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Abstract 8 

This work proposes a fault detection algorithm based on the analysis of the theoretical curves which 9 

describe the behaviour of an existing grid-connected photovoltaic (GCPV) plant. For a given set of 10 

working conditions, solar irradiance and PV modules’ temperature, a number of attributes such as voltage 11 

ratio (VR) and power ratio (PR) are simulated using virtual instrumentation (VI) LabVIEW software. 12 

Furthermore, a third order polynomial function is used to generate two detection limits (high and low 13 

limit) for the VR and PR ratios obtained using LabVIEW simulation tool.  14 

The high and low detection limits are compared with real-time long-term data measurements from a 15 

1.1kWp and 0.52kWp GCPV systems installed at the University of Huddersfield, United Kingdom. 16 

Furthermore, samples that lies out of the detecting limits are processed by a fuzzy logic classification 17 

system which consists of two inputs (VR and PR) and one output membership function. 18 

The obtained results show that the fault detection algorithm can accurately detect different faults 19 

occurring in the PV system. The maximum detection accuracy of the algorithm before considering the 20 

fuzzy logic system is equal to 95.27%, however, the fault detection accuracy is increased up to a 21 

minimum value of 98.8% after considering the fuzzy logic system. 22 

Keywords: Photovoltaic System, Photovoltaic Faults, Fault Detection, LabVIEW, Fuzzy Logic 23 

 

1. INTRODUCTION 24 

Despite the fact that Grid-Connected Photo-Voltaic (GCPV) systems have no moving parts, and therefore 25 

usually require low maintenance, they are still subject to various failures and faults associated with the 26 

PV arrays, batteries, power conditioning units, utility interconnections and wiring [1-2]. It is especially 27 

difficult to shut down PV modules completely during faulty conditions related to PV arrays (DC side) [3]. 28 

It is therefore required to create algorithms to facilitate the detection of possible faults occurring in GCPV 29 

installations [4].     30 

There are existing fault detection techniques for use in GCPV plants. Some use satellite data for fault 31 

prediction  as presented by M. Tadj et al [5], this approach is based on satellite image for estimating solar 32 

radiation data and predicting faults occurring in the DC side of the GCPV plant. However, some 33 

algorithms do not require any climate data, such as solar irradiance and modules’ temperature, but instead 34 

use earth capacitance measurements in a technique established by Taka-Shima el al [6]. 35 

Some fault detection methods use an automatic supervision based on the analysis of the output power for 36 

the GCPV system. A. Chouder & S. Silvestre et al [7], presented a new automatic supervision and fault 37 

detection technique which use a standard divination method (±2σ) for detecting various faults in PV 38 
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systems such as faulty modules in a PV string and faulty maximum power point tracking (MPPT) units. 39 

However, S. Silverstre at al [8] presented a new fault detection algorithm based on the evaluation of the 40 

current and output voltage indicators for analyzing the type of fault occurred in PV systems installations. 41 

A photovoltaic fault detection technique based on artificial neural network (ANN) is proposed by W. 42 

Chine et al [9]. The technique is based on the analysis of the voltage, power and the number of peaks in 43 

the current-voltage (I-V) curve characteristics. However, [10-11], proposed a fault detection algorithm 44 

which allows the detection of seven different fault modes on the DC-side of the GCPV system. The 45 

algorithm uses the t-test statistical analysis technique for identifying the presence of systems fault 46 

conditions. 47 

Other fault detection algorithms focus on faults occurring on the AC-side of GCPV systems, as proposed 48 

by R. Platon et al [12]. The approach uses ±3σ statistical analysis technique for identifying the faulty 49 

conditions in the DC/AC inverter units. Moreover, hot-spot detection in PV substrings using the AC 50 

parameters characterization was developed by [13]. The hot-spot detection method can be further used 51 

and integrated with DC/DC power converters that operates at the subpanel level. Nevertheless, the 52 

analysis of the current and voltage indicators in a GCPV system operating in partial shading faulty 53 

conditions is created by Silvestre et al [14].  54 

A comprehensive review of the faults, trends and challenges of the grid-connected PV systems is 55 

explained by M. Obi & R.bass, M. Alam et al and A. khamis et al [15-17].  56 

Currently, fuzzy logic systems widely used with GCPV plants. R. Boukenoui et al [18] proposed a new 57 

intelligent MPPT method for standalone PV system operating under fast transient variations based on 58 

fuzzy logic controller (FLC) with scanning and storing algorithm. Furthermore, [19] presents an adaptive 59 

FLC design technique for PV inverters using differential search algorithm. However, to the best of our 60 

knowledge, few of the reviewed articles used a fuzzy classifier system in order to investigate the faulty 61 

condition occurring in the DC-side of the GCPV system.  62 

Since many fault detection algorithms use statistical analysis techniques such as [7, 10, 11 and 12], this 63 

work proposes a fault detection algorithm that does not depend on any statistical approaches in order to 64 

classify faulty conditions in PV systems. Furthermore, some existing fault detection techniques such as 65 

