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Abstract. The mid-Pliocene Warm Period (mPWP; ~3.2 million years ago) is seen as the most recent time period characterized 

by a warm climate state, with similar modern geography and ~400 ppmv atmospheric CO2 concentration, and is therefore often 

considered an interesting analogue for near-future climate projections. Paleoenvironmental reconstructions indicate higher 

surface temperatures, decreasing tropical deserts, and a more humid climate in West Africa characterized by a strengthened 

West African Monsoon (WAM). Using model results from the second phase of the Pliocene Modelling Intercomparison Project 35 
(PlioMIP2) ensemble we analyze changes of the WAM rainfall during the mPWP, by comparing with the control simulations 

for the pre-industrial period. The ensemble shows a robust increase of the summer rainfall over West Africa and the Sahara 

region with an average increase of 2.7 mm/day, contrasted by a rainfall decrease over the equatorial Atlantic. An anomalous 

warming of the Sahara Desert and deepening of the Saharan Heat Low, seen in >90% of the models, leads to a strengthening 

of the WAM and an increased monsoonal flow into the continent. A similar warming of the Sahara Desert is seen in future 40 
projections using both phase 3 and 5 of the Coupled Model Intercomparison Project (CMIP3 and CMIP5), and though previous 

studies of future projections indicate a west/east drying/wetting contrast over Sahel, PlioMIP2 simulations indicate a uniform 

rainfall increase over Sahel in warm climates characterized by increasing greenhouse gas forcing. 

 

1

https://doi.org/10.5194/cp-2021-16
Preprint. Discussion started: 26 February 2021
c© Author(s) 2021. CC BY 4.0 License.



 2 

1. Introduction 45 

The mid-Pliocene Warm Period (mPWP; 3.264-3.025 Ma; also known as the mid-Piacenzian Warm Period) is 

considered to be the most recent historical warm climate state, with average global temperatures several degrees 

above pre-industrial (PI) levels (1.4 - 4.7 °C; Haywood et al., 2020) and atmospheric CO2 concentrations of ~400 

ppmv (Badger et al., 2013; Bartoli et al., 2011; Dowsett et al., 2010; Haywood et al., 2020, 2013; Martínez-Botí et 

al., 2015; Pagani et al., 2010; Raymo et al., 1996; Salzmann et al., 2013; Seki et al., 2010; Tripati et al., 2009; 50 

Zhang et al., 2013). Paleoenvironmental reconstructions indicate a warm and humid climate during the mPWP, 

with elevated sea surface temperatures (SSTs) and surface air temperatures (SATs), especially at high latitudes 

(Dowsett et al., 2010; Salzmann et al., 2013), forests and grassland expanding into areas previously covered by 

tundra, and savanna and woodland expanding at the expense of deserts (Salzmann et al., 2008). While much of the 

research on the mPWP climate focused on global large-scale patterns and the high latitudes (Haywood et al., 2013, 55 

2020; De Nooijer et al., 2020), several studies have emphasized the implications of the warm climate state for 

tropical climate, showing e.g. an enhancement of the East Asian Summer Monsoon (Wan et al., 2010) and a drying 

of the Southern Hemisphere tropics and subtropics (Pontes et al., 2020). Analysis of e.g. dust records of the coast 

of West Africa also indicates a strengthened West African Monsoon (WAM) during the mPWP as well as wetter 

conditions over West Africa and the Sahara region (Kuechler et al., 2018; Salzmann et al., 2008).  60 

With a paleogeography and atmospheric CO2 concentrations similar to today (Dowsett et al., 2010), the mPWP has 

long been considered an interesting analogue for near-future climate projections (Chandler et al., 1994; Jiang et al., 

2005) and been the focus of many modelling studies (e.g. Haywood and Valdes, 2004; Salzmann et al., 2008). To 

increase our understanding of the dynamical drivers of the warm climate state, several model simulations have been 

performed as part of the Pliocene Modelling Intercomparison Project (PlioMIP; Haywood et al., 2010, 2011). 65 

Model-data comparisons between the PlioMIP1 (first phase of PlioMIP) simulations and PRISM3 reconstructions 

