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Double-Diffusive Magnetic Layering4

D. W. Hughes1 and N. H. Brummell25

1Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK6

2Department of Applied Mathematics, Baskin School of Engineering, University of California, Santa Cruz, CA 95064, USA7

ABSTRACT8

Double-diffusive systems, such as thermosolutal convection, in which the density depends on two9

components that diffuse at different rates, are prone to both steady and oscillatory instabilities. Such10

systems can evolve into layered states, in which both components, and also the density, adopt a ‘stair-11

case’ profile. Turbulent transport is enhanced significantly in the layered state. Here we exploit an12

analogy between magnetic buoyancy and thermosolutal convection in order to demonstrate the phe-13

nomenon of magnetic layering. We examine the long-term nonlinear evolution of a vertically-stratified14

horizontal magnetic field in the so-called ‘diffusive regime’, where an oscillatory linear instability op-15

erates. Motivated astrophysically, we consider the case where the viscous and magnetic diffusivities16

are much smaller than the thermal diffusivity. We demonstrate that diffusive layering can occur even17

for subadiabatic temperature gradients. Magnetic layering may be relevant for stellar radiative zones,18

with implications for the turbulent transport of heat, magnetic field and chemical elements.19

Keywords: instabilities — magnetic buoyancy — solar tachocline — Sun: magnetic fields20

1. INTRODUCTION21

In an electrically conducting gas, under the influence22

of gravity, horizontal magnetic fields with strength vary-23

ing with depth can become unstable to what is known as24

magnetic buoyancy instability (Newcomb 1961; Parker25

1966). This instability has been studied in some detail,26

both in the linear and nonlinear regimes, particularly27

with respect to the breakup and escape of the toroidal28

field within the Sun (see, e.g., the review by Hughes29

2007).30

The simplest means of demonstrating magnetic buoy-31

ancy instability is through consideration of a plane par-32

allel atmosphere containing a horizontal magnetic field33

that varies in strength with height, B = B(z)ŷ. This34

may be regarded as a local Cartesian descrip-35

tion of an azimuthal field in a spherical geom-36

etry. For ideal (non-diffusive) MHD, Newcomb37

(1961) showed, via the energy principle, that necessary38

and sufficient conditions for instability are that some-39

where in the plasma either40

dρ

dz
> −

ρg

a2 + c2
, (1)
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for modes for which the field lines do not bend (inter-41

change modes), or42

dρ

dz
> −

ρg

c2
(2)

for three-dimensional (undular) perturbations with a43

very long wavelength in the direction of the imposed44

field. Here z is the vertical coordinate, increasing up-45

wards, ρ is the density, g is the magnitude of the accel-46

eration due to gravity, a(z) and c(z) are, respectively,47

the Alfvén speed and the adiabatic sound speed, defined48

by49

a2 =
B2

µ0ρ
, c2 =

γp

ρ
, (3)

where p is the gas pressure, µ0 is the magnetic perme-50

ability and γ is the usual ratio of specific heats.51

The instability criteria (1) and (2) can be reformulated52

so that the role of the magnetic gradient is more evident53

(Thomas & Nye 1975), yielding54

−
ga2

c2
d

dz
ln

(
B

ρ

)
> N2 (4)

for interchange modes, or55

−
ga2

c2
d

dz
ln (B) > N2 (5)
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for undular modes, where56

N2 =
g

γ

d

dz
ln
(
pρ−γ

)
(6)

is the square of the Brünt-Väisälä frequency, a measure57

of the stratification. Clearly, either a sufficiently rapid58

decrease with height of B/ρ or B can destabilize the in-59

terchange or undular modes respectively. It is of interest60

to note that, despite the stabilizing influence of magnetic61

tension, undular modes are more readily destabilized;62

the physics of the instability mechanism is discussed in63

Hughes & Cattaneo (1987).64

The instability criteria (4) and (5) are derived assum-65

ing that there are no diffusive processes present (i.e. zero66

viscosity, resistivity and thermal diffusivity). The crite-67

ria are modified in a significant manner by the incorpo-68

ration of magnetic and thermal diffusion (Gilman 1970;69

Acheson 1979). For example, for interchange modes,70

with horizontal and vertical wavenumbers kx and kz,71

the criterion for instability becomes72

−
ga2

c2
d

dz
ln

(
B

ρ

)
>

η

γκ
N2 +

ην

γ

k6

k2x
, (7)

where η is the magnetic diffusivity, κ the thermal diffu-73

sivity, ν the kinematic viscosity, and k2 = k2x + k2z . The74

effect of the ratio η/κ can be seen clearly by comparing75

conditions (4) and (7). For a given background sub-76

adiabatic stratification, a weaker gradient of magnetic77

field is required to promote instability when η/κ < γ.78

Essentially, for a perturbed parcel of fluid, the stabiliz-79

ing effects of the thermal stratification are eroded more80

quickly by diffusive effects than the destabilizing effects81

of the magnetic stratification, and therefore instability82

is more likely to occur. In astrophysical contexts, η ≪ κ83

and thus the difference between criteria (4) and (7) is84

significant.85

Criteria (1) and (2) (or (4) and (5)) describe the on-86

set of direct (steady) instabilities. The incorporation of87

diffusion not only modifies these criteria (e.g. expres-88

sion (7)), but also introduces another entire class of un-89

steady, oscillatory instabilities. The instability mech-90

anism (which is described below) is more subtle, but91

can again be distilled into a criterion relating the gradi-92

ent of B/ρ to the background stratification. As shown93

by Hughes (1985), the criterion for instability of inter-94

change modes is95

−
ga2

c2
(η + ν − κ (γ − 1))

d

dz
ln

(
B

ρ

)
>

(κ+ ν) (κ+ η) (η + ν)
k6

k2x
+ (κ+ ν)N2.

(8)

Of particular note here is that two very different forms96

of the field can be unstable, depending on the sign of97

the factor η+ ν − (γ − 1)κ. For η+ ν > (γ − 1)κ, insta-98

bility occurs if B/ρ decreases sufficiently rapidly with99

height, whereas for η + ν < (γ − 1)κ, instability occurs100

if B/ρ increases sufficiently rapidly with height. The101

latter condition on the diffusion coefficients is readily102

satisfied in stellar interiors, and exhibits a conundrum103

whereby instability occurs owing to diffusive effects in a104

situation where both the thermodynamic and magnetic105

gradients individually appear to be stabilizing.106

Much more is known about these types of instabil-107

ities outside of the magnetic context. Instabilities of108

a convectively stable state that arise owing to the dis-109

parate diffusion rates of two components that contribute110

to the density are generally known as double-diffusive111

instabilities. Double-diffusive systems have been stud-112

ied extensively, chiefly motivated by their applications113

to oceanographical and astrophysical mixing; the field114

is reviewed in the monograph by Radko (2013). The115

two components contributing to the density are typi-116

cally the temperature and a concentration field of some117

material fluid contaminant, in what are known as ther-118

mosolutal systems. The most well-studied example is119

that of the oceanographic thermohaline system (see, for120

example, the review by Schmitt 1994), where the two121

components are heat and salt, with cooler and saltier122

water being denser.123

If hot, salty water overlies cold, fresh water in pro-124

portions such that the overall density stratification still125

has the density decreasing upwards, double-diffusive di-126

rect instability can occur, due to heat diffusing much127

faster than salt. A parcel of water displaced upwards128

loses its stabilizing (relatively cool) thermal content to129

its surroundings, but retains more of its destabilizing130

(relatively fresh) salinity content. It can thus be less131

dense than its surroundings — in this case, the pertur-132

bation therefore continues to move upwards (and vice133

versa for downward displacements). Sinusoidal pertur-134

bations elongate upwards and downwards and the direct135

instability in this case is often known as ‘salt fingering’136

(or just ‘fingering’). The underlying mechanism of the137

steady magnetic buoyancy interchange instability, gov-138

erned by criterion (7), may be described in an analogous139

fashion to that of salt fingers.140

Conversely, if the situation is reversed, whereby cold,141

fresh water overlies hot, salty water, instability can still142

occur, but in an oscillatory, overstable manner. A par-143

cel perturbed upwards is denser than its surroundings144

and so returns to its original position. Through diffu-145

sive exchange, it returns cooler but fresher than it was146

initially. If the net effect is such that the parcel is denser147

than its original form, then it will overshoot. The pro-148

cess thus repeats, leading to oscillations that grow with149
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time. This situation is often known as the ‘diffusive’150