[20-21] use a complex power circuit design to facilitate the fault detection in GCPV plants. However, the 66 

proposed fault detection algorithm depends only on the variations of the voltage and the power, which 67 

makes the algorithm simple to construct and reused in wide range of GCPV plants. 68 

In this work, we present the development of a fault detection algorithm which allows the detection of 69 

possible faults occurring on the DC-side of GCPV systems. The algorithm is based on the analysis of 70 

theoretical voltage ratio (VR) and power ratio (PR) for the examined GCPV plant. High and low detection 71 

limits are generated using 3rd order polynomial functions which are obtained using the simulated data of 72 

the VR and PR ratios. Subsequently, if the theoretical curves are not capable to detect the type of the fault 73 

occurred in the GCPV system, a fuzzy logic classifier system is designed to facilitate the fault type 74 

detecting for the examined PV system. A software tool is designed using Virtual Instrumentation (VI) 75 

LabVIEW software to automatically display and monitor the possible faults occurring within the GCPV 76 

plant. A LabVIEW VI is also used to log the measured power, voltage and current data for the entire 77 

GCPV system, more details regarding the VI LabVIEW structure is presented in [22]. 78 

The main contribution of this work is the development and the theoretical implementation of a simple, 79 

fast and reliable GCPV fault detection algorithm. The algorithm does not depend on any statistical 80 

techniques which makes it easier to facilitate and detect faults based on theoretical curves analysis and 81 



3 

 

fuzzy logic classification system. In practice, the proposed fault detection algorithm is capable of 82 

localizing and identifying faults occurring on the DC-side of GCPV systems. The types of fault which can 83 

be detected are based on the size of the GCPV plant, which will be discussed in the next section. The 84 

algorithm is based on a six layer method working sequentially as shown in Fig. 1. 85 

This paper is organized as follows: Section 2 describes the methodology used which includes the PV 86 

theoretical power curve modelling and the proposed fault detection algorithm, while section 3 explains 87 

the validation and a brief discussion of the proposed fault detection algorithm. Finally, section 4 describes 88 

the conclusion and future work. 89 

2. METHODOLOGY 90 

2.1 Photovoltaic Theoretical Power Curve Modelling  91 

The DC side of the GCPV system is modelled using the 5-parameter model. The voltage and current 92 

characteristics of the PV module can be obtained using the single diode model [23] as follows: 93 

                                                       𝐼 =  𝐼𝑝ℎ −  𝐼𝑜 (𝑒𝑉+𝐼𝑅𝑠𝑛𝑠𝑉𝑡  − 1) − (𝑉+𝐼𝑅𝑠𝑅𝑠ℎ )                                       (1) 94 

Where 𝐼𝑝ℎ is the photo-generated current at STC , 𝐼𝑜  is the dark saturation current at STC, 𝑅𝑠  is the 95 

module series resistance, 𝑅𝑠ℎ  is the panel parallel resistance, 𝑛𝑠 is the number of series cells in the PV 96 

module and 𝑉𝑡  is the thermal voltage and it can be defined based on: 97 

                                                                             𝑉𝑡 =  𝐴 𝐾 𝑇𝑞                              (2) 98 

Where 𝐴 the ideal diode factor, 𝑘 is Boltzmann’s constant and 𝑞 is the charge of the electron. 99 

 

 
 

Fig. 1.  Over all GCPV fault detection algorithm Layers 
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TABLE 1 

ELECTRICAL CHARACTERISTICS OF SMT6 (60) P PV MODULE 

Solar Panel Electrical Characteristics Value 

Peak Power 220 W 

Voltage at maximum power point (Vmp) 28.7 V 

Current at maximum power point (Imp) 7.67 A 

Open Circuit Voltage (VOC) 36.74 V 

Short Circuit Current (Isc) 8.24 A 

Number of cells connected in series 60 

Number of cells connected in parallel 1 

Rs , Rsh 0.48 Ohms , 258.7 Ohms 

dark saturation current (Io) 2.8 × 10-10 A 

Ideal diode factor (A) 1.5 

Boltzmann’s constant (K) 1.3806 × 10-23 J.K-1 

The five parameter model is determined by solving the transcendental equation (1) using Newton-100 

Raphson algorithm [24] based only on the datasheet of the available parameters for the examined PV 101 

module that was used in this work as shown in Table 1. The power produced by the PV module in watts 102 

can be easily calculated along with the current (I) and voltage (V) that is generated by equation (1), 103 

therefore: 104 

                                                                           Ptheoretical = I ×V                          (3) 105 

The Power-Voltage (P-V) curve analysis of the tested PV module is shown in Fig. 2. The maximum 106 

power and voltage for each irradiance level under the same temperature value can be expressed by the P-107 

V curves.  108 

The purpose of using the analysis for the P-V curves, is to generate the expected output power of the 109 

examined PV module, therefore, it can be used to predict the error between the measured PV data and the 110 

theoretical power and voltage performance. 111 

The proposed PV fault detection algorithm can detect various fault in the GCPV plants such as: 112 