(Dowsett et al., 2010) have shown an underestimation of the high-latitude warming in the mPWP and an 

overestimation of the warming in the Tropics (Haywood et al., 2013; Salzmann et al., 2013), which has influenced 

the representation of the WAM within the models (Zhang et al., 2016). PlioMIP1 was later followed up by a second 

phase (PlioMIP2), representing a more narrow geological time-window (marine isotope stage KM5c, 3.205 Mya) 70 

to e.g. facilitate data-model comparison (Haywood et al., 2016), and though some areas of concern still remain, 

results from the PlioMIP2 have shown a widespread model-data agreement (Haywood et al., 2020). 
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While previous studies have shown that the high-latitude warming has reduced the equator-pole temperature 

gradient (Haywood et al., 2013) and weakened tropical circulation such as the Hadley Circulation (Corvec and 

Fletcher, 2017), the terrestrial warming during the mPWP has been shown to strengthen the WAM and increase 75 

the summer rainfall over the Sahel region by more than 1 mm/day (Haywood et al., 2020; Zhang et al., 2016). A 

similar rainfall increase over Sahel is seen in future projections for both CMIP3 and CMIP5 ensembles, though 

with a drying located over western Sahel (Roehrig et al., 2013). However, models have been shown to inaccurately 

capture rainfall variability and change over West Africa and the Sahel region (Berntell et al., 2018; Roehrig et al., 

2013), and there is still little confidence in future projections of the summer rainfall (Biasutti et al., 2008; Cook, 80 

2008; Roehrig et al., 2013). West Africa is a region sensitive to hydrological variability which experienced 

extended droughts during the 1970s and 1980s (Berntell et al., 2018; Held et al., 2005; Nicholson et al., 2000), and 

there is a large need to increase the confidence in future projections in order to support adaption strategies in the 

region.  

The similarity to modern conditions, as well as the high amount of paleogeological and environmental data from 85 

the mPWP, has made it well suited to both evaluate the models’ ability to capture a warm climate state and further 

our understanding of the effects of greenhouse gas forcing on the global climate system (Haywood et al., 2020; 

Haywood and Valdes, 2004). In this article we will evaluate the representation of the WAM within the PlioMIP2 

ensemble, qualitatively compare it to palaeohydrological reconstructions and discuss the implications for the WAM 

in a near-future warm climate state with increasing greenhouse gas forcing. 90 

2. Data and method 

2.1. Participating PlioMIP2 models 

To examine the behavior of the WAM during the mPWP, data produced by 17 different general circulation models 

as part of the PlioMIP2 was used (Table 1). Simulations produced within PlioMIP2 are run for at least 500 years 

(Haywood et al., 2016) towards an equilibrium state, and the last 100 years of the simulations are then used for 95 

analysis. In the experimental set-up the CO2 levels are set to 400 ppmv, and the remaining concentrations of trace 

gases and aerosols are set to pre-industrial levels (Haywood et al., 2016). The simulations are run using enhanced 

boundary conditions as described in Haywood et al., (2016), with changes to e.g. the topography, bathymetry and 

land ice cover. COSMOS uses dynamic vegetation (Stepanek et al., 2020), while the remaining 16 models use 
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prescribed vegetation based on Salzmann et al. (2008). As the models have different horizontal resolutions, the 100 

data from the models was bilinearly interpolated onto a 1º x 1º grid using the software CDO (Climate Data 

Operators, Schulzweida, 2019) to facilitate multi-model analysis. 

Table 1: PlioMIP2 models used in this study. Spatial resolution of the atmosphere model 

indicated by grid cell extent (in degrees longitude x latitude) and number of vertical layers (L). 

