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 
Abstract—Faults in photovoltaic (PV) modules, which 

might result in energy loss and reliability problems are 
often difficult to avoid, and certainty need to be detected. 
One of the major reliability problems affecting PV modules 
is hot-spotting, where a cell or group of cells heats up 
significantly compared to adjacent solar cells, hence 
decreasing the optimum power generated. In this article, 
we propose a fault detection of PV hot-spots based on the 
analysis of 2580 PV modules affected by different types of 
hot-spots, where these PV modules are operated under 
various environmental conditions, distributed across the 
UK. The fault detection model comprises a fuzzy inference 
system (FIS) using Mamdani-type fuzzy controller 
including three input parameters, namely, percentage of 
power loss (PPL), short circuit current (Isc), and open 
circuit voltage (Voc). In order to test the effectiveness of 
the proposed algorithm, extensive simulation and 
experimental-based tests have been carried out; while the 
average obtained accuracy is equal to 96.7%. 

 
Index Terms—Photovoltaic; Hot-Spots; Fault Detection; 

I-V curve; Fuzzy Logic; Power Loss. 

I. INTRODUCTION 

OT-SPOTTING phenomena is a reliability issue in 

Photovoltaic (PV) panels, where it is well-acknowledged 

when a dissenting solar cell heats up considerably and 

decreases the PV panel generated power [1]. PV hot-spotting 

arise when a single-cell, or group of cells operates at reverse-

bias, and accordingly functioning at abnormal elevated 

temperature levels [2] and [3]. The hot-spots are also the key 

reason of enhanced PV degradation, and occasionally 

permanent damage of a complete PV panels [4]. There are a 

number of other reliability problems affecting PV panels such 

as discontinuation [5], maximum power point tracking 

(MPPT) faults [6] and [7], micro-cracks [8], and variations in 

the wind speed and humidity [9]. All of these factors affect the 

PV panels output power performance and its main electrical 

parameters such as temperature coefficient, hence diminution 

its annual energy production. Nevertheless, this article only 

addresses the impact of hot-spotting in PV panels, while other 

issues has not been addressed. 
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PV hot-spots can simply be observed using infrared (IR) 

camera inspection, which has become a common practice in 

current PV examination as presented in [10]. Still, the impact 

of hot-spots on the performance of PV systems have not 

considerably been addressed. This helps us to clarify why 

there is a lack of accepted methods which reflects to the hot-

spotting as well as detailed standards referring to the rejection 

or acceptance benchmark in commercial frameworks.  

The generally practice accepted of hot-spotting effects 

mitigation is by the adoption of bypass diodes which are 

connected within the PV modules, with the target to edge the 

extreme reverse voltage across the hot-spotted solar cells, this 

use of bypass diodes enhances the amount of short circuit 

current and the open circuit voltage of the affected PV panel 

[11] – [13], which is not ideal, since it necessitates extra cost 

and can be even detrimental in terms of power dissipation 

initiated by the added bypass diodes as discussed in [14]. 

Recently, a distributive MPPT technique suggested by 

Coppola et al. [15] and Olalla et al. [16], to mitigate hot-spots 

in PV modules, yielded an estimated decrease of 20 °C for 

medium and small hot-spotting regions. Additionally, Kim and 

Krein [17] show the “inadequateness” of the typical bypass 

diodes, by the addition of a series connected switch which are 

suitable to interpose the flow of the current during bypass 

activation process. However, this solution needs a moderately 

complex electronic-based design. 

In 2018, two hot-spot mitigation methods are established by 

Dhimish et al. [18]. Based on MOSFETs associated to the PV 

panels in order to regulator the hot-spotted PV solar string. 

The suggested techniques verified reliable, but do not 

comprise any analysis for the overall impact of PV hot-spots 

on the output power performance. 