form of the double-diffusive instability in the oceano-151

graphic context, or ‘semi convection’ in the astrophys-152

ical context (where the mean molecular weight of the153

gas content replaces the effect of salt). Note, however,154

as intimated above with regard to equation (8), the oscil-155

latory form of the magnetic double-diffusive instability156

is rather subtle. In particular, unlike for thermohaline157

convection, it cannot necessarily simply be considered158

as a reversal of the stabilizing and destabilizing roles of159

the components in comparison with the direct instabil-160

ity. Most strikingly, for η+ ν < (γ− 1)κ, instability can161

occur when both the B/ρ and entropy (pρ−γ) gradients162

are stabilizing, as measured by the diffusionless crite-163

rion (4). As shown by Hughes (1985), in these circum-164

stances the instability can still be interpreted in terms165

of a fluid parcel (or flux tube) argument, but with the166

key ingredient being the role played by the compressive167

heating of the magnetic field.168

Double-diffusive instabilities — of both the fingering169

and diffusive types — are of particular interest because170

the motions they engender induce mixing where it might171

not be expected if one merely considers convective insta-172

bilities based on the overall density gradient. Enhanced173

thermal and saline transport in the oceans can con-174

tribute to the existence of large-scale circulations (e.g.175

Rahmstorf 2006), and anomalous chemical abundances176

in stars can be more consistent with double-diffusively177

enhanced transport there (e.g. Langer 1991).178

One of the most intriguing aspects of double-diffusive179

convection is its tendency to form layers or ‘staircases’.180

Importantly, further enhanced transport can result from181

a secondary instability leading to such layered states.182

These states are identified by their stepped salinity, tem-183

perature and density profiles with depth, representing184

well-mixed convective layers separated by steep-gradient185

interfaces. The formation of layers occurs for both the186

fingering and diffusive regimes, although there are dif-187

ferences in the two, particularly in the interface dynam-188

ics. Observations of both types of layering are found in189

the oceans: fingering staircases require overlying warm190

salty water, as in the tropical Atlantic (e.g. Schmitt et191

al. 2005), whereas diffusive staircases require overlying192

cold, fresh water, as found in the Arctic (e.g. Timmer-193

mans et al. 2008). For both regimes, it is found that194

the layered states have a measurably stronger vertical195

transport.196

Many possible explanations have been advanced for197

the formation of layers. Merryfield (2000) reviewed198

the state of play of the theory of double-diffusive stair-199

case formation, discussing in some detail the four main200

candidates proposed at that time: the collective in-201

stability of salt fingers (Stern 1969); the possibility of202

metastable equilibria; instability via negative density203

diffusion (cf. Phillips 1972; Posmentier 1977); intru-204

sions resulting from horizontal gradients (e.g. Zhurbas205

& Ozmidov 1983). Subsequently, a fifth candidate has206

emerged — the so-called γ instability of Radko (2003).207

This may be characterized as a mean field instability,208

driven by gradients in the flux ratio γ, which can oper-209

ate in both the fingering and diffusive regimes1. Some-210

what of a resurgence has occurred in the theoretical un-211

derstanding of layer formation, driven by the fact that212

computational technology has become powerful enough213

to accommodate the range of scales that seems necessary214

to simulate the process, and hence test possible theories215

of layer formation. The simulation of layer formation is216

computationally demanding for two reasons: it relies on217

a large range of spatial scales and, furthermore, it is, in218

some sense, a slow process. However, today’s most pow-219

erful computers can overcome these constraints. Con-220

sequently, persuasive numerical simulations of layer for-221

mation in both the fingering and diffusive regimes have222

been performed (e.g. Stellmach et al. 2011; Rosenblum223

et al. 2011).224

Given the importance of the layering process for tur-225

bulent transport in thermosolutal convection, coupled226

with the recent possibility of simulating layering compu-227

tationally in the astrophysical context (see the compre-228

hensive review by Garaud 2018), this raises the interest-229

ing question of whether magnetic buoyancy instabilities230

(a double-diffusive system, as discussed above) can also231

lead to layering and, if so, what are the implications232

for transport in magnetized stellar interiors? Under cer-233

tain constraints, there is a direct analogy between the234

dynamics of magnetic buoyancy instabilities (including235

diffusion) and the well-studied thermohaline convection236

(Spiegel & Weiss 1982, see also Section 2). The for-237

mal transformation between the two systems holds in238

the magneto-Boussinesq limit and for two-dimensional239

motions in which, for the magnetic system, the field240

remains unidirectional. This transformation, however,241

does not map temperature and salinity gradients in the242

thermohaline system directly to entropy and magnetic243

field gradients in the magnetic buoyancy system, as one244

might naively expect. Whereas salt does map directly245

to magnetic pressure, temperature in the thermohaline246

problem maps to a linear combination of temperature247

and magnetic pressure in the magnetic buoyancy prob-248

lem. Thus the results for magnetic buoyancy are, at first249

sight, a little surprising, particularly, as already noted,250

1 Note that γ in this context is not the ratio of the specific heats
used earlier.
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the occurrence of instability for ‘stable’ gradients of both251