Model ID Atmospheric resolution Reference 
CCSM4-NCAR 1.25 x 0.9, L26 Feng et al. (2020) 
CCSM4-Utrecht 2.5 x 1.9, L26  
CCSM4-UofT 1.25 x 0.9, L26 Chandan and Peltier (2017) 
CESM1.2 1.25 x 0.9, L30 Feng et al. (2020) 
CESM2 1.25 x 0.9, L32 Feng et al. (2020) 
COSMOS T31 (~3.75 x 3.75), L19 Stepanek et al. (2020) 
EC-Earth3-LR T159 (~1.125 x 1.125), L62 Zhang et al. (in review) 
GISS-E2-1-G 2.0 x 2.5, L40 Chandler et al. (in prep.) 
HadCM3 2.5 x 3.75, L19 Hunter et al. (2019) 
HadGEM3(-GC31-LL) N96 (~1.875 x 1.25), L85 Williams et al. (2018) 
IPSLCM6A-LR 2.5 x 1.26, L79 Lurton et al. (2020) 
IPSLCM5A2 3.75 x 1.9, L39 Tan et al. (2020) 
IPSLCM5A 3.75 x 1.9, L39 Tan et al. (2020) 
MIROC4m T42 (~2.8 x 2.8), L20 Chan et al. (2020) 
MRI-CGCM 2.3 T42 (~2.8 x 2.8), L30 Kamae et al. (2016) 
NorESM-L T31 (~3.75 x 3.75), L26 Li et al. (2020) 
NorESM1-F  1.9 x 2.5, L26 Li et al. (2020) 

 105 

2.3 Method 

The rainfall is analyzed over the months July-September (JAS), and the multi-model mean (MMM) represents the 

un-weighted average of the PlioMIP2 ensemble. The robustness of the signal is evaluated using the methodology 

of Mba et al. (2018), where the signal is considered robust if at least 14 of the 17 models agree on the sign of the 

anomaly (=>80%) and the MMM anomaly is equal to or larger than the inter-model standard deviation. The models 110 

are evaluated against their PI-simulation, and the 1901-1930 climatology based on CRU TS v4 (Climatic Research 

Unit gridded Time Series; Harris et al., 2020) is included as a reference for the observations. The seasonal cycle of 

the WAM is also examined over two sub-regions, Sahel (10-20° N, 20° W-30° E) and the Coast of Guinea (5-10° 

N, 20° W-30° E), representing regions characterized by a narrow and a wider or bimodal rainfall season 

respectively.  115 

3. Results 

https://doi.org/10.5194/cp-2021-16
Preprint. Discussion started: 26 February 2021
c© Author(s) 2021. CC BY 4.0 License.



 5 

3.1. Changes in seasonality 

 

Fig. 1: Seasonal cycle of rainfall (unit: mm/day) over Sahel (left) and the Coast of Guinea (right) for PI (top), 

mPWP (center) and mPWP anomalies (mPWP-PI, bottom). The multi-model mean MMM is shown together 120 

with the individual models, and the modern conditions as derived from observations (Harris et al., 2020) are 

included as a reference. 

The progression of the WAM creates different seasonal cycles of rainfall depending on the region, where northern 

latitudes in West Africa have one clear peak while more southern regions have a wider or bimodal rainy season. 

We have therefore divided West Africa into two sub-regions, Sahel (10-20° N, 20° W-30° E) and Coast of Guinea 125 

(5-10° N, 20° W-30° E). The seasonal cycle of terrestrial rainfall is calculated for each ensemble member and 

presented together with the MMM for the PI and mPWP simulations separately, as well as for the Pliocene anomaly 

(mPWP-PI) (Fig. 1). The “modern” seasonal cycle is plotted together with the PI cycle for reference, based on 

1901-1930 CRU TS v4 data (Harris et al., 2020). 
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In agreement with PI observations, the PI MMM shows a seasonal cycle with an August peak in rainfall over Sahel 130 

at 3.1 mm/day. The individual models mainly exhibit the same seasonal cycle; however, four models exhibit highest 

levels of rainfall shifted to July (HadCM3) or September (CCSM4-Utrecht, NorESM-L and NorESM-F) rather than 

August. The magnitude of summer rainfall seen in CESM1.2 and MIROC4m is at 5.1 and 5.2 mm/day respectively 

comparable to modern conditions (Fig. 1), while the other 15 ensemble members remain within a span of 2-4 

mm/day which is considerably below modern levels. The mPWP MMM shows an increase in monsoon rainfall, 135 

with the maximum rainfall doubling and reaching 6.1 mm/day in August. All models show an increase in rainfall 

in the July-October period, with the largest increase occurring either in August, September or October, resulting in 

a lengthening of the WAM. Keeping with previous studies (e.g. Berntell et al., 2018; Giannini et al., 2003; Mohino 

et al., 2011; Roehrig et al., 2013), we will however still base our spatial analysis of the WAM on the July-September 

period. The largest increase is shown in EC-Earth3-LR at 7.3 and 7.5 mm/day in August and September, making it 140 

reach a maximum of 9.2 mm/day in Pliocene Sahel. As with the PI, the highest level of Pliocene rainfall in the 

PlioMIP2 ensemble is seen in MIROC4m with 11.5 mm/day in August. 

