: the PV array consists of 9 healthy PV modules; connected in series; all PV modules 182 

are not affected by hot-spots, or any other types of faults. 183 

• Second PV array: the PV array consists of 9 PV modules connected in series, of which three are 184 

affected by hot-spots. 185 

According to results shown in Figure 5a, the first PV array has an annual degradation rate of -186 

0.97%/year. Whereas, in Figure 5b, the PV second PV array affected by three hot-spotted PV modules 187 

has an annual degradation rate of -1.35%/year. This result proves that Aberdeen site had the lowest 188 

degradation rate compared to both Glasgow and Edinburg, due to the impact of the hot-spots found 189 

in several PV modules. 190 

 

 

Figure 4. Hot spots captured in three different PV modules in the PV site C (Aberdeen PV site). 

 

          (a)                                             (b) 

Figure 5. Degradation rate analysis per PV array for PV systems installed in Aberdeen: (a) first PV array 

annual degradation rate -0.97%/year; (b) second PV array “affected by three hot-spotted PV modules” 
annual degradation rate of -1.35%/year. 
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3.2. Degradation rates in the Australian PV installations (D, E and F) 191 

Similar to the previous section, the analysis of the degradation rate for the Australian sites has 192 

been conducted with the YOY degradation analysis technique. Figure 6a-c shows the normalized 193 

output energy and the histogram of the degradation rate analysis in sites D, E, and F. Consequently, 194 

in Albury PV site, the mean degradation rate over the last 10 year is -1.42%/year. A Lesser 195 

degradation mean of -1.35%/year is observed for the PV system installed in Sydney. Furthermore, the 196 

highest mean degradation rate is found in Newcastle at -1.46%/year.   197 

Compared to the PV degradation rates obtained in the UK sites which are ranging from -1.05% to 198 

-1.16%/year, the degradation in the Australian sites are always higher. This is due to various reasons 199 

including (i) high levels of the ambient temperature affecting the PV modules, and (ii) the solar 200 

irradiation affecting the PV modules is much higher than the UK-based PV systems. Interestingly, this 201 

increase in the ambient and irradiance levels influence the PV modules by the following: 202 

• PV modules bypass diodes failure: from the examined PV sites in Australia, it was found that 203 

several PV modules had a faulty bypass diode. Two examples are shown in Figure 7a,b A faulty 204 

        

(a) 

        

(b) 

 

        

(c) 

Figure 6. Normalized energy and annual degradation of the examined PV systems in Australia: (a) PV 

site D - Albury; (b) PV site E - Sydney; (c) PV site F – Newcastle. 
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bypass diode is found in a PV string, resulting an increase in the PV string temperature. In Figure 205 

7a, the PV string has 7.9 °C increase in the temperature, whereas the PV string in Figure 7b has 206 

9.1 °C increase in the PV string temperature due to the bypass diodes failure. 207 

• Hot spots: as similar to the hot spots found in the PV site C (Aberdeen, UK) shown previously 208 

in Figure 4b 209 

• , after inspecting the PV site F (Newcastle, Australia), it was found that six PV modules were 210 

affected by hot spots. Figures. 7c,d show two different PV modules affected by hot spots. 211 

In order to visualize the impact of the failure in the bypass diodes, as well as the hot-spots in the 212 

Australian PV sites, we have carried out the analysis of the sub-array of the affected PV installations. 213 

Figure 8a shows the sub-array of the PV installation located in Albury, where two PV modules 214 

affected by faulty bypass diodes is observed in the PV array 2. According to Figure 8b, the Newcastle 215 

PV system has five hot-spotted PV modules in the first PV array, while the second PV array is only 216 

affected by one hot-spotted PV module. 217 

Results shown in Figure 8c-d) present the annual degradation rate for the sub-array in both 218 

Albury and Newcastle PV systems. According to Figure 8c, Albury PV site, the first PV array has an 219 

annual degradation rate of -1.26%/year. Whereas, the PV second PV array affected by faulty bypass 220 

diodes in two different PV modules has an annual degradation rate of -1.58%/year, resulting in a 221 

higher annual degradation due to the existence of the faulty bypass diodes. Similarly, Figure 8d 222 

shows the annual degradation rate in PV array 1 and 2 for PV systems located in Newcastle, Australia. 223 