entropy and magnetic field.252

The aim of this paper is to exploit the analogy between253

the two systems, building on the new understanding of254

double-diffusive dynamics revealed in the oceanographic255

and astrophysical contexts, in order to take a first look256

at the nature of the layering that can occur as a result257

of magnetic buoyancy. Through the analogy we know258

that layering will occur, at some parameter values; the259

question is whether such parameters, on translation to260

the magnetic case, might match a relevant astrophys-261

ical regime. Stellar interiors are characterized by the262

regime ν < η ≪ κ or, equivalently, σ < τ ≪ 1, where263

σ = ν/κ is the Prandtl number and τ = η/κ is the ra-264

tio of magnetic to thermal diffusivity. More precisely,265

at the base of the solar convection zone, for example,266

σ ≈ 2× 10−6 and τ ≈ 3× 10−5 (see, e.g., Gough 2007).267

This is a long way from the oceanographic regime, for268

which the ratio of salt to heat diffusion τ ≈ 10−2 and269

σ ≈ 7. Indeed, whereas it is possible to simulate the270

oceanographic regime at the correct parameter values,271

this is a forlorn hope in astrophysics. The numerical272

evidence suggests that layering in the fingering regime273

ceases to occur for small σ, but is maintained in the274

diffusive regime (Mirouh et al 2012; Garaud 2018). For275

astrophysical implications, we therefore choose to con-276

centrate on the diffusive regime. Furthermore, this al-277

lows us to study the possibility of layering in the regime278

where the gradients of both B/ρ and p/ρ−γ are positive279

(and hence stable in the absence of diffusion).280

The layout of the paper is as follows. The mathe-281

matical problem, and specifically the link between the282

thermohaline and magnetic buoyancy systems, is formu-283

lated in § 2, for both bounded and unbounded domains.284

The linear instability theory of both systems is sum-285

marized in § 3. The detailed results of the nonlinear286

computations for two examples of the layering process287

are contained in § 4. A summary of our results, together288

with their astrophysical implications, is contained in § 5.289

2. MATHEMATICAL FORMULATION290

The aim of this section is to formulate the mathemat-291

ical descriptions of both thermohaline convection and292

magnetic buoyancy and to describe how the systems can293

be mapped onto each other. As discussed in the in-294

troduction, the analogy between the two systems holds295

only in two dimensions; thus we shall, from the out-296

set, restrict attention to this case. In § 2.1 and § 2.2 we297

shall consider, respectively, the general formulation of298

the equations of thermohaline convection and magnetic299

buoyancy. The case of unbounded domains, for both300

systems, is discussed in § 2.3.301

2.1. The Equations of Thermohaline Convection302

The basic state for Boussinesq thermohaline convec-303

tion has uniform vertical (z) gradients in temperature304

and salinity, T z and Sz. We denote perturbations to305

the temperature and salinity of this state by T and306

S respectively; density perturbations ρ are then given307

by ρ/ρ0 = −αTT + αSS, where ρ0 is a representative308

density and αT and αS are (positive) expansion coeffi-309

cients. We describe the two-dimensional, incompress-310

ible velocity u = (u, 0, w) in terms of a stream function311

ψ(x, z, t), defined by u = ∇ × (ψŷ); the vorticity is312

then ∇ × u = ωŷ, with ω = −∇2ψ. We scale lengths313

with d, a characteristic length of the system, times with314

d2/κ, where κ is the thermal diffusivity, T with −T zd315

and S with −Szd. Two-dimensional Boussinesq ther-316

mohaline convection is then governed by the following317

three dimensionless equations, describing, respectively,318

the evolution of the vorticity and the temperature and319

salinity perturbations (e.g. Turner 1973, noting that his320

ψ is the negative of our ψ):321

1

σ

(
∂
(
∇2ψ

)

∂t
+ J

(
ψ,∇2ψ

)
)

= Ra
∂T

∂x
−Rs

∂S

∂x
+∇4ψ,

(9)

322

DT

Dt
≡
∂T

∂t
+ J (ψ, T ) =

∂ψ

∂x
+∇2T, (10)

323

DS

Dt
≡
∂S

∂t
+ J (ψ, S) =

∂ψ

∂x
+ τ∇2S, (11)

where the Jacobian J is defined by324

J(f, g) =
∂f

∂x

∂g

∂z
−
∂f

∂z

∂g

∂x
. (12)

The problem is governed by four dimensionless parame-325

ters: the thermal and solutal Rayleigh numbers, Ra and326

Rs, the Prandtl number σ and the diffusivity ratio τ are327

defined by328

Ra = −
gαTT zd

4

κν
, Rs = −

gαSSzd
4

κν
, σ =

ν

κ
, τ =

κs
κ
,

(13)
where g is the acceleration due to gravity, κs the solutal329

diffusivity, and ν the kinematic viscosity. In an experi-330

mental setup, the characteristic length d would represent331

the vertical distance between the two boundaries. With332

the Rayleigh numbers so defined, positive (negative) Ra333

is thermally destabilizing (stabilizing), whereas positive334

(negative) Rs is solutally stabilizing (destabilizing).335

2.2. The Equations of Magnetic Buoyancy336

We shall consider the equations of magnetic buoy-337

ancy under the magneto-Boussinesq approximation de-338

rived by Spiegel & Weiss (1982) (see also Corfield 1984;339
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Bowker et al. 2014). Under the ‘standard’ Boussinesq340

approximation (Spiegel & Veronis 1960), density varia-341

tions appear only in the buoyancy term; in addition, to342

leading order, they result only from temperature varia-343

tions, with variations in the gas pressure assumed to be344

negligible. In studies of magnetoconvection (see, e.g.,345

the monograph by Weiss & Proctor 2014), the direct re-346

lation between density and temperature perturbations347

remains: the magnetic field plays no role in this bal-348

ance. By contrast, the very essence of magnetic buoy-349

ancy instability is the influence of the magnetic field350

on the pressure; this is captured within the magneto-351

Boussinesq approximation through an ordering in which352

variations in the total pressure (i.e. gas + magnetic) are353

negligible, but variations in the gas pressure and mag-354

netic pressure individually are not. Density variations355

are again taken into account only in the buoyancy term,356

and the velocity field is again assumed to be incompress-357

ible (∇ · u = 0).358

The basic state is taken to be magnetohydrostatic,359

with a horizontal, depth-dependent magnetic field360

B = B(z)ŷ, confined to a layer of depth d; the magneto-361

Boussinesq approximation requires that d is much362

smaller than the pressure and density scale heights. We363

consider two-dimensional (y-independent) perturbations364

in which the magnetic field remains unidirectional (so-365

called interchange modes), and again employ a stream366

function ψ(x, z, t) with u = ∇× (ψŷ).367

Following the formulation of Spiegel & Weiss (1982),368

the vorticity equation may be written in dimensional369

terms as370

D

Dt

(
∇2ψ

)
=

g

T0

∂δT

∂x
+

g

p0

∂δpm
∂x

+ ν∇4ψ, (14)

where δT and δpm are the perturbations of temperature371

and magnetic pressure, and where a subscript zero de-372

notes a representative value. Forming the scalar product373

of the induction equation with the magnetic field gives374

Dδpm
Dt

= −α
∂ψ

∂x
+ η∇2δpm, (15)

where375

α =
B2

0

µ0

d

dz
ln

(
B

ρ

)
. (16)

On adopting the ordering δpm ≈ −δp (negligible vari-376

ation in total pressure), the energy equation becomes377

378

D

Dt

(
δT +

δpm
Cpρ0

)
= −β

∂ψ

∂x
+ κ∇2δT , (17)

where Cp is the specific heat at constant pressure and379

β =
T0
γ

d

dz
ln

(
p

ργ

)
(18)

is the subadiabatic temperature gradient (treated as380

constant within the Boussinesq approximation).381

Equation (15) is already in standard advection-382

diffusion form (cf. equations (10), (11)). Although383

equation (17) is not, equations (15) and (17) can be384

combined to give385

DδT ∗

Dt
= −β∗

∂ψ

∂x
+ κ∇2δT ∗, (19)

where386

δT ∗ = δT−
τδpm

Cpρ0(1− τ)
, β∗ = β−

α

Cpρ0(1− τ)
, (20)

and where now τ = η/κ. On employing the scalings387

δpm = −Sαd, δT ∗ = −Tβ∗d, (21)

together with the standard non-dimensionalization of388

lengths with d and times with d2/κ, equations (15) and389

(19) become (11) and (10) respectively. Since, in this390

formulation, the underlying gradients are β∗ and α, the391

associated Rayleigh numbers are392

Ram = −
gd4β∗

κνT0
, Rsm =

gd4α

κνp0
. (22)

The dimensionless form of equation (14) is then393

transformed into equation (9) through the mapping394

Ra = Ram, Rs =
(γ − τ)

γ(1− τ)
Rsm. (23)