Over the Coast of Guinea, the PI simulations show higher levels of rainfall through most of the Northern 

Hemispheres spring, summer and fall, with the ensemble mean showing a maximum of 8.1 mm/day occurring in 

August (Fig. 1). 16 of the 17 members have maximum levels of rainfall spanning between 5.9 mm/day and 9.8 145 

mm/day, while MIROC4m again supersedes the remaining models with rainfall reaching 11.9 mm/day in July. The 

MMM of the mPWP simulations again shows an increase of monsoon rainfall compared to the PI, with positive 

anomalies throughout the seasonal cycle but showing highest values in October and a secondary peak in July. 

However, while no individual models showed negative anomalies during the monsoon season in Sahel, CCSM4-

NCAR, MIROC4m and NorESM1-F show decrease in rainfall over the Coast of Guinea in July-September. The 150 

remaining models show both increasing and decreasing rainfall during April-June, but mainly positive anomalies 

from July-November. 

3.2. Changes in monsoon rainfall 
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Fig 2. mPWP July-August-September (JAS) rainfall anomalies (mPWP-PI) for the MMM (a) and the individual models 

(b-r), with all subfigures using the same color bar. Robust signals are indicated with x, where ~80% of the models (14 155 

out of 17) show the same sign of anomaly and the anomaly is equal to or larger than the inter-model standard deviation, 

and dots indicate that only the first criterion is fulfilled. The pattern correlation between the MMM and individual 

model is seen in top right corner. 

To see the changes in the WAS rainfall during the mPWP we look at the JAS rainfall anomalies (mPWP-PI, Fig. 

2). The MMM shows a clear dipole pattern with a latitudinal transition at 7°N stretching from the Atlantic Ocean 160 

to the eastern part of Northern Africa (Fig. 2a). The robust signal of rainfall increase is centered on Sahel and 

southern Sahara, covering most of northern Africa and reaching from the Coast of Guinea into northern Sahara. 
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The negative anomalies cover an area stretching from 7°N and continuing south over the Equatorial Atlantic, with 

the largest decrease located along the Gulf of Guinea. 

The large-scale features of the rainfall anomalies are consistent over the individual models, with the rainfall 165 

increase centered at 10-15° N and reaching up into southern Sahara, and negative values located over the Gulf of 

Guinea (Fig. 2a and 2b-r). The results are less consistent along the Coast of Guinea with models indicating slightly 

different locations of the transition from negative to positive rainfall anomalies. Some models exhibit a rainfall 

decrease reaching up to 9°N (MIROC4m, GISS-E2-1-G) while other models limit the negative values to only cover 

the Equatorial Atlantic and Central Africa (CCSM4-UoT, HadCM3). EC-Earth3-LR and CCSM-UofT show the 170 

highest pattern correlation to the MMM at R=0.95 and R=0.92 respectively, while GISS-E2-1-G has the lowest 

correlation (R=0.50). The different models show the largest spread over Sahel and southern Sahara (standard 

deviation of 2-4 mm/day, not shown). This is a region where all models indicate an increase in rainfall, but the 

simulated magnitude differs largely, from over 8 mm/day in EC-Earth3-LR and MIROC4m to around 1 mm/day 

for GISS-E2-1-G and IPSLCM5A2. A spatial mean of the rainfall anomalies over Sahel (Fig. 3) shows a similar 175 

spread, with the highest values for EC-Earth3-LR and MIROC4m (6.6 and 5.8 mm/day) and the lowest for GISS-

E2-1-G and IPSLCM5A2 (0.5 and 0.8 mm/day). The remaining 13 models all show an increase of 1-4 mm/day 

over Sahel with a MMM of 2.7 mm/day. 