The main contribution of this work, is to firstly study and 

analyse the impact of PV hot-spotting using the percentage of 

power loss (PPL) technique. The analysis not only deliberates 

local PV modules mounted at specific geographical locations, 

but also PV modules distributed across all UK regions; with a 

subtotal of 2580 examined PV modules. Hence, the analysis 

discussed in this article consider PV modules affected by 

completely different environmental conditions. Secondly, we 

propose the development of a suitable PV hot-spot fault 

detection algorithm using Mamdani fuzzy inference system 

(FIS). Finally, evaluate the proposed algorithm using various 

PV modules affected by diverse types of hot-spots. 

The article is prearranged as follows: section II defines the 

methodology over the examined hot-spotted PV modules, 

while section III presents the proposed fuzzy logic based 

detection algorithm. Finally, section IV experimentally 

evaluates the proposed detection method. 
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II. METHODOLOGY 

A. Examined PV modules 

The distributed PV installations studied dataset was 

supplied by Solar UK database [19], which has the PV panels’ 
output current, voltage and generated power. The 

geographical-map presenting the scattering of the examined 

PV systems across the UK is shown in Fig. 1. The total 

inspected Polycrystalline Silicon (Poly-Si) PV panels within 

all examined PV systems are equal to 8340. The majority of 

the PV panels were fixed from 2005-2007, the PV panels were 

supplied by a mixture of commercial scale and homeowners 

PV installations, were their capacity varying from 1.1 and 50 

kWp with a wide range of tilt and orientation angel. 

The collection of the data was occupied on-site from 

multiple PV-based companies. The power-voltage (P-V) and 

current-voltage (I-V) curves were also available in the 

database. On the other hand, the instruments to trace P-V and 

I-V curves are subject to different measurement accuracy and 

tolerance rates. Therefore, the collected data were subjected to 

demanding validation and confirmation in order to eliminate 

as much inconsistent data as possible. The typical set of 

processes employed prior to data analysis stage are as follows: 

 The PV modules P-V and I-V curves were captured 

during clear-sky, non-shading conditions as reported 

in the database. 

 The PV installations have been inspected regularly by 

IR camera. Where the size of hot-spotted solar cells 

in each PV module can be counted and the location 

of the hot-spots is also identified. 

 Take into account only PV systems installed in the 

UK as the available data contain a number of PV 

systems installed in a wide range of countries. 

 Tilt angle of 30° to 60°, and orientation between -30° 

to +30°, only has been selected. 

 Select PV systems with available individual PV 

module data; hence it is possible to compare between 

hot-spotted PV modules and adjacent non-hot-

spotted/healthy PV modules.  

 To eliminate inaccurate data, we have only taken into 

account PV systems which contain instruments and 

sensors within accuracy of 95% and above. 

After selective requirements have been carried out, 6159 PV 

panels remain (out of 8340). The PV panels is shown in Fig. 2. 

The number of PV panels which did not comprise hot-spots 

were thus equal to 3579. While the number of hot-spotted PV 

modules are equal to 2580. 

As shown in Fig. 2, the analysis of the hot-spots was 

analyzed based on the number of hot-spotted solar cells in the 

observed PV modules. Based upon the available datasets, the 

hot-spotted PV solar cells were categorized into two different 

sub-groups including PV modules affected by solar cells hot-

spots, and PV modules affected by hot-spotted PV strings. 

Fig. 3 demonstrates three different types of hot-spots. The 

hot-spots were inspected using a thermal imaging camera [20]. 

Fig. 3(a) presents a PV modules affected by one hot-spotted 

solar cell, where Figs. 3(b) and 3(c) show a PV module 

affected by two hot-spots and hot-spotted PV-string, 

respectively. In order to draw relevant outcomes, we have 

used the percentage of power loss (PPL) for each of the 

observed hot-spotting type, the technique is discussed in the 

next section. 

 

B. Percentage of Power Loss (PPL) Technique 

To examine the output power losses for hot-spotted PV 

modules, and since the PV modules have different output 

power capacity, the percentage of power loss (PPL) technique 

has been used. 