 Partial shading (PS) condition effects the GCPV system 113 

 1 Faulty PV module and PS  114 

 2 Faulty PV modules and PS 115 

 3 Faulty PV modules and PS 116 

o  117 

o  118 

o  119 

 (n-1) Faulty PV modules and PS, where m is the total number of PV modules in the GCPV 120 

installation. 121 

A briefly explanation of the proposed fault detection algorithm is presented in section 2.2 and section 2.3. 122 
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2.2 Proposed Fault Detection Algorithm: Theoretical Curves Modelling 

The main objective of the fault detection algorithm is to detect and determine when and where a fault has 123 

occurred in the GCPV plant.  124 

The first layer of the fault detection algorithm passes the measured irradiance level and photovoltaic 125 

module’s temperature to VI LabVIEW software in order to generate the expected theoretical P-V curve as 126 

described previously in section 2.1.  This layer is shown in Fig. 3.  127 

To determine if a fault has occurred in a GCPV system, two ratios have been identified. The theoretical 128 

Power ratio (PR) and the theoretical voltage ratio (VR) have been used to categorize the region of the 129 

fault. It is necessary to use both ratios because: 130 

1. Both ratios are changeable during faulty conditions in the PV systems 131 

2. When the power ratio is equal to zero, the voltage ratio can still have a value regarding the 132 

voltage open circuit of the PV modules 133 

The power and voltage ratios are given by the following expressions: 134                                                                               𝑃𝑅 =  𝑃𝐺,𝑇𝑃𝐺,𝑇 − 𝑛𝑃0                                       (4) 135                                                                               𝑉𝑅 =  𝑉𝐺,𝑇𝑉𝐺,𝑇 − 𝑛𝑉0                                       (5) 136 

Where 𝑃𝐺,𝑇 is the theoretical output power generated by the GCPV system at specific G (irradiance) and 137 

T (module temperature) values, 𝑛 is the number of PV modules, 𝑉𝐺,𝑇  is the theoretical output voltage 138 

generated by the GCPV system at specific G (irradiance) and T (module temperature) values and both 139 𝑉0, 𝑃𝑜  are the maximum operating voltage and power at STC (G: 1000 w/m2, T: 25 °C) respectively. 140 

The number of faulty PV modules can be expressed by the number of PV modules in the examined PV 141 

string. For example, if the PV string comprises 5 photovoltaic modules connected in series, then, n = 5. 142 

 

 

 
 

Fig. 2.  Power-Voltage (P-V) curve modelling under various irradiance levels 
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In reality, the internal sensors used to measure the voltage and current for a GCPV system have 143 

efficiencies of less than 100%.  This tolerance rate must therefore be considered in the PR and VR ratio 144 

calculations. For this instance, the PR and VR values are divided into two limits: 145 

1. High limit: where the maximum operating efficiency of the sensors is applied, therefore, the high 146 

limit for both PR and VR ratios is expressed by (4) and (5). 147 

2. Low limit: where the efficiency (tolerance rate) of the sensors is applied. Both limits can be 148 

expressed by the following formulas: 149                                                                               𝑃𝑅 𝐿𝑜𝑤 𝑙𝑖𝑚𝑖𝑡 =  𝑃𝐺,𝑇(𝑃𝐺,𝑇 − 𝑛𝑃0)η𝑠𝑒𝑛𝑠𝑜𝑟                        (6) 150                                                                               𝑉𝑅 𝐿𝑜𝑤 𝑙𝑖𝑚𝑖𝑡 =  𝑉𝐺,𝑇(𝑉𝐺,𝑇 − 𝑛𝑉0)η𝑠𝑒𝑛𝑠𝑜𝑟1                        (7) 151 

Where η𝑠𝑒𝑛𝑠𝑜𝑟 is the efficiency of both the voltage and current sensor, while, η𝑠𝑒𝑛𝑠𝑜𝑟1 is the efficiency of 152 

the voltage sensor: 153           η𝑠𝑒𝑛𝑠𝑜𝑟 =  η𝑠𝑒𝑛𝑠𝑜𝑟1(𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑆𝑒𝑛𝑠𝑜𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦) +  η𝑠𝑒𝑛𝑠𝑜𝑟2(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑒𝑛𝑠𝑜𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦)   (8) 154 

The PR and VR high and low detection limits are evaluated for the examined GCPV system using various 155 

irradiance levels, as described in the third layer in Fig. 3. For this particular layer, the analysis of the PR 156 

vs. VR curves can be seen in the example shown next to layer 5, Fig. 3. This example shows the high and 157 

low detection limit for two case scenarios: one faulty PV module and two faulty PV modules, where both 158 

curves are created using 3rd order polynomial functions. The purpose of the 3rd order polynomial curves is 159 

to generate a regression function which describes the performance of the curves which are created by the 160 

theoretical points using VI LabVIEW software. 161 

The overall GCPV fault detecting algorithm is explained in Fig. 3. Layer 5, shows the measured data vs. 162 

the 3rd order polynomial curves generated by VI LabVIEW software. The measured PR and measured VR 163 

can be evaluated using the following formula: 164 

                                            𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃𝑅 𝑣𝑠.  𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑅 =   𝑃𝐺,𝑇𝑃𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷  𝑣𝑠.  𝑉𝐺,𝑇𝑉𝑀𝐸𝐴𝑆𝑈𝑅𝐸𝐷          (9)  165 