Fig. 3. Mean July-September (JAS) Sahel mPWP rainfall anomaly (mPWP-PI, unit: mm/day) for the individual 

PlioMIP2 ensemble models, together with the MMM.  180 
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Looking at the latitudinal mean JAS rainfall (Fig. 4) we can also see that the rainbelt, i.e. the latitudinal band of 

maximum rainfall during the WAM, has shifted northward in the mPWP and is centered at 9.5°N with the largest 

rainfall increase of 2.0 - 3.4 mm/day occurring between 9.5°N and 17.5°N for the MMM. The ensemble does 

however still exhibit a large spread, with four models showing a maximum increase to the south of the MMM 185 

(GISS-E2-1-G, IPSLCM5A, IPSLCM5A2 and IPSLCM6A) and two models showing a substantially larger 

increase than the MMM (EC-Earth3-LR and MIROC4m). 

Fig. 4. (left) Latitudinal mean terrestrial rainfall for MMM PI (grey) and mPWP (blue), with dark blue where they 

overlap, and (right) latitudinal mean July-September (JAS) rainfall anomalies (mPWP-PI) for the individual models 

and for the MMM. 190 

3.3. The dynamics for the changes in WAM rainfall 

To understand the dynamics behind the increased rainfall in West Africa during the mPWP, the sea level pressure, 

horizontal wind at 850 hPa and near surface temperature anomalies (mPWP-PI) are analyzed for each individual 

model. 
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Fig. 5. July-September (JAS) mean sea level pressure (shading) and 850 hPa horizontal wind (vectors) anomalies for 195 

the PlioMIP2 ensemble members (a-q). 

Sea level pressure anomalies for the monsoon season (JAS, mPWP-PI) are shown in Fig. 5 for the individual 

PlioMIP2 models. All models except MRI-CGCM 2.3 (Fig. 5n) show a deepening of the low-pressure area across 

the Sahara region (negative anomalies) and a strengthening of the negative latitudinal pressure gradients between 

Sahara and the Equatorial Atlantic. EC-Earth3-LR and CCSM4-UofT (Fig. 5f and 5q), the models with the highest 200 

pattern correlation in rainfall to the ensemble mean, both exhibit a clear north/south dipole pattern with negative 

sea level pressure anomalies over Sahara continuing northward into Europe, and positive anomalies over Sahel, the 

Coast of Guinea and the Equatorial Atlantic. The same dipole pattern, with a latitudinal transition at approx. 17°N, 

is also seen in nine additional ensemble members (CCSM4-NCAR, CCSM4-Utrecht, CESM2, GISS-E2-1-G, 

HadGEM3, HadCM3, MIROC4m, NorESM-L and NorESM1-F), but while MRI-CGCM 2.3 exhibits positive sea 205 

level pressure anomalies south of 15°N, the negative anomalies over Sahara are divided by positive anomalies over 

northern Africa and southern Europe, centered on the Mediterranean region, resulting in a quadrupole-type pattern 

(Fig. 5n). The three IPSL models (IPSLCM6A, IPSLCM5A and IPSLCM5A2) show negative anomalies or weak 

positive anomalies south of 17°N, forming a weaker enhancement of the latitudinal pressure gradient relative to 

the other PlioMIP2 models. 210 
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Associated with the deepening of the Saharan Heat Low and strengthening of the latitudinal pressure gradients is 

an anomalous cyclonic flow and strengthened westerly/southwesterly horizontal winds at the 850 hPa level, going 

from the Equatorial Atlantic into Sahel and Sahara (Fig. 5 a-q). This is seen in all models, although at different 

magnitudes, with the highest increase in wind speed seen in CCSM4-Utrecht, EC-Earth3-LR and MIROC4m (Fig. 

5c, 5f and 5m), and the lowest increase for GISS-E2-1-G, IPSLCM5A and IPSLCM5A2 (Fig. 5g, 5j and 5k). 215 

Fig. 6. July-September (JAS) mean near surface temperature anomalies (ΔSAT, mPWP-PI) for the PlioMIP2 ensemble 

members (a-q). 