For completeness, it is also instructive to395

present the set of dimensionless equations de-396

scribing magnetic buoyancy without applying397

any transformation. As discussed in the intro-398

duction, consideration solely of the magnetic399

buoyancy problem shows that instability results400

from a competition between gradients of B/ρ401

and pρ−γ (e.g. equation (4) or (7)). With this402

in mind, for this case we therefore use α, de-403

fined by (16), and β, defined by (18), in the404

non-dimensionalization. On adopting the usual405

scalings of lengths with d, times with d2/κ, and406

writing407

δT = −βd δ̃T , δpm = −αd δ̃pm, (24)

the dimensionless forms of equations (14), (17)408

and (15) become, on dropping tildes,409

1

σ

D

Dt

(
∇2ψ

)
= Rt

∂δT

∂x
−Rb

∂δpm
∂x

+∇4ψ, (25)

410

DδT

Dt
−

(
γ − 1

γ

)(
Rb

Rt

)
Dδpm
Dt

=
∂ψ

∂x
+∇2δT , (26)
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411

Dδpm
Dt

=
∂ψ

∂x
+ τ∇2δpm, (27)

where, as in Hughes & Proctor (1988), the ther-412

mal and magnetic Rayleigh numbers are defined413

by414

Rt = −
gd4β

κνT0
, Rb =

gd4α

κνp0
. (28)

From expressions (22), (23) and (28), together415

with the definition of β∗, it follows that Rt and Rb416

are linked to Ra and Rs via the linear relations417

Ra = Rt+
(γ − 1)

γ(1− τ)
Rb, Rs =

(γ − τ)

γ(1− τ)
Rb. (29)

We have already seen how, through the trans-418

formation (20), the equations of magnetic buoy-419

ancy may be transformed into those of thermo-420

haline convection. Alternatively, if we let421

δΣ =
δpm
α

, δλ = αδT +

(
α

Cpρ0
− β

)
δpm, (30)

then (26) and (27) can be expressed as422

DδΣ

Dt
= −

∂ψ

∂x
+ η∇2δΣ, (31)

and423

Dδλ

Dt
= κ∇2δλ+ κ̃∇2δΣ, (32)

where κ̃ = ακ(β−1/Cpρ0). Thus within this frame-424

work, magnetic buoyancy may also be viewed425

as a binary fluid with cross-diffusion (see, e.g.,426

Batiste et al. 2006). However, it is worth stress-427

ing that the transformed variables δT ∗, defined428

by (20), and δλ, defined by (30), are only help-429

ful when δT and δpm obey the same boundary430

conditions.431

For clarity, it is worth recapping the rationale432

behind the three related systems parameterized433

by (Ra,Rs), (Ram, Rsm) or (Rt,Rb). Equations (9)–434

(11) describe thermohaline convection. The435

transformation (20), with associated Rayleigh436

numbers given by (22), leads to a set of equa-437

tions of a very similar form to (9)–(11): the fur-438

ther transformation of Rayleigh numbers (23)439

recovers (9)–(11) exactly. The third system (25)–440

(27) results from retaining δT and δpm as vari-441

ables and scaling with the ‘natural’ gradients442

arising from considerations of diffusionless mag-443

netic buoyancy, namely α and β, leading to444

the Rayleigh numbers given by (28). Under445

this formulation, expression (26) is not in stan-446

dard advection-diffusion form, thereby leading447

to counter-intuitive behavior when interpreting448

this system.449

2.3. Unbounded Domains450

In the analysis of oceanic thermohaline convection, it451

is reasonable to assume that the upper and lower bound-452

aries play no significant role, and hence to consider a ver-453

tically unbounded fluid layer (e.g. Stern & Radko 1998).454

Indeed, it is within such systems that the most interest-455

ing nonlinear phenomena are observed computationally.456

The basic state for thermohaline convection is again457

characterized by a uniform temperature gradient T z458

and a uniform salinity gradient Sz. In the absence of459

any boundaries, we adopt the lengthscale d defined by460

d4 = |κν/gα̃T z|, i.e. the lengthscale obtained by setting461

the absolute value of the local Rayleigh number equal462

to unity. Various possible scalings for T and S may be463

adopted: here we choose to scale (dimensional) T and464

S by T = d|T z|T̂ , S = d(α̃/β̃)|T z|Ŝ. On dropping hats,465

the dimensionless governing equations for the perturba-466

tions of the basic state are467

1

σ

D

Dt

(
∇2ψ

)
=
∂T

∂x
−
∂S

∂x
+∇4ψ, (33)

468

DT

Dt
= −sgn(T z)

∂ψ

∂x
+∇2T, (34)

469

DS

Dt
= −sgn(Sz)

1

R0

∂ψ

∂x
+ τ∇2S, (35)

where the density ratio R0 = |α̃T z/β̃Sz| = |Ra/Rs|.470

Note that by our definition, R0 is always positive; from471

our choice of scalings for T and S, the signs of the tem-472

perature and salinity gradients enter explicitly in equa-473

tions (34) and (35), but not in (33). It can be seen that474

in an unbounded domain, for given σ and τ , the dy-475

namics is controlled simply by the ratio of the Rayleigh476

numbers (i.e. R0), together with the signs of the basic477

state gradients. Finally, we note that scaling the di-478

mensional density ρ with α̃d|T z|ρ0 gives the following479

expression for the dimensionless density:480

ρ =

(
sgn(Sz)

R0
− sgn(T z)

)
z + S − T. (36)

It should be noted, e.g. from expression (36), that in an481

unbounded domain with linear gradients of T , S and ρ,482

these quantities can take negative values, depending on483

the range of z considered. This has no physical signifi-484

cance: it is only gradients that matter, not the absolute485

values of T , S or ρ.486

In extended astrophysical systems, it is again rea-487

sonable to downplay the role of boundaries and thus,488

similarly, to consider infinite domains for the study489

of magnetic buoyancy instability. On adopting d =490
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|κνT0/gβ
∗|1/4 as the unit of length, scaling δT ∗ and δpm491

as492

δT ∗ = |β∗|d δ̃T ∗, δpm = |β∗|d
p0
T0
δ̃pm

∗, (37)

and defining the density ratio R1 by493

R1 =
|β∗|p0
|α|T0

, (38)

the dimensionless governing equations may be ex-494

pressed, after dropping the tildes, as495

1

σ

D

Dt

(
∇2ψ

)
=
∂δT ∗

∂x
+

(γ − τ)

γ(1− τ)

∂δpm
∂x

+∇4ψ, (39)

496

DδT ∗

Dt
= −sgn(β∗)

∂ψ

∂x
+∇2δT ∗, (40)

497

Dδpm
Dt

= −sgn(α)
1

R1

∂ψ

∂x
+ τ∇2δpm. (41)

Equations (33)–(35) are thus recovered on making the

identifications

T = δT ∗, S = −
(γ − τ)

γ(1− τ)
δpm,

1

R0
=

1

R1

(γ − τ)

γ(1− τ)
,

sgn(T z) = sgn(β∗), sgn(Sz) = −sgn(α). (42)

Whereas for thermosolutal convection the crucial gra-

dients are those of T and S, for magnetic buoyancy they

are pρ−γ and B/ρ. After some manipulation, and scal-
ing consistent with the above (see the Appendix), these

quantities take the dimensionless form

p

ργ
= const.+

(
sgn(β∗)γ +

sgn(α)

R1

(γ − 1)

(1− τ)

)
z

+ γδT ∗ +
(γ − 1)

(1− τ)
δpm (43)

and498

B

ρ
= const.+

sgn(α)