In case of which the measured PR vs. VR is out of range:  166 𝐹 𝐻𝑖𝑔ℎ 𝑙𝑖𝑚𝑖𝑡 < 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃𝑅 𝑣𝑠. 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉𝑅 < 𝐹 𝑙𝑜𝑤 𝑙𝑖𝑚𝑖𝑡 167 

Therefore, the fault detection algorithm cannot identify the type of the fault that has occurred in the 168 

GCPV plant. However, it can predict two possible faulty conditions which might have occurred in the 169 

GCPV system. As shown in Fig. 3, layer 5 example. The measured data 2 indicates two possible faulty 170 

conditions: 171 

1. Faulty PV module and partial shading effects on the GCPV system 172 

2. Two faulty PV modules and partial shading effects on the GCPV system 173 

Therefore, out of region samples is processed by a fuzzy logic classifier as shown in Fig 3, layer 6. 174 

The difference between the proposed theoretical curve modelling with other similar approaches described 175 

by [7, 8, 9, 10 and 14] is that the algorithm contains the number of modules in the GCPV system, also the 176 

approach is using 3rd order polynomial function which can be used to plot a regression function that 177 

describes the behavior of the faulty region and the design of a fuzzy logic fault classification which is 178 

described in the next section (section 2.3). 179 
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 180 

 
 

Fig. 3.  Detailed flowchart for the proposed fault detection algorithm which contains 5 layers 
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2.3 Proposed Fault Detection Algorithm: Fuzzy Logic Classifier 

Nowadays, fuzzy logic systems became more in use with PV systems. A brief overview of the recent 181 

publications on fuzzy logic system design is presented by L. Suganthi [25]. From the literature reviewed 182 

previously in the introduction, currently, there are a lack of research in the field of fuzzy logic 183 

classification systems which are used in examining faulty conditions in PV plants. Therefore, in this 184 

paper, a fuzzy logic classifier is demonstrated and verified experimentally. 185 

Fig. 4 describes the overall fuzzy logic classifier system design. The fuzzy logic system consists of two 186 

inputs: voltage ratio (VR) and the power ratio (PR), denoted in Fig. 4 as (A) and (B) respectively. The 187 

membership function for each input is divided into five fuzzy sets described as: PS (partial shading 188 

condition), 1 (one faulty PV module), 2 (two faulty PV modules), 3 (three faulty PV modules) and 4 (four 189 

faulty PV modules). The fuzzy interface applies the approach of Mamdani method (min-max) managed 190 

by the fuzzy logic system rule, stage 2 of the fuzzy logic system. After the rules application, the output is 191 

applied to classify the fault detection type occurred in the GCPV plant.  192 

 
 

Fig. 4.  Fuzzy Logic classifier system design. (A) Voltage ratio input, (B) Power ratio input, (C) Fault detection output 
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A brief calculation of each membership function for VR, PR and the fuzzy logic membership output 193 

function is reported in Fig. 5. The membership functions are based on the mathematical calculation of the 194 

examined GCPV plant used in this work. The examined GCPV system which is used to evaluate the 195 

performance of the fault detection algorithm is demonstrated briefly in section 3.1: experimental setup. 196 

Both fuzzy logic system inputs VR and PR are evaluated at the maximum power and voltage of the 197 

GCPV system which are equal to 1100Wp and 143.5V. In addition, the mathematical calculations 198 

includes the PS conditions which might affect the performance of the entire PV system.  199 

The fuzzy logic system rule are based on: if, and statement. Each case scenario is presented after the 200 

fuzzy logic system rule shown in Fig. 4(C). However, the output membership function is divided into 5 201 

sets: PS (0 - 0.2), faulty PV module (0.2 – 0.4), two faulty PV modules (0.4 – 0.6), three faulty PV 202 

modules (0.6 – 0.8) and four faulty PV modules (0.8 – 1.0). 203 

Furthermore, the output surface for the fuzzy logic classifier system is plotted and represented by a 3D 204 

fitting curve shown in Fig. 6. Where the x-axis presents the PR, y-axis presents VR and the fault detection 205 

output classification is on the z-axis. 206 

In order to generalize the proposed fuzzy logic classification systems, it is required to input the values of 207 

the voltage and the power to the fuzzy interface system, and then, the faulty region could be calculated 208 

using the formulas (4 & 5) for the variations of the power and voltage respectively. Additionally, the 209 

output detection membership function could be extended up to the value of the PV modules connected in 210 

series in each PV string separately and this extension in the membership function can be evaluated within 211 

the region of 0 to 1 as the following: 1/ number of series PV modules in the PV string. 212 

 
 

Fig. 5.  Mathematical calculations for the fuzzy logic classifier system including VR, PR, Rules and Output Membership Function 
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3. GCPV Fault Detection Algorithm Validation 213 