The JAS near surface temperature anomalies (ΔSAT, mPWP-PI, Fig. 6) shows a strengthened north-south 

temperature gradient between the Sahara Desert and the Equatorial Atlantic for all models except MRI-CGCM 2.3 

(Fig. 6n). The temperature increase either stretches relatively uniformly across Sahara as in EC-Earth3-LR, 220 

COSMOS and CCSM4-UoT, or exhibits two separate centers, one in Western Sahara and one in Eastern Sahara, 

as for MIROC4m, NorESM-L and NorESM1-F. MRI-CGCM 2.3 (Fig. 6n) has positive temperature anomalies 

located mainly outside Sahara, both centered along the western coast of Sahara and over eastern Sahara and the 

Arabian peninsula. An area of negative temperature anomalies is located over the Mediterranean region, and its 

surrounding areas in northern Sahara exhibit a weaker warming than the neighboring areas of the Sahara Desert. 225 

Nine models show clear latitudinal bands of negative anomalies anomalies stretching across northern Africa at 
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approx. 15°N (COSMOS, CCSM4-NCAR, CCSM4-Utrecht, EC-Earth 3-LR, HadCM3, MIROC4m, MRI-CGCM 

2.3, NorESM-L, NorESM1-F), similar to the latitude of maximum rainfall increase. GISS-E2-1-G and CCSM4-

UoT exhibit negative anomalies more dispersed over northern Africa, located mainly along the western coastline 

of Sahara and over the central Sahel region. 230 

4. Discussion 

4.1 The paleo-proxy evidence for WAM during the mid-Pliocene 

The mid-Pliocene Warm Period is often used as an analog for near-future climate change due to its similar-to-

modern paleogeography and high concentrations of CO2 in the atmosphere (Corvec and Fletcher, 2017; Dowsett et 

al., 2013; Sun et al., 2013), and both marine and terrestrial proxy reconstructions indicate a climate with higher sea 235 

surface and surface air temperatures than present (Dowsett et al., 2013; Salzmann et al., 2008). Model/data 

comparison using PlioMIP1 indicated that the models underestimated the high latitude warming by up to 15 °C 

while overestimating the low latitude temperatures by 1-6 °C (Dowsett et al., 2013; Haywood et al., 2013; Salzmann 

et al., 2013). A comparison of atmosphere-only general circulation models (AGCM) and coupled ocean-atmosphere 

models (AOGCM) showed that AGCMs using prescribed SSTs based on paleo reconstructions produce a much 240 

stronger WAM compared to models using a coupled ocean-atmosphere configuration, believed to be due to the 

overestimation of SST and SAT in the tropics in the AOGCM’s (Zhang et al., 2016). Analysis of the PlioMIP2 

ensemble by Haywood et al. (2020) indicates a widespread model/data agreement for SSTs and little systematic 

temperature bias in the tropics, suggesting a reduced underestimation of the WAM in the PlioMIP2, but the 

relatively low availability of palaeohydrological proxies covering West Africa makes it difficult to perform a 245 

similar model/data comparison for the WAM and its related rainfall (Salzmann et al., 2008, 2013). However, 

several studies of proxy reconstructions across Northern Africa indicates a more humid climate during the mid-

Pliocene. Palynological data records indicate a higher density of tree cover and an expansion of woodland and 

savanna in Northern Africa at the expense of deserts (Bonnefille, 2010; Salzmann et al., 2008) and multi-proxy 

studies analyzing e.g. plant-wax and dust records in marine sediment cores taken off-shore of West Africa indicate 250 

wetter conditions during the mid-Pliocene (deMenocal, 2004; Feakins et al., 2005; Kuechler et al., 2018), which is 

qualitatively consistent with the results from the PlioMIP2 ensemble (Fig. 2). The expansion of forest into the 

Sahara region is also seen in the results from COSMOS (Stepanek et al., 2020), which is the only member of the 
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PlioMIP2 ensemble that is run with dynamic vegetation. It is also important to note that the PlioMIP2 ensemble is 

designed to simulate the MIS KM5c within the mPWP (Haywood et al., 2020, 2016), and while it represents a 255 

useful comparison to modern conditions it might not represent the full climate variability within the mPWP, 

possibly affecting model-data comparisons (Samakinwa et al., 2020). 