R1
z + δpm. (44)

In terms of perturbations from the background state, the499

key quantities are therefore the magnetic pressure vari-500

ation δpm and the variation of pρ−γ (related to the en-501

tropy variation), which we shall denote by δs and which502

is given by503

δs = γδT ∗ +
(γ − 1)

(1− τ)
δpm. (45)

Although, for thermosolutal convection, the density is
related in a simple manner to the temperature and salin-

ity fields via expression (36), for the magnetic buoyancy
system the relation between the two pivotal scalar fields

and the density is not so straightforward. Indeed, as
shown in the Appendix, it is possible to calculate only

the deviation of the density from a reference hydrostatic
state: after appropriate scaling, this deviation, ρ̂ say,

takes the dimensionless form

ρ̂ = −

(
sgn(β∗) +

(γ − τ)

γ(1− τ)

sgn(α)

R1

)
z

− δT ∗ −
(γ − τ)

γ(1− τ)
δpm. (46)

It may also be noted that an alternative, possibly more504

intuitive, scaling for the equations of magnetic buoyancy505

is to adopt d = |κνT0/gβ|
1/4 as the unit of length. On506

scaling δT and δpm by507

δT = |β|d δ̃T , δpm = |β|d
p0
T0
δ̃pm, (47)

the dimensionless governing equations become, on drop-508

ping tildes,509

1

σ

D

Dt

(
∇2ψ

)
=
∂δT

∂x
+
∂δpm
∂x

+∇4ψ, (48)

510

DδT

Dt
+

(γ − 1)

γ

Dδpm
Dt

= −sgn(β)
∂ψ

∂x
+∇2δT , (49)

511

Dδpm
Dt

= −sgn (α)
1

R2

∂ψ

∂x
+ τ∇2δpm, (50)

where R2 = |β|p0/|α|T0.512

To summarize for unbounded systems (as we513

did for finite domains), we have derived three514

different systems governing the double-diffusive515

behavior. The three systems are parameterized,516

separately, by R0, R1 and R2; they are related,517

respectively, to those parameterized by (Ra,Rs),518

(Ram, Rsm) and (Rt,Rb), discussed in § 2.2. The519

parameter R0 is the density ratio in thermohaline520

convection, with governing equations (33)–(35).521

The R1 system, where R1 is directly proportional522

to R0, is governed by equations (39)–(41) and523

arises from transforming the magnetic buoyancy524

equations into those of classical double-diffusive525

convection. The R2 system, governed by equa-526

tions (48)–(50), results from retaining the stan-527

dard variables of magnetic buoyancy.528

2.4. Numerical Techniques529

We solve the governing equations of thermohaline con-530

vection, (33)–(35), numerically, and then use the trans-531

formations (42)–(46) to translate the results into the532

magnetic buoyancy system in the diffusive regime. In533
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the absence of physical boundaries, we adopt periodic534

boundary conditions for the perturbations in both the535

horizontal and vertical directions. The equations are536

solved by a standard pseudo-spectral technique, with a537

2/3 de-aliasing rule; time stepping is performed by com-538

bining a second-order Adams-Bashforth scheme with ex-539

ponential time differencing.540

3. LINEAR INSTABILITIES541

The linear instabilities resulting from thermohaline542

convection and magnetic buoyancy have been exten-543

sively studied (see, e.g., the reviews by Turner 1973;544

Hughes 2007). Here we give a brief summary, both for545

completeness and also as necessary background for the546

nonlinear results described in Section 4.547

3.1. Bounded Domains548

Let us first consider thermohaline convection in a549

bounded system, governed by the linearized versions of550

equations (9)–(11). Instability can occur either as a551

steady or an oscillatory mode (e.g. Turner 1973). Steady552

convection, in the fingering regime, occurs via an ex-553

change of stabilities when554

Ra > Ra(e) =
Rs

τ
+
k6

k2x
, (51)

where, as earlier, kx and kz are the horizontal and ver-555

tical wavenumbers and k2 = k2x + k2z . Oscillatory con-556

vection, in the diffusive regime, occurs when557

Ra > Ra(o) =

(
σ + τ

1 + σ

)
Rs+

(1 + τ)(σ + τ)

σ

k6

k2x
, (52)

provided that558

Rs >
τ2(1 + σ)

σ(1− τ)

k6

k2x
; (53)

condition (53) guarantees that there is a real frequency559

of oscillation when Ra = Ra(o). The regions of linear560

stability and instability in the (Ra,Rs) plane for τ < 1,561

together with the line of neutral buoyancy, are sketched562

in Figure 1(a). The onset of steady convection is pre-563

dominantly in the third quadrant in the (Rs,Ra) plane,564

that of oscillatory convection entirely in the first quad-565

rant.566

The stability boundaries given by (51) and (52) can be567

translated into the (Rb,Rt) plane via the transformation568

(29), to give569

Rt(e) =
Rb

τ
+
k6

k2x
, (54)

570

Rt(o) =
(1 + σ + τ − γ)

γ(1 + σ)
Rb+

(1 + τ)(σ + τ)

σ

k6

k2x
. (55)

(a) Ram

Rsm

direct

osc.

stable

Ram=Rsm

(b) Rt

Rb

direct

oscillatory

stable

Rt=Rb/γ

Figure 1. Sketches showing the regimes of linear instability
in (a) the (Rsm, Ram) plane (for τ < 1) and (b) the (Rb,Rt)
plane (for τ < γ−1−σ). The lines of steady and oscillatory
bifurcations are marked, together with the line of neutral
buoyancy (Ram = Rsm in (a), Rt = Rb/γ in (b)).

Note that the criteria for direct (steady) instability, (51)571

and (54), are identical in the (Ra,Rs) and (Rt,Rb) sys-572

tems. The criteria for oscillatory instability, (52) and573

(55), however differ significantly. Expression (55) is the574

dimensionless form of (8): as discussed in the Introduc-575

tion, and shown in Figure 1(b), it describes the appear-576

ance, for σ + τ < γ − 1, of instability when Rt is neg-577

ative and Rb positive — i.e. instability in the quadrant578

in which, in the absence of diffusion, both the thermal579

and magnetic (B/ρ) gradients are stabilizing.580

3.2. Unbounded Domains581

In an unbounded system it is natural to seek pertur-582

bations that are periodic in both the horizontal and ver-583

tical directions. It is convenient to express the stability584

criteria in terms of R−1
0 . The critical value of R−1

0 for585

steady convection is given by586

(
R−1

0

)(e)
= sgn(Sz)τ

(
sgn(T z) +

k6

k2x

)
, (56)

and that for oscillatory convection by587

(
R−1

0

)(o)
= sgn(Sz)

(
sgn(T z)

(
1 + σ

σ + τ

)
+
(1 + σ)(1 + τ)

σ

k6

k2x

)
,

(57)

provided also that588

k6

k2x
< sgn(T z)

σ(1− τ)

(σ + τ)
. (58)

For τ < 1, steady convection (fingering) chiefly occurs589

when the temperature gradient is stabilizing and the590

solutal gradient destabilizing. In this case, from (56),591

there is instability when592

R−1
0 > τ

(
1 +

k6

k2x

)
. (59)

Periodic boundary conditions allow modes that are in-593

dependent of height z — so-called ‘elevator modes’, with594
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kz = 0. From (59), these are the most readily destabi-595

lized modes, with kx → 0.596

Oscillatory (diffusive) modes, on the other hand, oc-597

cur when the temperature gradient is destabilizing and598

the solutal gradient stabilizing, leading, from (57), to599

instability when600

R−1
0 <

1 + σ

σ + τ
−

(1 + σ)(1 + τ)