Primarily, the measurement of the output power of the hot-

spotted PV module is obtained (𝑃ℎ𝑜𝑡−𝑠𝑝𝑜𝑡𝑡𝑒𝑑). This power is 

then to be divided by the average output power measured from 

adjacent free-hot-spotted/healthy PV modules. Adjacent PV 

modules average power is calculated using (1). Fig. 4 explains 

the valuation of the PPL technique.  

 𝑃𝑓𝑟𝑒𝑒 =  ∑ 𝑃𝑉 𝑚𝑜𝑑𝑢𝑙𝑒 𝑃𝑜𝑤𝑒𝑟𝑛𝑖=1 𝑛                       (1) 

 

The calculations of the PPL including the measured and 

theoretical voltage and current are taken under STC 

conditions; where solar irradiance is equal to 1000 W/m2, and 

ambient temperature of 25 ºC.  

 
Fig. 2.  Identified Hot-spots categories.  
  

 
Fig. 1.  Geographical distribution of the examined PV systems 
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C. Analysis for PPL, Isc and Voc for the examined hot-
spotted PV modules 

Histogram profiles for the assessment of the determined 

data is shown in Fig. 5. The histogram comprises the 

measured PPL and the frequency of the PPL at definite 

thresholds. According to Fig. 5(a), it is evident that the PV 

modules affected by one hot-spotted solar cell have the 

minimum drop in the PPL; the average loss of the PPL is 

equal to 0.95%. 

An increase in the number of hot-spotted solar cell resulting 

an increases in the PPL. For instance, Fig. 5(b) shows that the 

average PPL is equal to 2.0% for PV modules affected by two 

hot-spotted solar cells. These results are assessed over a 

sample size of 491 different PV modules. To sum up, the PPL 

thresholds (minimum to maximum) of all observed hot-

spotting categories are summarized as follows: 

 One hot-spot: 0.5% - 1.4% 

 Two hot-spots: 1.1% - 2.9% 

 Three hot-spots: 1.5 % - 3.8% 

 Four hot-spots: 2.5% - 5.6% 

 ≥5 hot-spots: 5.4% - 16.3% 

 One hot-spotted PV string: 11.7% - 26.3% 

Interestingly, whilst increasing the hot-spots in PV 

modules, it is more likely to have greater drop in its output 

peak power, therefore, increase the percentage of the power 

loss (PPL) threshold. On the other hand, it is worth 

remembering that all listed PPL thresholds will be used to 

compromise the fuzzy logic inference system, hence, to detect 

possible hot-spotting category affecting a PV module. 

The PPL is not the only parameter which is affected during 

hot-potting phenomena, but also the open circuit voltage (Voc) 

and the short circuit current (Isc). Example for the impact of 

two hot-spotted PV solar cells on the Isc and Voc are shown in 

Fig. 6(b) using the analysis of the I-V curve under standard 

test conditions. The examined PV module thermal image is 

presented in Fig. 6(a). As noticed, the percentage of reduction 

in the Isc is equal to 2.05%, while the Voc reduced by 1.1% 

compared to theoretical predictions. Therefore, the hot-spot 

cause a reduction in the Isc and Voc, accordingly these 

parameters are used in the developed PV detection system. 

Table I shows a summary for the thresholds (minimum to 

maximum) reduction in the PPL, Isc and Voc for all inspected 

PV modules. As noticed, while increasing the hot-spots in the 

PV modules, the PPL, Isc and Voc reduces with higher degrees. 

But, as noticed there are overlapping between the thresholds 

(min – max) and hence it is unlikely to implement these 

thresholds into a proper hot-spotting fault detection algorithm 

using a mathematical or probabilistic modeling techniques. In 

order to overcome this issue, the implementation of a fuzzy 

logic inference system was adapted, eventually using the data 

presented in Table I with respect to three input parameters 

(PPL, Isc and Voc). In the next section there is a brief 

description of the implemented PV hot-spot detection system. 