4.2 WAM – PI and mid-Pliocene 
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Table 2. Pattern correlation of July-September mean rainfall over West Africa (0-25° N, 30° W-30° E) between 

PlioMIP2 PI simulations and observational data (CRU TS v4.: 1901-1930 mean). 260 

High pattern correlations of JAS rainfall over West Africa (R>0.90; Table 2) between the PI simulations and 

climatologies based on observational data (CRU: 1901-1930 (Harris et al., 2020)) for all models indicate that the 

models are able to sufficiently reproduce the WAM rainfall pattern. However, looking at the absolute values (Fig. 

1) it is clear that while they capture the general seasonal cycle with rainfall peaking in July-September, most models 

still underestimate the magnitude of the modern summer rainfall over Sahel by 1-3 mm/day, the only exceptions 265 

being CESM1.2 and MIROC4m with >5 mm/day of rainfall in August. This is consistent with our general 

understanding that models struggle to capture West African rainfall (e.g. Roehrig et al., 2013). 

The MMM shows a clear increase in summer rainfall in the Sahel region, consistent with a strengthened WAM 

during the mPWP (Fig. 1). The anomalies are centered on mid to late summer (August-September), which indicates 

a later withdrawal of the WAM and a lengthened monsoon season. The monsoonal rainfall over the (terrestrial) 270 

Coast of Guinea also exhibits larger positive anomalies over the later months of the summer rainfall, further 

suggesting an intensification of the WAM rainfall towards the end of the monsoon season as well as a later 

withdrawal during the mid-Pliocene. 

There is a large consistency within the ensemble regarding the general features of the mPWP WAM (Fig. 2). All 

models are showing a JAS rainfall increase over Sahel reaching up into Sahara, and negative anomalies over the 275 

Equatorial Atlantic, indicating an intensification and northward shift as well as expansion of the WAM. The 
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changes are statistically robust and consistent with previous studies on both PlioMIP1 and 2 where the tropics, 

particularly the Northern Hemisphere monsoon regions, are identified as a region with a robust rainfall signal 

during the mid-Pliocene (Haywood et al., 2020; Li et al., 2018; Pontes et al., 2020; Zhang et al., 2016). The signal 

is markedly stronger in the PlioMIP2 compared to PlioMIP1, where the MMM shows a doubling of the rainfall 280 

increase over Sahel from 1-2 mm/day in PlioMIP1 (Zhang et al., 2016) to 2-4 mm/day in PlioMIP2 (Fig. 2), 

although the use of June-August as the monsoon season in Zhang et al. (2016) might also have contributed to the 

discrepancy, especially given the rainfall increase seen over the later part of the monsoon season (Fig 1). The 

weakest rainfall increase in Sahel is seen in GISS-E2-1-G (Fig 2), which is consistent with the model’s low global 

rainfall response to the CO2 changes (Haywood et al., 2020). Models which were identified as having a larger 285 

land/sea rainfall anomaly contrast with a larger rainfall enhancement over land compared to the ocean (Haywood 

et al., 2020), are also the models which show a larger rainfall increase in Sahel (EC-Earth3-LR, HadCM3, 

MIROC4m, NorESM1-F, NorESM-L and CCSM4-UoT). However, COSMOS, which did not show a clear land 

enhancement globally, exhibits similar levels of rainfall increase in Sahel, and even slightly more than NorESM1-

F (2.32 and 2.30 mm/day respectively).  290 

Haywood et al. (2020) also suggests that, in general, models exhibiting large SAT sensitivity (i.e., high global mean 

ΔSAT) also exhibit a larger rainfall change (globally), but there is still uncertainty in changes in more regional 

patterns. While it is consistent with the results from EC-Earth3-LR, which has both one of the highest increase in 

Sahel rainfall and global SAT (De Nooijer et al., 2020), there is less consistency within the remaining ensemble. 