σ

k6

k2x
. (60)

As for the steady mode, the most readily destabilized601

oscillatory mode is an elevator mode (kz = 0) with602

kx → 0. It should though be noted that in the un-603

stable regime, away from marginal stability, the mode604

of maximum growth rate — for steady and oscillatory605

modes — takes a finite value of kx.606

Through the use of the transformation (29), it is607

straightforward to show that the region of instability608

in the Rt < 0, Rb > 0 quadrant is delineated by the609

following inequalities:610

γ − τ

γ − 1
< R−1

0 <
1 + σ

σ + τ
. (61)

The condition for there to be a finite range of R−1
0 sat-611

isfying these inequalities (i.e. that the left hand side of612

inequality (61) is less than the right hand side) may be613

expressed as614

(1− τ) (γ − (1 + σ + τ)) > 0, (62)

in accord with expression (55).615

The instability criteria may alternatively be expressed616

in terms of R−1
1 or R−1

2 . For α < 0 and β∗ > 0, steady617

convection occurs if618

R−1
1 >

γτ(1− τ)

(γ − τ)

(
1 +

k6

k2x

)
, (63)

and, with α > 0 and β∗ < 0, oscillatory convection619

occurs if620

R−1
1 <

γ(1− τ)

(γ − τ)

(
1 + σ

σ + τ
−

(1 + σ)(1 + τ)

σ

k6

k2x

)
. (64)

Expressions (63) and (64) are straightforward scalings621

of (59) and (60).622

In terms of R−1
2 , for α < 0 and β > 0, steady convec-623

tion occurs if624

R−1
2 > τ

(
1 +

k6

k2x

)
, (65)

and, with α > 0 and β > 0 (both gradients ‘stabilizing’),625

oscillatory convection occurs if626

R−1
2 >

γ(1 + σ)

(γ − (1 + σ + τ))

(
1 +

(1 + τ)(σ + τ)

σ

k6

k2x

)
,

(66)

provided that σ+τ < γ−1. In transforming between the627

formally identical criteria (63) and (65) (or between (64)628

and (66)), it should be noted that k6/k2x is scaled with629

β∗ for the expressions involving R1 and with β for those630

involving R2. We note also the somewhat counter-631

intuitive difference in the inequalities (64) and632

(66); this arises since, in the unstable region of633

the Rt < 0, Rb > 0 quadrant,634

R1 =
(γ − 1)

γ(1− τ)
−R2. (67)

635

4. MAGNETIC LAYERING636

In this section, we discuss two representative cases of637

layer formation in the diffusive regime, in a domain of638

width 100π and height 200π. We solve the governing639

equations of thermohaline convection in an unbounded640

domain, (33)–(35), and relate these to the magnetic641

buoyancy system via the transformations (42). Moti-642

vated astrophysically, we adopt the smallest values of643

the Prandtl number σ and the diffusivity ratio τ com-644

patible with long-time runs in large domains; as such,645

we set σ = τ = 0.01. To accommodate the fine-scale646

structure, 2048 × 4096 spectral modes are used. Note,647

from (60), that oscillatory instability then occurs for648

R−1
0 < 50.5

(
R−1

1 < 50.297
)
, and, from (61), that insta-649

bility in the fourth (i.e. ‘stable-stable’) quadrant in the650

(Rb, Rt) plane occurs in the range 2.485 < R−1
0 < 50.5651 (

2.475 < R−1
1 < 50.297

)
. We consider in detail two par-652

ticular values of the background stratification parame-653

ter: R−1
0 = 1.5, which lies in the first quadrant of Fig-654

ure 1(b), and R−1
0 = 4, which lies in the fourth. Since655

the underlying system that we solve computationally is656

that of thermohaline convection, we quote nice round657

numbers for R−1
0 ; since τ is small, R−1

1 is very slightly658

smaller than R−1
0 . The initial condition for both sets of659

simulations consists of 20 elevator modes, together with660

a small random perturbation. These modes are essen-661

tially the fastest growing modes for R−1
0 = 4 and are662

about 1.5 times narrower than the fastest growing mode663

for R−1
0 = 1.5; the long-term evolution though is not664

dependent on the precise form of the initial conditions.665

4.1. The case of R−1
0 = 1.5

(
R−1

1 = 1.494
)

666

Figure 2 shows the early evolution of the kinetic en-667

ergy. Initially the kinetic energy grows in an oscilla-668

tory fashion, representative of the linear instability in669

the diffusive regime. The exponentially growing eleva-670

tor modes are also exact solutions to the fully nonlinear671

equations, since the Jacobian terms in equations (9)–672

(11) vanish identically. They are though unstable once673
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Figure 2. Kinetic energy as a function of time, during the
initial instability phase: R−1

0
= 1.5. The dashed lines denote

the times of the snapshots in Figures 3(a,b).

they attain sufficiently large amplitude; snapshots of ω,674

δs and δpm during the break-up of the elevators are675

displayed in Figure 3(a). The nonlinear evolution of676

this secondary instability causes a rapid and total dis-677

ruption of the elevators, as shown by the snapshots in678

Figure 3(b). All memory of the elevators is lost and the679

system is characterized by small-scale vorticity, together680

with small-scale entropy and magnetic pressure pertur-681

bations; at this stage, the mean profiles of p/ργ , B/ρ682

and ρ remain essentially linear, as shown in Figure 4.683

Following a period of equilibration (100 . t . 1000),684

in which the kinetic energy is stationary, the trend for685

the kinetic energy (although subject to sizeable short-686

term fluctuations) is an inexorable gradual increase, as687

shown in Figure 5. Associated with this rise in kinetic688

energy is the gradual emergence of a layered state from689

the homogeneous turbulence, and its subsequent evo-690

lution. Figure 3(c) shows the four-layered states in δs691

and δpm at t = 3600, with the latter more pronounced,692

owing to the small value of τ . The layering in the vor-693

ticity ω is much less distinct. The interfaces between694

the layers are highly turbulent and mobile, with jets of695

fluid penetrating the interfaces and eventually leading696

to their destruction.697

Figure 6(a) shows ω, δs and δpm at t = 8050, where698

now only three layers remain; indeed, it can be seen699

from the figure that the upper layer is already disinte-700

grating under turbulent erosion. Figure 6(b) shows the701

corresponding plots at t = 11700, at which point only702

two layers remain. The staircase structure in p/ργ , B/ρ703

and ρ associated with the layers can be seen clearly in704

Figure 7(a), which plots the horizontal averages of these705

quantities at the times corresponding to Figures 3(c),706

6(a,b).707

One of the most significant features of the layering708

process in double-diffusive convection is the increase in709

the vertical turbulent flux of the two diffusing compo-710

nents; this feature is illustrated by the thermohaline sim-711

ulations of Stellmach et al. (2011) in the fingering regime712

and those of Mirouh et al (2012) in the diffusive regime.713

As shown in Figure 8, for the thermohaline problem,714

the fluxes of both heat and salt are positive (upwards)715

in the diffusive regime. It thus follows immediately that716

the flux of δpm will be negative. It is though not obvious717

a priori what the sign of the entropy flux will be, since,718

from (42) and (45),719

〈w δs〉 = γ〈wT 〉 −
γ(γ − 1)