In this section, the performance of the proposed fault detection algorithm is verified. For this purpose, the 214 

acquired data for various days have been considered using 1.1kWp grid-connected PV plant. The time 215 

zone for all measurements is GMT. 216 

3.1 Experimental Setup  217 

The PV system used in this work consists of a grid-connected PV plant comprising 5 polycrystalline 218 

silicon PV modules each with a nominal power of 220 Wp. The photovoltaic modules are connected in 219 

series. The photovoltaic string is connected to a Maximum Power Point Tracker (MPPT) with an output 220 

efficiency of not less than 95.0%. The DC current and voltage are measured using the internal sensors 221 

which are part of the FLEXmax MPPT unit. A battery bank is used to store the energy produced by the 222 

PV plant.  223 

A Vantage Pro monitoring unit is used to receive the Global solar irradiance measured by the Davis 224 

weather station which includes a pyranometer. A Hub 4 communication manager is used to facilitate 225 

acquisition of modules’ temperature using the Davis external temperature sensor, and the electrical data 226 

for each photovoltaic string. VI LabVIEW software is used to implement data logging and monitoring 227 

functions of the GCPV system.  Fig. 7 illustrates the overall system architecture of the GCPV plant.  228 

The real-time measurements are taken by averaging 60 samples, gathered at a rate of 1Hz over a period of 229 

one minute. Therefore, the obtained results for power, voltage and current are calculated at one minute 230 

intervals. 231 

The SMT6 (60) P solar module manufactured by Romag, has been used in this work. The electrical 232 

characteristics of the solar module are shown in Table 1. The standard test condition (STC) for these solar 233 

panels are:  234 

 Solar Irradiance = 1000 W/m2 235 

 Module Temperature = 25 °C 236 

 
 

Fig. 6.  Fuzzy Logic classifier output surface with VR, PR and the fault detection output membership function 
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The fault detection algorithm has been validated experimentally over a 5 day period. On each day a 237 

different fault was perturbed as shown in Fig. 8:  238 

1. Day1: Normal operation mode and partial shading effects on the GCPV plant  (no fault occurred 239 

in any of the tested PV modules), 240 

2. Day2: One faulty PV module and partial shading effects on the GCPV plant 241 

3. Day3: Two faulty PV modules and partial shading effects on  the GCPV plant 242 

4. Day4: Three faulty PV modules and partial shading effects on the GCPV plant 243 

5. Day5: Four faulty PV modules and partial shading effects on the GCPV plant 244 

In order to test the effectiveness of the proposed fault detection algorithm, the theoretical and the 245 

measured output power for each case scenario was logged and compared using VI LabVIEW software. 246 

 
 

Fig. 7.  Examined GCPV Plant Installed at the Huddersfield University, United Kingdom 

 
Fig. 8.  Theoretical vs. Measured output power during 5 different days 
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3.2 Evaluation of the Proposed Theoretical Curves Modelling 247 

In this section, the performance of the fault detection algorithm (theoretical curves modelling) is verified 248 

using normal operation mode and partial shading effects the GCPV system. Fig. 9 describes the 249 

theoretical simulation vs. the real-time long-term data measurement. 250 

In order to apply a partial shading condition to the GPCV modules an opaque paper object has been used. 251 

The partial shading was applied to all PV modules at the same rate. Partial shading condition is increased 252 

during the test. 253 

Fig. 10(A) shows the entire measured data vs. the theoretical detection limits which are discussed 254 

previously in section 2.2. As can be noticed, most of the measured data lies within the high and low 255 

theoretical detection limits which are created using 3rd order polynomial function. The high and low 256 

detection limit functions are also illustrated in the Fig 10(A). 257 

The voltage ratio (VR) and power ratio (PR) for this particular test is shown in Fig 10(B). Since the PS 258 

condition applied to the GCPV system is increasing, therefore, both VR and PR ratios are increasing 259 

slightly during the test. Moreover, both ratios can be measured using (9).  Fig. 10(B) shows the efficiency 260 

of the GCPV plant. The efficiency is evaluated using (10). 261                                                                    Efficicnecy =   𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 𝑃𝑜𝑤𝑒𝑟𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑃𝑜𝑤𝑒𝑟                                          (10) 262 

From Fig. 10(B), the efficiency of the GCPV system decreased while increasing the PS applied to the PV 263 

system. The detection accuracy (DA) for the proposed theoretical curves modelling algorithm can be 264 

expressed by (11). 265                         Detection accuracy (DA) =   𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠− 𝑂𝑢𝑡 𝑜𝑓 𝑅𝑒𝑔𝑖𝑜𝑛 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠                      (11) 266 

 
 

Fig. 9.  Theoretical power vs. measured output power for a partial shading effects the GCPV plant  
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Using (11), the proposed algorithm has a detection accuracy equals to: 267              Detection accuracy for the partial shading condtion =   720 − 37720 = 0.9486 = 94.86% 268 