The First PV array has high annual degradation of -1.63%/year affected by various hot-spots. 224 

However, less annual degradation is obtained for the second PV array of -1.29 %/year, while this PV 225 

array is only affected by one hot-spotted PV module. 226 

                                

             (a)                                       (b) 

                                

             (c)                                       (d) 

Figure 7. Impact of high ambient temperature and solar radiation on the examined PV sites in Australia, 

images were taken using FLIR E4 thermal imaging camera: (a) faulty bypass diode in a PV string increasing 

the temperature of the PV string by 7.9 °C; (b) faulty bypass diode in a PV string increasing the 

temperature of the PV string by 9.1 °C; (c) PV hot spots found in a PV module in site F (Newcastle, 

Australia); (d) more PV hot spots found in a different PV modules in PV site F. 
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4. Discussion 227 

In this article, the degradation rate for two different PV sites were investigated. The first PV sites 228 

are in the UK (affected by cold weather conditions), whereas the second PV sites are in Australia 229 

(affected by hot weather conditions). From the findings discussed in above sections, this article claims 230 

the following: 231 

• In cold weather conditions the PV degradation rate is less than the degradation rate of PV 232 

modules affected by hot weather conditions. Based on the analysis of three different PV sites, it 233 

was found that PV degradation rate in the UK is between -1.05% to -1.16%/year, whereas the PV 234 

degradation rate in Australia ranging from -1.35% to -1.46%/year. 235 

• In cold weather conditions, there is high risk for glass broke due to hoarfrost, in addition, heavy 236 

snow is expected to impact the PV modules by various hot spots, which will reduce the output 237 

power generation of the PV modules. 238 

     

                (a)                                                       (b) 

    

              (c)                                                        (d) 

Figure 8. Analysis of the hot-spots and annual degradation rate in the Australian PV installations: (a) Two PV modules 

affected by faulty bypass diodes in the second PV array – found in Albury PV system; (b) PV array 1 is affected by five hot-

spotted PV modules, while PV array 2 is affected by one hot-spotted PV module – found in Newcastle PV system; (c) Albury 

PV site annual degradation rate; (d) Newcastle PV site annual degradation rate. 
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• In hot weather conditions, it was found that faulty PV bypass diodes are expected to occur due to 239 

the high range of ambient temperature and uneven temperature and irradiance profiles affecting 240 

the PV modules. However, in cold weather conditions, none of the bypass diodes were damaged 241 

over the considered period; 10 years of operation. 242 

• The number of PV hot spots found in UK PV sites are less than the number of hot spots found in 243 

the Australasian PV sites. 244 

• The observed failure of the bypass diodes in the Australian PV systems are a result of the sudden 245 

drop in the output power of one of the three PV modules cell strings, this will activate the bypass 246 

diode in the shaded PV string, while other bypass diodes in the un-shaded strings remains 247 

switched-off. The repeated alternation in the switching (off/on) for the bypass diodes resulting in 248 

a possible failure. This is also the case in many investigated studies such as [28]-[30].  249 

The analysis of the monthly performance ratio for all examined PV sites in the UK and Australia 250 

have been compared. A total number of 120 samples/site; resulting a total of 360 for all examined PV 251 

sites in the UK as well as in Australia. 252 

The performance ratio (PR) is a widely used metric for comparing relative performance of PV 253 

installations whose design, technology, capacity, and location differ [31] and [32]. The PR is calculated 254 

using Equation (3). 255 𝑃𝑅 = 𝑌𝑓𝑌𝑟 =  𝐸𝑃𝑉  \ 𝑃𝑆𝑇𝐶 𝐺𝑇𝐼  \ 𝐺𝑆𝑇𝐶   (3) 

where 𝑌𝑓  is the final yield energy of the PV systems, while 𝑌𝑟  is the reference yield energy. 𝐸𝑃𝑉  is the 256 

total energy produced by the PV system during a given period of time, 𝑃𝑆𝑇𝐶  is the rated power of the 257 