(γ − τ)
〈wS〉, (68)

with 〈wT 〉 and 〈wS〉 both positive, and where 〈·〉 de-720

notes a global average. In the turbulent regime con-721

sidered here, 〈wT 〉 and 〈wS〉 are of comparable mag-722

nitude, as shown in Figure 8, and hence, since τ is723

small, 〈w δs〉 ≈ 〈wT 〉 ≈ 〈wS〉. As the layering pro-724

ceeds, the fluxes increase in magnitude, whilst becoming725

much more noisy. Between the quasi-stationary phase726

when the flow is homogeneous (following the instabil-727

ity of the initial finger modes) and t = 11700 (corre-728

sponding to Figure 6(b)) there is an approximate five-729

fold increase in the turbulent fluxes. Note that the730

ratio of these two average turbulent fluxes de-731

fines the “γ” of the “γ-instability” in the mean-732

field theory of the cause of layering in thermo-733

haline double-diffusive convection (Radko 2003):734

γ = 〈wT 〉/〈wS〉. A study of the variation of this735

γ with R0 (or rather γ−1 with R−1
0 ) is required736

to determine whether the theory fits our results,737

but this effort lies beyond the scope of this pa-738

per.739

4.2. The case of R−1
0 = 4

(
R−1

1 = 3.984
)

740

Here we consider the evolution from an equilibrium741

state for which both the magnetic field and the entropy742

gradient may, at least in the absence of diffusion, be con-743

sidered to be stable (i.e. B/ρ and p/ργ both increasing744

with height). In terms of the natural parameters for the745

magnetic problem (Rt and Rb), the presence of instabil-746

ity is somewhat surprising. However, viewed in terms of747

the transformed parameters (22), there is no particular748

significance to the line Rt = 0; as discussed above, it749

simply corresponds to R−1
0 = (γ − τ)/(γ − 1) = 2.485750

here.751

In its broad aspects, the evolution for R−1
0 = 4 is sim-752

ilar to that of R−1
0 = 1.5. Following the growth and753

saturation of the linear instability, there is a persistent754

yet noisy increase of kinetic energy, as shown in Fig-755

ure 9. Comparison of Figures 5 and 9 shows that the756

increased stratification leads to a reduced growth rate757
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Figure 3. Snapshots at (a) t = 100, (b) t = 500 and (c) t = 3600 of ω, δs and δpm (all scaled independently) for the case of
R−1

0
= 1.5. The color table ranges from blue (largest negative value) to red (largest positive value), with white denoting the

zero value.
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Figure 4. Horizontally averaged profiles of p/ργ , B/ρ and
ρ versus height at t = 500; R−1

0
= 1.5.
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Figure 5. Kinetic energy as a function of time, for t >
500: R−1

0
= 1.5. The dashed lines denote the times of the

snapshots in Figures 3c, 6a,b.

of the kinetic energy. Figure 10 shows that, after the758

initial linear instability of the elevators and the subse-759

quent breakup into smaller-scale turbulence, layers form760

by eroding the regions of turbulence, as for the evolu-761

tion for R−1
0 = 1.5, albeit now on a slower timescale.762

Figure 10(c) shows the evolution shortly after the lay-763

ering process has extended across the entire domain. In764

comparison with the first distinct staircase to emerge for765

the case of R−1
0 = 1.5 (see Figure 3), the staircase for766

R−1
0 = 4 has shallower steps; furthermore, the flow be-767

tween the interfaces is less turbulent, leading to a more768

coherent staircase structure.769

Of particular note is the structure of the staircase and770

its relation to that of the equivalent thermohaline sys-771

tem. Figure 11 shows, for the same time as shown in772

Figure 10(c), the horizontally averaged profiles of p/ργ ,773

B/ρ and ρ, together with the corresponding profiles of774

T , S and ρ for the thermohaline problem. In the latter,775

the background temperature gradient is destabilizing,776

whereas the salinity gradient is stabilizing. As expected,777

the staircase structure is more sharply defined in S than778

T , owing to the small value of the diffusivity ratio τ .779

For the magnetic buoyancy problem, the profile of B/ρ780

is related to that of S via the transformations (42) and781

(44); indeed, for small τ , B/ρ is essentially −S. The782

most striking feature of Figure 11 is the sharpness and783

structure of the profile in p/ργ . Since here the mean784

entropy gradient is ‘stabilizing’ (p/ργ increasing with785

height), convection can occur only through a local re-786

versal (or reversals) of this gradient. Hughes & Weiss787

(1995) examined this phenomenon in their explanation788

of steady convection in the regime with Rt < 0 and789

Rb < 0 for a fluid confined by rigid boundaries. In that790

case, the role of the boundary layers is paramount, with791

the strong field in the magnetic boundary layers lead-792

ing to an exceptionally stable entropy gradient in the793

boundary layers. To compensate, there is of necessity794

a negative (destabilizing) entropy gradient across the795

remainder of the cell; this is such as to drive steady con-796

vection. Here, in an unbounded domain, a staircase is797

formed in which there are weakly unstable entropy gra-798

dients between the interfaces and strongly stable gradi-799

ents across the interfaces themselves.800

Figure 12 shows that the layering process again leads801

to a marked overall increase in turbulent transport, but802

with significant short-term fluctuations; the fluxes are803

about one fifth of their values for R−1
0 = 1.5. It is of804

interest to note that, as for the case of R−1
0 = 1.5, the805

balance 〈w δs〉 ≈ 〈wT 〉 ≈ 〈wS〉 > 0 still holds, even806

though the background entropy gradient is now positive.807

Although we see no layer merger in the very long run808

we have performed, we envisage, based on the results809

from other simulations of thermohaline convection, that810

at yet longer times the layers would eventually merge,811

ultimately giving only one step.812

Three-dimensional thermosolutal simulations of the813

two cases we have considered have been performed by814

Mirouh et al (2012), who find the existence of layers for815

R−1
0 = 1.5 but not for R−1

0 = 4. This discrepancy be-816

tween our results and theirs for the case of R−1
0 = 4 may817

be a genuine difference between two and three dimen-818

sions, or may be a result of the facts that (a) our two-819

dimensional simulations were performed at much higher820

resolution than the three-dimensional cases, and (b) our821

two-dimensional cases were integrated for much longer822

than was possible for the three-dimensional runs, thus823

allowing layered states eventually to emerge.824

5. DISCUSSION825

The purpose of this paper has been to expand ideas826

related to the mixing processes available in stars. Of-827

ten, the inferred information about the interiors of stars828
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Figure 6. Snapshots at (a) t = 8050 and (b) t = 11700 of of ω, δs and δpm (all scaled independently) for the case of R−1

0
= 1.5.