In this test, the theoretical curves modelling fault detection algorithm shows a significant success for 269 

detecting partial shading conditions applied to the GCPV plant. The detection accuracy rate can be 270 

increased using a fuzzy logic classification system. Therefore, out of region samples (samples which are 271 

away from the high and low detection limits) are processed by the fuzzy logic system. 272 

 
(A) 

 
(B) 

Fig. 10.  Theoretical curves vs. real time long term measured data. (A) Theoretical fault curve detection limits for the examined GCPV 

plant, (B) Voltage ratio, power ratio and the efficiency of the entire GCPV system 
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3.3 Evaluation of the Proposed Fuzzy Logic Classification System 273 

This test is created to confirm the ability of the fault detection algorithm to detect faulty PV modules 274 

occurring in the GCPV plant using theoretical curves modelling algorithm and fuzzy logic classification 275 

system. Four different case scenarios have been tested: 276 

A. Faulty PV module with partial shading condition 277 

B. Two faulty PV modules with partial shading condition 278 

C. Three faulty PV modules with partial shading condition 279 

D. Four faulty PV module and partial shading condition 280 

Each case scenario is examined during a time period of a full day as shown Fig. 8 (Day 2, 3, 4 and 5), 281 

where the total number of samples for each examined day are equal to 720 samples. Fig. 10 shows the 282 

theoretical curve limits vs. real-time long-term measured data. 3rd order polynomial function of the 283 

theoretical high and low limits is plotted, while the minimum determination factor (R) is equal to 99.59%.  284 

As can be noticed, the measured data for each test is plotted and compared with the theoretical curve 285 

limits. Most of the measured data among the 4 day test period lies within the high and low detection 286 

limits of the theoretical curves. However, in each day, several out of region samples have been detected as 287 

shown in Fig. 11.  288 

The detection accuracy (DA) for each case scenario is calculated using (11) and reported in Table 2. The 289 

minimum and maximum DA is equal to 94.03% and 95.27% respectively before considering the fuzzy 290 

logic classification system. 291 

 

 

 

 

Fig. 11.  Theoretical detection limits vs. real-time long-term data measurements for one faulty, two faulty, three faulty and four faulty 

photovoltaic modules 
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For each test including the test illustrated in section 3.2, out of region samples have been processed by the 292 

fuzzy logic classification system. Fig. 12 describes the performance of the fuzzy logic system during each 293 

test:  294 

 Test 1: PS, described in section 3.2 295 

 Test 2: One faulty PV module and PS 296 

 Test 3: Two faulty PV modules and PS 297 

 Test 4: Three faulty PV modules and PS 298 

 Test 5: Four faulty PV modules and PS 299 

It is evident that most of the samples are categorized correctly by the fuzzy classifier. For example, before 300 

considering the fuzzy logic system, the DA for test 2 is equal to 95.27% while the DA increased up to 301 

99.03% after taking into account the fuzzy logic classification system. This result is due to the detection 302 

of the out of region samples. The results for this test is shown in Fig. 12, only 7 out of 34 processed 303 

samples are detected incorrectly, while 27 samples have been detected correctly within an output 304 

membership function between 0.2 and 0.4. 305 

Table 2 shows number of out of region samples and the detection accuracy (DA) for each test separately. 306 

The DA rate is increased up to a minimum value equals to 98.8%. 307 

In this section, the evaluation for the theoretical curves modelling algorithm and the fuzzy logic system 308 

are discussed and briefly explained. From the obtained results, it is confirmed that the fault detection 309 

algorithm proposed in this article is suitable for detecting faulty conditions in PV systems accurately. 310 

 
 

Fig. 12.  Out of region samples processed by the fuzzy logic classification system 
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TABLE 2 

EFFICIENCY COMPARISON BETWEEN FOUR DIFFERENT CASE SCENARIOS 

Test Number Case Scenario 

Without Fuzzy  

Classifier 

Including Fuzzy 

Classifier 

Out of 

Region 

Samples 

Detection 

Accuracy 

(DA %) 

Out of 

Region 

Samples 

Detection 

Accuracy 

(DA %) 

Test 1 (described in section 3.2) Partial shading effects the 

GCPV system 

37 94.86 5 99.31 

Test 2 (presented as A in Fig. 11) Faulty PV module and 

partial shading 

34 95.27 7 99.03 

Test 3 (presented as B in Fig. 11) Two faulty PV module and 

partial shading 

38 94.72 8 98.80 

Test 4 (presented as C in Fig. 11) Three faulty PV module and 

partial shading 

37 94.86 5 99.31 

Test 5 (presented as D in Fig. 11) Four faulty PV module and 

partial shading 

43 94.03 6 99.16 

 

3.4 Performance Evaluation of the Proposed Fault Detection Algorithm Based on Array Ages 311 

Since the examined PV modules used in the previous sections is new (installed 2 years ago), the proposed 312 