          
                          (a)                                                              (b)      

                                                               

 
                                                             (c)                  

                                                        

Fig. 3.  Three different types of hot-spots affecting different PV
modules. (a) One hot-spot, (b) Two hot-spots, (c) Hot-spotted PV string 
  

 
Fig. 4.  Percentage of power loss (PPL) estimation for hot-spotted and 
non-hot-spotted/healthy PV modules  
  

 
Table I Thresholds (minimum to maximum) reduction in the PPL, Isc and Voc for all inspected PV modules 

 

 Hot-spotting Category PPL Isc Voc 
Minimum Maximum Minimum Maximum Minimum Maximum 

One hots-pot 0.5 1.4 0.7 1.5 0.3 0.8 

Two hot-spots 1.1 2.9 0.95 2.3 0.65 1.8 

Three hot-spots 1.5 3.8 1.3 2.7 1.4 2.2 

Four hot-spots 2.5 5.6 1.33 2.9 1.7 2.7 

≥5 Hot-spots 5.4 16.3 2.1 3.8 1.88 3.1 

One Hot-spotted PV String 11.7 26.3 1.8 4.4 2.7 4.9 
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III. PROPOSED PV HOT-SPOT DETECTION TECHNIQUE 

A. FIS system modelling 

A fuzzy inference system (FIS) is constructed using a fuzzy 

set theory, fuzzy reasoning, and the fuzzy rules. It is 

extensively useful for automatic control applications [21], 

time series estimation [22] and fault analysis [23]. In this 

article, we propose a suitable Mamdani FIS rather than 

strength of the  Takgi-Sugeno-Kang (TSK) model, since 

Mamdani model can return output results which automatically 

express output results based on If-Then method; this method 

relies on determining whether an input parameter of the user 

belongs to the membership function using “If” and next 
convert the value into the fuzzy set using “Then”. Adapting a 

direct interference between the measured inputs from the PV 

modules with the results of the detection system [24]. 

The fuzzy sets enlarge a present dataset using the concept of 

fuzzy logic. Each identified parameter has a gradation to 

which it belongs to the set (degree of membership). Generally, 

the degree of membership is expressed by a real number from 

0 and 1. In this case, if a parameter corresponds to 1, therefore 

it does not belong to the set of 0. This can be express by (2). 

                      A= {(Q,μ_A (Q))},0≤μ_A (Q)≤ 1             (2) 
where µA(Q) is referred to as the membership function 

(MF) of the fuzzy set A, whereas the MF plays key role in the 

corresponding rudiments of the set Q for each value of the 

membership. 

The knowledge-base of the Mamdani FIS consists of an 

adjusted rule and a database. The rule is built using the 

“linguistic rule” in the form of “If-Then”. This rule has a 
fuzzy conditional criterion as follows: 

         Rule1:  If v is A1 and x is B1 then z is C1                (3) 

 According to this rule, the output variable “z” is equal to 

C1 if both input variables v and x are only equal to A1 and B1, 

respectively. Hence, A1 and B1 are well-defined as the fuzzy 

values (fuzzy sets). 

 
Table 1 Thresholds (minimum to maximum) reduction in the PPL, Isc and Voc for all inspected PV modules 

 

 Hot-spotting Category PPL Isc Voc 
Minimum Maximum Minimum Maximum Minimum Maximum 

1 Hot-spotted Solar Cell 0.5 1.4 0.7 1.5 0.3 0.8 

2 Hot-spotted Solar Cells 1.1 2.9 0.95 2.3 0.65 1.8 

3 Hot-spotted Solar Cells 1.5 3.8 1.3 2.7 1.4 2.2 

4 Hot-spotted Solar Cells 2.5 5.6 1.33 2.9 1.7 2.7 

≥5 Hot-spotted Solar Cells 5.4 16.3 2.1 3.8 1.88 3.1 

One Hot-spotted PV String 11.7 26.3 1.8 4.4 2.7 4.9 

 

                                
                                              (a)                                                                               (b)                                                                             (c) 

                                 
                                              (d)                                                                              (e)                                                                              (f) 