PV system under STCs, 𝐺𝑇𝐼 is the global solar irradiance received by the PV system, and 𝐺𝑆𝑇𝐶 is the 258 

global solar irradiance under STC of 1000 W/m2. We have analyzed the monthly PR for all systems over 259 

a period of 10 years. The monthly integrated PR obtained for the PV sites in the UK and Australia is 260 

shown in Figure 9.  261 

 

(a)                                          

     

(b) 

Figure 9. Monthly performance ratio analysis for all examined PV systems for a period of 10 years: (a) 

UK PV sites; (b) Australian PV sites. 
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The distribution does not follow a normal (or Gaussian) distribution, because an important fraction 262 

of the PV systems shows an overall performance lower than average, and others are clearly subject to 263 

faults, which skews the distributions towards the low PR values. The distribution is better explained 264 

with a Weibull distribution [33], which often arises when the range of variation of a population is 265 

physically limited at one extremity, but not at the other. 266 

According to Figure 9a,b, the obtained mean monthly PR is equal to 88.81% and 86.35% for PV 267 

systems installed in the UK and Australia, respectively. Therefore, PV systems in the UK have an 268 

increase in the monthly PR of 2.46% compared to those installed in Australia. Interestingly, this result 269 

verifies that the PV annual degradation rate in the UK is lower than Australia, which was found in the 270 

previous section. 271 

5. Conclusion 272 

This article presents the analysis of degradation rate over 10 years (2008 to 2017) for six different 273 

PV sites located in the UK (mainly affected by cold weather conditions) and Australia (PV affected by 274 

hot weather conditions). The analysis of the degradation rate was carried out using the year-on-year 275 

(YOY) degradation technique. It was found that the degradation rate in the UK sites varies from -1.05% 276 

and -1.16%/year. Whereas a higher degradation ranging from -1.35% to -1.46%/year is observed for the 277 

PV sites installed in Australia.  278 

Additionally, it was found that in the Australian PV installations, multiple faulty PV bypass diodes 279 

are present due to the rapid change in the ambient temperature and uneven solar irradiance levels 280 

influencing the PV modules. However, in cold weather conditions (such as northern UK), none of the 281 

bypass diodes were damaged over the considered PV exposure period. Furthermore, the number of PV 282 

hot spots have been also observed. It was found that in the UK-based PV sites the number of hot spotted 283 

PV modules are less than those found in the Australian PV systems. 284 

On the other hand, the analysis of the monthly performance ratio was calculated in both observed 285 

counties. Remarkably, it was found that the mean monthly PR is equal to 88.81% and 86.35% for PV 286 

systems installed in the UK and Australia, respectively. This result verifies that the PV annual 287 

degradation rate in the UK is lower than Australia. 288 

 289 

Author contributions: Conceptualization M.D. and A. A.; methodology M.D. and A.A; software A.A.; 290 

validation M.D. and A.A; formal analysis A.A.; resources M.D.; data curation M.D.; writing-original 291 

draft preparation M.D.; writing-review and editing A.A.; supervision M.D. All authors have read and 292 

agreed to the published version of the manuscript. 293 

 294 

Funding: This research received no external funding. 295 

 296 

Conflicts of Interest: The authors declare no conflict of interest.  297 

References 298 

1. Javed, K.; Ashfaq, H.; Singh, R.; Hussain, S. M.; Ustun, T. S. Design and performance analysis of a stand-299 

alone PV system with hybrid energy storage for rural India. Electronics 2019, 8, 952. 300 

2. Liu, M.; Lu, W.; Yu, X.; Wang, X.; Li, X.; Yao, S.; Guo, Q. Mechanism of Degradation Rate on the Irradiated 301 

Double-Polysilicon Self-Aligned Bipolar Transistor. Electronics 2019, 8(6), 657. 302 

3. Dhimish, M.; Holmes, V.; Mehrdadi, B.; Dales, M.; Mather, P. Output-power enhancement for hot spotted 303 

polycrystalline photovoltaic solar cells. IEEE Transactions on Device and Materials Reliability 2017, 18, 37-45. 304 