PV detection algorithm was evaluated using another PV system as shows in Fig. 13, where the total PV 313 

system capacity is equal to 0.52 kWp. The MPPT unit is previously explained in section 3.1. The PV 314 

modules are installed at the University of Huddersfield 11 years ago. 315 

Before considering the PV age of installation, the detection limits obtained using (4-7) shows low 316 

detection accuracy since the PV degradation rate is not considered. The results are shown in Fig. 14 for 317 

various tests, were the maximum detection accuracy is equal to 63.8%. Therefore, the formulas (6 & 7) 318 

are updated to contain the PV array degradation rate as described by (12 & 13). 319                               𝑃𝑅 𝐿𝑜𝑤 𝑙𝑖𝑚𝑖𝑡 =  𝑃𝐺,𝑇((𝑃𝐺,𝑇 − 𝑛𝑃0) η𝑠𝑒𝑛𝑠𝑜𝑟)×( 100 −𝐴ccumulative  PV Degredation Rate  )             (12) 320                              𝑉𝑅 𝐿𝑜𝑤 𝑙𝑖𝑚𝑖𝑡 =  𝑉𝐺,𝑇((𝑉𝐺,𝑇 − 𝑛𝑉0) η𝑠𝑒𝑛𝑠𝑜𝑟1)×( 100 −𝐴ccumulative  PV Degredation Rate  )             (13) 321 

Where the accumulative PV degradation rate is calculated using (14).  322 𝐴ccumulative  PV Degredation Rate = 𝑃𝑉 𝐷𝑒𝑔𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 × 𝑃𝑉 𝐴𝑔𝑒 𝑜𝑓 𝐼𝑛𝑠𝑡𝑙𝑙𝑎𝑡𝑖𝑜𝑛 (14) 323 

The value of the degradation rate per year in Huddersfield/UK has been calculated at a degradation rate 324 

equals to 0.67%/year. As a result, using (14) the accumulative degradation rate of the examined PV 325 

modules is equal to: 326 𝐴ccumulative  PV Degredation Rate = 0.67 (𝑑𝑒𝑔𝑟𝑒𝑑𝑎𝑡𝑖𝑜𝑛𝑦𝑒𝑎𝑟 ) × 11 (𝑃𝑉 𝐴𝑔𝑒 𝑜𝑓 𝐼𝑛𝑠𝑡𝑙𝑙𝑎𝑡𝑖𝑜𝑛) = 7.37    327 

Various results have been conducted after evaluating the PV degradation rate of the existing PV system, 328 

the detection accuracy of the proposed fault detection limits is approximately equal to 94% comparing to 329 

63.8% before considering the PV array age of installation as illustrated in Fig. 14. In order to increase the 330 

detection accuracy of the proposed fault detection limits, it is required to use the fuzzy logic system 331 

described in section 2.3. 332 
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                                                  (A)                                                                                                                          (B) 

 
 

                                                      (C)                                                                                                                          (D) 

 

Fig. 14.  Theoretical detection limits vs. real-time long-term data measurements before and after considering the age of the PV array. 

(A) Normal operation mode and partial shading, (B) One faulty PV module and partial shading, (C) Two faulty PV modules and 

Partial shading, (D) Three faulty PV modules and partial shading 

 
Fig. 13. Second examined PV system installed at the University of Huddersfield - year of installation: 2006 
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3.5 Discussion 333 

In order to test the effectiveness of the proposed fault detection algorithm presented in this paper, the 334 

results obtained have been compared with multiple fault detection approaches. The common combination 335 

between the proposed algorithm in this paper and the research demonstrated by [5, 8 and 26] is the VR 336 

and PR equations. However, the VR and PR equations presented in this work have a different parameters 337 

such as: 338 

1. VR and PR equations contain the number of modules that are examined in the GCPV plant, 339 

which is presented using the variable: n. 340 

2. Both equations contain the voltage and current sensors uncertainly (sensor efficiency rate), which 341 

makes the algorithm easier to use with different PV installations. 342 

3. The detection limits (high and low) is a novel idea which has not been presented by any other 343 

research article related to fault detection algorithms in PV systems. 344 

Moreover, by using VR and PR ratios it was evident that the algorithm can detect up to (n-1) faulty PV 345 

modules and PS effects the GCPV plant, where n is equal to the number of PV modules in the examined 346 

GCPV installation. 347 

In [7 and 12] statistical analysis technique based on standard divination limits are used to detect possible 348 

faults in the GCPV plant, however, the presented techniques cannot identify the type of the fault occurred 349 

in the PV system, therefore, it is necessary to create a new mathematical calculations of the entire GCPV 350 

plant. In this paper, it is presented that the algorithm is based on the analysis of the theoretical curves 351 

modelling using 3rd order polynomial functions, without the use of any statistical analysis approaches.  352 

Furthermore, [10] experimented another tactical statistical analysis technique called t-test. This algorithm 353 

is capable to detect multiple faults in PV systems, however, the ratios used to monitor the performance of 354 

the PV system does not contain any parameter for the number of PV modules and the uncertainly in the 355 

internal voltage and current sensors used.  356 

There are variety of fuzzy logic control systems used with PV applications. Three-phase three-level grid 357 

interactive inverter with fuzzy based maximum power point tracking controller is presented by [27]. 358 