Fig. 5.  Histogram profile showing PPL vs. Frequency of the samples. (a) One hot-spotted solar cell, (b) Two hot-spotted solar cells, (c) Three hot-
spotted solar cells, (d) Four hot-spotted solar cells, (e) ≥5 hot-spotted solar cells, (f) Hot-spotted PV string in a PV module 

 

                            
                                                           (a)                                                                                                                (b) 

Fig. 6.  (a) Thermal image of an inspected PV module, (b) Reduction in Isc and Voc for the PV module 
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An overview of the implemented fuzzy logic inference 

system for hot-spot PV detection is shown in Fig. 7, PPL, Isc 

and Voc are taken from the I-V curve of the inspected PV 

module. The Fuzzification process identifies the membership 

functions, and ultimately combines the measured PPL, Isc and 

Voc. The input membership functions are shown in Fig. 8(a-c); 

MF1 corresponds to PPL (interval: 0.5, 26.3), MF2 

corresponds to Isc (interval: 0.7, 4.4), and MF3 corresponds to 

Voc (interval: 0.3, 4.9). All membership functions and their 

fuzzy sets are created using data available in Table I.  

The FIS is used for the decision marking phase of the 

proposed fault detection algorithm. Under extreme scenarios, 

where the PPL, Isc and Voc has high variability and 

uncertainty, and the limits of the MFs level between the 

normal and fault operation mode of the PV system cannot be 

accurately well-defined, hence it would lower the accuracy of 

the overall FIS system. Therefore, the FIS rule based shown in 

Fig. 7 is determined by non-linear mapping of the three 

selected membership function features (MF1, MF2, and MF3), 

resulting an accurate representation for the output process. 

Table II shows the extracted features of the fault conditions 

under different scenarios; where “VL, L, M, H, and VH” 
corresponds to “Very Low, Low, Medium, High, and Very 

High”, respectively. Using “if-then” terminologies, the rule 

base defines the relation between the FIS inputs and outputs. 

Next, the aggregation process shown in Fig. 7, comprises 

the output of the rules into a sole fuzzy set by means of the 

centroid method, which is a broadly used method in FIS [21] - 

[25], the obtained outputs of the aggregation are then 

defuzzified into actual output within 0 to 1 interval using (4). 

 𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 =  ∫ 𝜇𝐴(𝑥) 𝑥𝑑𝑥𝑏𝑎∫ 𝜇𝐴(𝑥)𝑏𝑎             (4) 

where 𝑥 indicates the sample element, and 𝜇𝐴(𝑥) is the 

membership function. 

Further, by applying “If-Then”, it is possible to generate the 
output MFs for the FIS as shown in Fig. 8(d). For example, if 

the PPL is from 0.5 – 1.4 (MF1), and Isc is from 0.7 – 1.5 

(MF2), and Voc is from 0.3 – 0.8 (MB3), then one hot-spotted 

solar cell is detected, labelled as VL (Very Low) in Fig. 8(d). 

Subsequently, the output membership functions correspond to 

the following features/hot-spotting category: 

 Very Low (VL): one hot-spot  

 Low (L): two hot-spots 

 Medium (M): three hot-spots 

 High (H): four hot-spots 

 Very High (VH): ≥5 hot-spots 

 Extremely High (EH): hot-spotted PV string 

 
 

Fig. 7.  Detained flowchart of the developed PV hot-spot detection system 
  

    

        
                                            (a)                                                                                     (b)                                                                                 (c) 

 
(d) 

 
Fig. 8.  (a) MF1 corresponds to PPL, (b) MF2 corresponds to Isc, (c) MF3 corresponds to Voc, (d) Output membership functions 
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B. FIS system validation 