4. Kyprianou, A.; Phinikarides, A.; Makrides, G.; Georghiou, G. E. Definition and computation of the 305 

degradation rates of photovoltaic systems of different technologies with robust principal component 306 

analysis. IEEE Journal of Photovoltaics 2015, 5, 1698-1705. 307 

5. Kawai, S.; Tanahashi, T.; Fukumoto, Y.; Tamai, F.; Masuda, A.; Kondo, M. Causes of degradation identified 308 

by the extended thermal cycling test on commercially available crystalline silicon photovoltaic modules. 309 

IEEE Journal of Photovoltaics 2017, 7, 1511-1518. 310 



Electronics 2020, 9, x FOR PEER REVIEW 13 of 14 

 

6. Chen, W.; Yang, M.; Zhang, S.; Andrews-Speed, P.; Li, W. What accounts for the China-US difference in 311 

solar PV electricity output? An LMDI analysis. Journal of cleaner production 2019, 231, 161-170. 312 

7. Jordan, D. C.; Kurtz, S. R.; VanSant, K.; Newmiller, J. Compendium of photovoltaic degradation rates. 313 

Progress in Photovoltaics: Research and Applications 2016, 24, 978-989. 314 

8. Bouaichi, A.; Merrouni, A. A.; Hajjaj, C.; Zitouni, H.; Ghennioui, A.; El Amrani, A.; Messaoudi, C. In-situ 315 

inspection and measurement of degradation mechanisms for crystalline and thin film PV systems under 316 

harsh climatic conditions. Energy Procedia 2019, 157, 1210-1219. 317 

9. Ascencio-Vásquez, J.; Kaaya, I.; Brecl, K.; Weiss, K. A.; Topič, M. Global Climate Data Processing and 318 

Mapping of Degradation Mechanisms and Degradation Rates of PV Modules. Energies 2019, 12, 4749. 319 

10. Martín-Martínez, S.; Cañas-Carretón, M.; Honrubia-Escribano, A.; Gómez-Lázaro, E. J. E. C. Performance 320 

evaluation of large solar photovoltaic power plants in Spain. Energy Conversion and Management 2019, 183, 321 

515-528. 322 

11. Lovati, M.; Salvalai, G.; Fratus, G.; Maturi, L.; Albatici, R.; Moser, D. New method for the early design of 323 

BIPV with electric storage: A case study in northern Italy. Sustainable Cities and Society 2019, 48, 101400. 324 

12. Muttillo, M.; Nardi, I.; Stornelli, V.; de Rubeis, T.; Pasqualoni, G.; Ambrosini, D. On Field Infrared 325 

Thermography Sensing for PV System Efficiency Assessment: Results and Comparison with Electrical 326 

Models. Sensors 2020, 20(4), 1055. 327 

13. Weu, A.; Kumar, R.; Butscher, J. F.; Lami, V.; Paulus, F.; Bakulin, A. A.; Yaynzof, Y. Energy Transfer to a 328 

Stable Donor Suppresses Degradation in Organic Solar Cells. Advanced Functional Materials 2020, 30, 329 

1907432. 330 

14. Seel, J.; Barbose, G. L.; Wiser, R. H. An analysis of residential PV system price differences between the 331 

United States and Germany. Energy Policy 2014, 69, 216-226. 332 

15. Singh, R.; Sharma, M.; Rawat, R.; Banerjee, C. Field Analysis of three different silicon-based Technologies 333 

in Composite Climate Condition–Part II–Seasonal assessment and performance degradation rates using 334 

statistical tools. Renewable Energy 2020, 147, 2102-2117. 335 

16. Gaglia, A. G.; Lykoudis, S.; Argiriou, A. A.; Balaras, C. A.; Dialynas, E. Energy efficiency of PV panels under 336 

real outdoor conditions–An experimental assessment in Athens, Greece. Renewable energy 2017, 101, 236-337 

243. 338 

17. Jurasz, J. K.; Dąbek, P. B.; Campana, P. E. Can a city reach energy self-sufficiency by means of rooftop 339 

photovoltaics? Case study from Poland. Journal of Cleaner Production 2020, 245, 118813. 340 