MIROC4m and IPSLCM6A both exhibit similar global ΔSAT (De Nooijer et al., 2020), but their rainfall change 295 

differs by close to a factor of 3 (Fig. 3). The PlioMIP2 models however show a consistent JAS warming of the 

Sahara Desert (Fig. 6), and if the region is limited to the Sahara (10°W-10°E, 20-30°N) a clear link between the 

ΔSAT and the rainfall increase can be observed (R=0.50, 95% significance). The warming of the Sahara Desert 

and strengthened latitudinal temperature gradient between the Sahara region and the equatorial Atlantic leads to a 

deepening of the thermally induced Saharan Heat Low (Fig. 5) (Lavaysse et al., 2009). This deepened Saharan Heat 300 

Low induces low-level convergence and strengthens the southwesterly flow, bringing moisture from the equatorial 

Atlantic into the continent, leading to increased moisture availability and rainfall over Sahel and parts of Sahara 

and indicating a strengthened WAM (Fig. 5). 
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The warming of the Sahara region and subsequent strengthening of the WAM is similar to what we see during other 

warm climates, such as the Mid-Holocene and Last Interglacial period (Gaetani et al., 2017; Otto-Bliesner et al., 305 

2020), but given the boundary conditions in the mid-Pliocene simulations this warming over Sahara is most likely 

due to the changes in the atmospheric CO2-concentration. Studies of model simulations as well as observational 

data has shown that greenhouse gas forcing leads to a land-ocean warming contrast, with a larger temperature 

increase over land (Byrne and O’Gorman, 2013; Haywood et al., 2020; Lambert et al., 2011). The contrast is a 

result of the lower moisture availability over land influencing the lapse rate and leading to a higher warming 310 

compared to the ocean (Byrne and O’Gorman, 2013), which is consistent with the strong response over the arid 

Sahara region (Fig. 6). Studies show that this land/ocean warming contrast is present in both equilibrium and 

transient simulations (Lambert et al., 2011), and future scenarios of climate change show a continued land/ocean 

contrast and warming of the Sahara region (Boer, 2011; Sutton et al., 2007), leading to strengthened latitudinal 

temperature gradients.  315 

The enhanced vegetation over West Africa in the PlioMIP2 ensemble (Haywood et al., 2020; Salzmann et al., 2008) 

might also have contributed to the strengthening of the WAM through a vegetation feedback, which has been shown 

to strengthen the response of the WAM to external forcing in other past climates (e.g. Braconnot et al., 1999; 

Claussen and Gayler, 1997; Messori et al., 2019). 

As the latitudinal land-ocean temperature gradient is central to the development and strength of the WAM through 320 

the development of the Saharan Heat Low (Lavaysse et al., 2009), the results have strong implications for future 

scenarios. Unlike the results in PlioMIP2, and previously in PlioMIP1 (Zhang et al., 2016), which exhibit a uniform 

rainfall increase over West Africa, both CMIP3 (SRES A2) and CMIP5 (RCP8.5) model ensembles show a drying 

over western Sahel and a rainfall increase over central and eastern Sahel (Roehrig et al., 2013). As analysis of both 

CMIP3 and CMIP5 ensembles show a large spread in projected rainfall change in the Sahel region which weakens 325 

its confidence in future projections (Roehrig et al., 2013), our results support a future strengthening of the WAM 

and rainfall increase over West Africa and Sahel in a high CO2 scenario. 

5. Conclusion 

The PlioMIP2 ensemble shows a clear rainfall increase over West Africa, with the largest increase located over 

Sahel, and a strengthening of the WAM leading to the rainfall reaching farther in over the continent. These results 330 
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are consistent with geological evidence which suggests a more humid climate during the mid-Pliocene (Kuechler 

et al., 2018; Salzmann et al., 2008). Some regional differences occur among the ensembles, mainly along the coast 

of Guinea where some models indicate drier conditions while other indicate a rainfall increase. The largest inter-

model variability is centered along Sahel, where the magnitude of the rainfall increase varies largely between the 

models. The strengthened WAM is driven by the warming of the Sahara region and subsequent deepening of the 335 

Saharan Heat Low, most likely due to the greenhouse gas forcing and land/ocean warming contrast. The deepened 

Saharan Heat Low leads to anomalous cyclonic flow and increased moisture flux into the Sahel region, resulting 

in a northward shift and intensification of the rainbelt. Given the potential for using the PlioMIP2 as an analogue 

for near-future scenarios, these results suggest a more uniform rainfall increase over West Africa and the Sahel 

region, unlike the east-west contrast seen in both CMIP3 and CMIP5 future projections (Roehrig et al., 2013). 340 
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