In order to evaluate the performance of the developed FIS 

system, case studies were carried output using 

MATLAB/Simulink software packages. A PV modules 

affected by various types of hot-spots were modelled and 

simulated; where the output results have been passed into the 

FIS to determine the type of the hot-spot. 6000 cases have 

been simulated under different temperature levels. The hot-

spots temperature is varying from 35 °C to 105 °C, while the 

solar irradiance is varied between 100 to 1000 W/m2; 1000 

simulation were carried out for each of the 6-types of hot-

spots identified in this article. Resulting numerous fluctuations 

in the output PPL, Isc, and Voc. The output identification and 

the average accuracy of the FIS system is reported in Table 

III. The average detection accuracy of the FIS system is equal 

to 96.7%; while the optimum fault identification accuracy of 

98.3% is achieved by predicting the first hot-spot category “1 
hot-spot”. Whereas the minimum detection accuracy of 94.7% 
is determined for the fifth scenario “≥5 hot spots”. 

By contrast with the above results, the FIS False Positive 

(FP) and False Negative (FN) are determined with minimal 

effect on the FIS performance; of course, there are a number 

of case where the FP or FN existed. However, the maximum 

fault detection percentage of the FP/FN is equal to 1.5% found 

while simulating the third case scenario “3 hot-spots”. This 
precision of the FIS model is due to the optimum selection of 

the FIS base rules, as well as the input membership functions 

including the PLL, Isc, and Voc. 

IV. EXPERIMENTAL EVALUATION 

A. Examined PV installation 

In order to test the accuracy of the proposed PV hot-spot 

detection FIS system, multiple PV modules affected by hot-

spots were firstly inspected. The PV installations is shown in 

Fig. 9(a), where the PV modules main electrical parameters 

including PV peak power, Isc and Voc at STC are also listed. 

The modules are connected to MPPT units, these MPPT units 

accurately measures the main parameters form the inspected 

PV modules where the accuracy is above 99%. Next, the I-V 

curve is estimated using the data enabled from the Ethernet 

cable connected to a personnel computer (PC). The internal 

configuration of a MPPT units are show in Fig. 9(b). Next, the 

proposed detection system will eventually evaluate the 

inspected PV module using the fuzzy logic controller, as a 

result indicate whether the PV module is affected by hot-

spotting and also predicting the PV hot-spotting type. 

B. Case study 1: only hot-spotted PV modules 

In this case study, three PV modules affected only by hot-

spotted solar cells were examined under STC, hence to justify 

the accuracy of the employed fuzzy inference system. As 

discussed earlier, the I-V curve were captured using the MPPT 

unit through the PC user interface, and then process the results 

using the detection system. The output features of the I-V 

curves are processed into the FIS system; practically speaking 

using MATLAB/Simulink software. Hence, the output 

membership function of the FIS model is obtained. 

The I-V curve of the first inspected PV module is shown in 

     
    (a) 

 
(b) 

Fig. 9.  (a) Examined PV system real and thermal image, (b) Internal 
configuration of the MPPT unit 

Table II FIS rule base 

 

Event Features 

MF1 MF2 MF2 

One hot-spot VL L L 

Two hot-spots L M L 

Three hot-spots M M M 

Four hot-spots M H H 

≥5 hot-spots H VH H 

Hot-spotted PV string VH VH VL 

 

Table III Hot-spot fault identification results of 6000 simulated cases 

 

Hot-spot 

Category 

Fault Identification % Average 

Detection 

Accuracy 

% 

1 

HS 

2 

HS 

3 

HS 

4 

HS 

≥5 
HS 

HS 

String 

1 hot-spot 

 
98.3 1.6 0.1 0 0 0 - 

2 hot-

spots 

 

2.2 96.6 1.2 0 0 0 - 

3 hot-

spots 

 

0.5 1.1 96.9 1.5 0 0 - 

4 hot-

spots 

 

0.6 0.3 1.8 96.2 1.1 0 - 

≥5 hot-
spots 

 

0 0 0.2 0.7 94.7 4.4 - 

Hot-

spotted 

PV string 

0 0 0.2 1.1 1.4 97.3 - 

 - - - - - - 96.7% 
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Fig. 10(a). The PPL, reduction in Isc and Voc are equal to 

0.82%, 1.1% and 0.56%, respectively. Processing these 

parameters into the FIS resulting a VL (Very low: corresponds 

to one hot spotted solar cell in the PV module). In order to 

examine the result feature, we have captured the thermal 

image of the PV panel; shown in Fig. 10(d) first image. The 

thermal image clarifies that there is only one hot-spotted solar 

cell in the inspected PV module. 