18. Chandel, S. S.; Naik, M. N.; Sharma, V.; Chandel, R. Degradation analysis of 28 year field exposed mono-341 

c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region 342 

of India. Renewable Energy 2015, 78, 193-202. 343 

19. Thotakura, S.; Kondamudi, S. C.; Xavier, J. F.; Quanjin, M.; Reddy, G. R.; Gangwar, P.; Davuluri, S. L. 344 

Operational performance of megawatt-scale grid integrated rooftop solar PV system in tropical wet and 345 

dry climates of India. Case Studies in Thermal Engineering 2020, 18, 100602. 346 

20. Tongsopit, S.; Junlakarn, S.; Wibulpolprasert, W.; Chaianong, A.; Kokchang, P.; Hoang, N. V. The 347 

economics of solar PV self-consumption in Thailand. Renewable energy 2019, 138, 395-408. 348 

21. Dechthummarong, C.; Wiengmoon, B.; Chenvidhya, D.; Jivacate, C.; Kirtikara, K. Physical deterioration of 349 

encapsulation and electrical insulation properties of PV modules after long-term operation in Thailand. 350 

Solar energy materials and solar cells 2010, 94, 1437-1440. 351 

22. Park, J. H.; Lee, H. D.; Tae, D. H.; Ferreira, M.; Rho, D. S. A Study on Disposal Diagnosis Algorithm of PV 352 

Modules Considering Performance Degradation Rate. Journal of the Korea Academia-Industrial cooperation 353 

Society 2019, 20, 493-502. 354 

23. Teah, H. S.; Yang, Q.; Onuki, M.; Teah, H. Y. Incorporating External Effects into Project Sustainability 355 

Assessments: The Case of a Green Campus Initiative Based on a Solar PV System. Sustainability 2019, 11(20), 356 

5786. 357 

24. Jordan, D. C.; Deline, C.; Deceglie, M.; Silverman, T. J.; Luo, W. PV Degradation–Mounting & Temperature. 358 

In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC) 2019, 0673-0679. 359 

25. Dhimish, M.; Mather, P. Exploratory evaluation of solar radiation and ambient temperature in twenty 360 

locations distributed in United Kingdom. Urban Climate 2019, 27, 179-192. 361 

26. Taylor, J.; Leloux, J.; Hall, L. M.; Everard, A. M.; Briggs, J.; Buckley, A. Performance of distributed PV in 362 

the UK: a statistical analysis of over 7000 systems. In 31st European photovoltaic solar energy conference and 363 

exhibition 2015. 364 



Electronics 2020, 9, x FOR PEER REVIEW 14 of 14 

 

27. Jordan, D. C.; Kurtz, S. R. Photovoltaic degradation rates—an analytical review. Progress in photovoltaics: 365 

Research and Applications 2013, 21, 12-29. 366 

28. Dhimish, M.; Chen, Z. Novel Open-Circuit Photovoltaic Bypass Diode Fault Detection Algorithm. IEEE 367 

Journal of Photovoltaics 2019, 9, 1819-1827. 368 

29. Shin, W. G.; Ko, S. W.; Song, H. J.; Ju, Y. C.; Hwang, H. M.; Kang, G. H. Origin of Bypass Diode Fault in c-369 

Si Photovoltaic Modules: Leakage Current under High Surrounding Temperature. Energies 2018 11, 2416. 370 

30. Alqaisi, Z.; Mahmoud, Y. Comprehensive Study of Partially Shaded PV Modules With Overlapping 371 

Diodes. IEEE Access 2019, 7, 172665-172675. 372 

31. Jiménez-Castillo, G.; Muñoz-Rodríguez, F. J.; Martinez-Calahorro, A. J.; Tina, G. M.; Rus-Casas, C. Impacts 373 

of Array Orientation and Tilt Angles for Photovoltaic Self-Sufficiency and Self-Consumption Indices in 374 

Olive Mills in Spain. Electronics 2020, 9, 348. 375 

32. Dhimish, M.; Mather, P.; Holmes, V. Evaluating power loss and performance ratio of hot-spotted 376 

photovoltaic modules. IEEE Transactions on Electron Devices 2018, 65, 5419-5427. 377 

33. Shao, J.; Zhang, H.; Chen, B. Experimental Study on the Reliability of PBGA Electronic Packaging under 378 

Shock Loading. Electronics 2019, 8, 279. 379 

 

 

© 2020 by the authors. Submitted for possible open access publication under the terms 

and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 