Additionally, some of the fuzzy logic classification systems were used with hybrid green power systems 359 

as reported by S. Safari et al [28]. Furthermore, M. Tadj et al [5] presented a fuzzy logic technique which 360 

is used to estimate the solar radiation, the proposed technique contains three membership functions: 361 

cloudy sky, partial cloudy sky and clear sky. However, in this paper, a new attempt for using fuzzy logic 362 

classification system to detect possible faults occurring in the PV plans. The main purpose of the fuzzy 363 

logic presented in this work is to detect out of region samples (samples that lies away from the high and 364 

low theoretical detection limits), and therefore, to increase the detection accuracy of the fault detection 365 

algorithm. The fuzzy logic system can be reused with other GCPV plants by changing the parameters 366 

which are shown in Fig. 5. 367 

A comparison between the output membership functions developed by [5] and this study are shown in 368 

Fig. 15(A) and Fig. 15(B) respectively. In [1] authors’ used Mamdani fuzzy logic system for enhancing 369 

the detection of partial shading conditions effecting the PV plant, where the proposed mathematical 370 

calculations of the fuzzy logic system is also presented in Fig. 15(A). Moreover, the fuzzy logic system 371 

presented in this paper is used to detect out of region samples that are not detected using the theoretical 372 

detection limits. Where the maximum detection accuracy achieved using the fuzzy logic system is equal 373 

to 99.31%. 374 
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The fault detection algorithm presented in this work contains some advantages and disadvantages such as: 375 

Advantages: 376 

 The algorithm does not use a statistical analysis approach to detect possible faults in the GCPV 377 

system. However, many recent article including [7, 10 and 12] depends on various statistical 378 

techniques to detect faults in PV systems. 379 

 The fault detection algorithm can be used with wide range of PV installation, since it depends on 380 

the analysis of the power and the voltage ratios which are normally available in most GCPV 381 

systems. 382 

 Multiple faults can be detected accurately, the minimum and maximum detection accuracy 383 

obtained by the algorithm are equal to 98.8% and 99.31% respectively. 384 

 The efficiency of the voltage and current sensor has been taken into account in the mathematical 385 

modelling for the proposed fault detection algorithm.  386 

 The fuzzy logic classification system is easy to be reused in other PV systems since it depends 387 

only on the analysis of the VR and PR. 388 

 In order to include the PV age of installation degradation rate, VR and PR ratios have been 389 

modified and analyzed using an old PV installation (age of PV plant is 11 years). 390 

 391 

Disadvantages: 392 

 The algorithm depends on the voltage and the power ratios of the GCPV systems. Therefore, the 393 

accuracy of the algorithm depends on the instrumentation used in the PV plants. 394 
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Fig. 15.  Fuzzy logic models. (A) Output membership functions proposed by M. Tadj [5], (B) Output membership 

functions suggested by this research 
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 The algorithm is not capable of detecting faults occurring in the bypass diodes, which are 395 

commonly used nowadays with PV systems. This problem in GCPV plants has been investigated 396 

by W. Chine [9]. 397 

 The fault detection algorithm cannot detect any fault arising in the DC/AC inverter units which 398 

are commonly used with GCPV systems. This type of fault has been reported by R. Platon et al 399 

[12], G. Bayrak [21] and F. Deng et al [29]. 400 

 401 

4. Conclusion 402 

In this work, a new GCPV fault detection algorithm is proposed. The developed fault detection algorithm 403 

is capable of detecting faulty PV modules and partial shading conditions which affect GCPV systems. 404 

The detection algorithm has been tested using 1.1kWp and 0.52kWp GCPV systems installed at 405 

Huddersfield University, United Kingdom. 406 

The fault detection algorithm consist of six layers working in series. The first layer contains the input 407 

parameters of the sun irradiance and PV modules’ temperature, while the second layer generates the 408 

GCPV theoretical performance analysis using Virtual Instrumentation (VI) LabVIEW software. Layer 3 409 

identifies the power and voltage ratios, subsequently creates a high and low detection limits which will be 410 

used in Layer 4 to apply the 3rd order polynomial regression model on the top of the PR and VR ratios. 411 

The fifth layer consists of two parts: the input parameters of the examined GCPV systems and the 3rd 412 

order polynomial detection limits. If the measured voltage ratio vs. measured power ratio lies away from 413 

the detection limits, the samples will be processed by the last layer which contains the fuzzy logic 414 

classification system.   415 

The novel contribution of this research is that the fault detection algorithm depends on the variations of 416 

the voltage and the power of the GCPV plant. Additionally, there are a few fuzzy logic classification 417 

systems which are used with PV fault detection algorithms, therefore, this research introduced a simple, 418 

reliable and quick fuzzy logic classification system which can be used with various GCPV plants. 419 

The results indicate that the fault detection algorithm is capable of detecting most of the measured data 420 

within the theoretical limits created using 3rd order polynomial functions. Furthermore, the maximum 421 

detection accuracy of the algorithm before considering the fuzzy logic system is equal to 95.27%, 422 

however, the fault detection accuracy is increased up to a minimum value of 98.8% after considering the 423 

fuzzy logic system. 424 
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