Similarly, a second PV module was inspected and its output 

I-V curve is shown in Fig. 10(b). The FIS result indicates that 

there are three hot-spotted solar cells in the PV module (output 

membership function is M “Medium”). The second image in 
Fig. 10(d) demonstrates that there is three hot-spots in the 

inspected PV module. 

The last example presenting ≥5 hot-spotted solar cells in a 

PV module is shown in last image in Fig. 10(d). The output of 

the FIS predicted this outcome using the result of the output 

membership function (VH “Very high”) shown in Fig. 10(c). 

C. Case study 2: hot-spotted PV modules and partial 
shading scenarios 

This case study does not only consider hot-spotted PV 

module, but also a PV module that is affected by permanent 

shade. Generally, the source of the partial shade might be a 

cloud, tree, or building. In our case, the shade is caused by a 

ground pipe as shown in Fig. 11(a). In addition to the partial 

shade this pipe could cause, there are two hot-spots detected in 

the PV module using the thermal imaging. 

According to Figs. 1 and 2, all inspected and filtered PV 

modules are captured under STC, and not partial shading 

scenarios were taken into account. Therefore, the predictions 

of the developed fuzzy inference system would not be 

expected to accurately identifying permanent partial shading 

conditions. 

According to Fig. 11(b), the output membership function 

resulting a VH, corresponds to ≥5 hot-spotted solar cells in the 

PV module. Whereas the actual PV module is only affected by 

two hot-spots. There is a wrong identification in the type of 

the hot-spotting affecting the PV module due to the existence 

of a shade where this shade is not impacting adjacent (healthy) 

PV modules. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Fig. 10.  I-V curve and FIS output for all inspected PV panels. (a) First 
PV panel, (b) Second PV panel, (c) Third PV module, (a) Thermal 
images for all inspected PV panels 

 
(a) 

 

(b) 

 

Fig. 11.  (a) Examined PV module, real and thermal image, (b) I-V 
curve under STC 
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As a generic remark, the developed FIS method cannot 

identify hot-spotted PV module during partial shading 

conditions, but certainly PV module affected by only hot-spots 

will be accurately identified. Furthermore, if the inspected PV 

module is partially shaded and the adjacent/healthy PV 

modules are also partially shaded, in that case, the fault 

detection algorithm would work as expected, since the I-V 

curve for both the inspected (hot-spotted) and adjacent 

(healthy) PV modules will be have identical percentage of the 

loss in all required input parameters for the FIS model. 

V. CONCLUSION 

The problem in hot-spot fault detection of PV modules is 

addressed in this work. Under numerous types of conditions, 

e.g., various hot-spots types, different temperature levels, and 

different solar irradiance spectrum, the detection of hot-

spotting is difficult to obtain, while this is not the case in the 

developed approach. We propose a fault detection of PV hot-

spots based on the analysis of 2580 PV modules affected by 

different types of hot-spots, where these PV modules are 

operated under various environmental conditions, distributed 

across the UK. The fault detection model comprises a fuzzy 

inference system (FIS) using Mamdani-type fuzzy controller. 

There inputs of the FIS are determined including the 

percentage of power loss (PPL), open circuit voltage (Voc), 

and short circuit current (Isc). Extensive simulation has been 

carried out; while the average accuracy of the FIS is equal to 

96.7%. In addition, multiple experiments have been conducted 

to assess the accuracy of the FIS system, where it was found 

that the develop method can precisely detect six-different 

types of hot-spotting affecting PV modules, whereas the main 

drawback of the developed algorithm that it is not capable of 

identifying hot-spots during high partial shading conditions. 
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