The color table ranges from blue (largest negative value) to red (largest positive value), with white denoting the zero value.

gleaned from observations reveals that our knowledge829

of mixing processes therein is incomplete. For example,830

when helioseismology probed the interior rotation profile831

of the Sun, it revealed the tachocline, raising new chal-832

lenges to our understanding of solar angular momentum833

transport. Similarly, the long-standing issue regarding834

solar lithium abundances challenges our understanding835

of chemical mixing processes. Such issues are clearly836

not confined to the Sun, with similar questions arising837

for many astrophysical bodies.838

In situations where there is a clearly dominant mech-839

anism (such as convection), theories of the transport840

(such as mixing length theory) have readily emerged.841

On the other hand, when extra mixing is required to842

explain observations in stellar radiative zones, where no843

dominant transport mechanism is apparent, a taxonomy844

of potential mixing processes has more gradually been845

unveiled. Perhaps the most notable recent advances846

concern processes introduced by rotational effects (ro-847

tational mixing), shear turbulence, double-diffusive con-848

vection, overshooting convection and gravity wave trans-849

port (see, e.g., Zahn 2008). The late Jean-Paul Zahn850

and collaborators published extensively on such work,851

and a perspective of the complexity of this taxonomy is852

afforded in Figure 1 of Mathis & Zahn (2005).853

The role of the magnetic field in the dynamics of mix-854

ing can be two-fold. First, magnetic fields can poten-855

tially affect many of the proposed non-magnetic mix-856

ing processes. Magnetic fields often inhibit instabilities857

(see, e.g., Chandresekhar 1961) and also therefore their858

transport and mixing properties. The effect of magnetic859

fields is often therefore considered in this constraining860

context. Second, magnetic fields can be a source of in-861
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Figure 7. Horizontally averaged profiles of p/ργ , B/ρ and ρ versus height at (a) t = 3600, (b) t = 8050, (c) t = 11700
(corresponding to the snapshots in Figures 3(c), 6a,b): R−1

0
= 1.5.



Double-diffusive magnetic layering 15

2000 4000 6000 8000 10000 12000 14000

0

10

20

30

40

50

2000 4000 6000 8000 10000 12000 14000

0

10

20

30

40

50

2000 4000 6000 8000 10000 12000 14000

0

10

20

30

40

50

2000 4000 6000 8000 10000 12000 14000

-50

-40

-30

-20

-10

0

Figure 8. The top row shows the averaged vertical fluxes of T and S as a function of time, for all but the initial stages of the
evolution, for the thermohaline problem with R−1

0
= 1.5. The bottom row shows the averaged vertical fluxes of δs and δpm for

the equivalent magnetic buoyancy problem. The dashed lines denote the times of the snapshots in Figures 3(c), 6(a,b).
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R−1

0
= 4. The dashed lines denote the times of the snapshots

in Figure 10.

stability themselves, thereby generating a further means862

of dynamical transport.863

The latter context is the theme of this paper. Much864

of the research performed in this area has been directed865

at explaining the existence and geometry of observed866

magnetic fields. That is, the evolution and transport of867

the magnetic field itself has been the chief characteris-868

tic of interest, rather than any other induced mixing.869

For example, the stability and therefore the ultimate870

configuration of large-scale poloidal and toroidal fields871

in the deep interiors of stars has been investigated in872

a similar manner to the exploration of field configura-873

tions in plasma confinement devices (see, e.g., Markey &874

Tayler 1973; Pitts & Tayler 1985). Another substantial875

avenue of research has been devoted to dynamo insta-876

bilities (see, e.g., Moffatt & Dormy 2019). Generally877

driven by some combination of turbulence, rotation and878

shear, such instabilities can explain the initial gener-879

ation of both small-scale and large-scale (mean) fields880

from weak seed fields, rather than the re-organization881

of large-scale fields as in Tayler instabilities. Magnetic882

buoyancy, the instability mechanism that is the subject883

of this paper, has been studied in the context of the cre-884

ation and transport of compact magnetic flux structures885

from large-scale fields, in an effort to seek the origin of886

solar magnetic active regions and sunspots.887

These examples all address the origin of certain mag-888

netic field configurations rather than any induced trans-889

port of other ingredients, such as heat, angular momen-890

tum or chemical species. Perhaps the most well-known891

example in which magnetic field drives an instability892

that generates transport of another important quantity893

is the magneto-rotational instability (MRI), where the894

presence of a magnetic field instigates turbulence in an895

accretion disk, thereby allowing the turbulent transport896

of angular momentum and material (see, e.g., Balbus897

2003). Another example that is more directly relevant to898

our study here is the work of Busso et al. (2007), which899

invokes magnetic buoyancy instabilities as a potential900

source of extra mixing (known in this context as ‘cool901

bottom processing’) to explain certain observed anoma-902

lies in low-mass red giant branch (RGB) and asymptotic903

giant branch (AGB) stars. Busso et al. (2007) ascribe904

the vertical transport required to explain the observa-905

tions to the rise of thin buoyant flux tubes; they then in-906

fer the interior field strength necessary to produce these907

tubes at just the right rate to create the desired trans-908

port. Although only a phenomenological approach, this909

work ultimately imposes requirements on the interior910

fields that would lead to the necessary mixing. Our work911

is clearly directly relevant to this type of transport.912

The overall aim of this paper has been to demonstrate913

that mixing induced by magnetic buoyancy instabilities914

could be a powerful and far more prevalent dynamical915

process than is currently widely recognized, and hence916

that it should be added to the overall catalogue of mix-917

ing processes. We have demonstrated that not only do918

magnetic buoyancy instabilities initiate extra mixing of919

magnetic and thermodynamic properties, but secondary920

instabilities to layered states can also significantly en-921

hance that mixing. Furthermore, such mixing can be922

engendered under conditions that appear to be very sta-923

ble in terms of the individual components.924

In more detail, by exploiting the analogy derived by925

Spiegel & Weiss (1982), we have shown how the phe-926

nomenon of layering in thermosolutal convection im-927

plies the formation of layers in a system driven by mag-928

netic buoyancy. In the astrophysically relevant regime929

in which the Prandtl number σ and diffusivity ratio τ930

are both small, the numerical evidence to date reveals931

that layering seems to occur more readily in the diffusive932

regime than in the fingering regime (Garaud 2018). In933

our translation of these results to the magnetic buoyancy934

case, we have thus concentrated on the diffusive regime.935

Although necessarily restricted to two-dimensional mo-936

tions in pursuing the analogy, this has allowed us to937

conduct high resolution simulations in order to explore938

the regime of small σ and τ (though of course these939

are still much larger than the true astrophysical values).940

When both σ and τ are small, this leads to an enlarged941

region of instability (see expression (60)) and hence the942

potential for layering at higher values of R−1
0 .943

In this paper, we have demonstrated, through numer-944

ical simulations, the formation of layers for R−1
0 = 1.5945

and R−1
0 = 4 with σ = τ = 0.01. From a thermoha-946

line perspective, the two cases are very similar in many947

regards. However, when viewed from the magnetic per-948

spective, the latter case is significant in that it falls in949
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Figure 10. Snapshots at (a) t = 6350, (b) t = 9500 and (c) t = 12950 of ω, δs and δpm (all scaled independently) for the case
of R−1

0
= 4. The color table ranges from blue (largest negative value) to red (largest positive value), with white denoting the

zero value.
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Figure 11. (a) Horizontally averaged profiles of p/ργ , B/ρ and ρ versus height at t = 12950 (corresponding to the snapshots
in Figure 10(c)): R−1

0
= 4. (b) The horizontally averaged profiles of T , S and ρ for the equivalent thermohaline problem.
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= 4. The dashed lines denote the times of the snapshots

in Figure 10.

what one might regard as the ‘stable-stable’ quadrant950

of magnetic buoyancy instabilities, where the system951

is described by a subadiabatic entropy gradient and by952

B/ρ decreasing with height (see Figure 1(b)). Thus, at953

first glance, one might not even expect instability in this954

regime, let alone layering. In each of these two cases, we955

have shown that the initial instability to simple vertical956

‘elevator’ modes quickly gives way to turbulence, which957

subsequently evolves to layered states (see Figures 3, 6,958

10). These then slowly merge to form wider and wider959

layers. As time progresses, each new scenario possesses960

stronger transport properties, with the layered states961

being significantly (5-6 times) more efficient than the962

more homogeneous state that emerges after the initial963

instability (see Figures 8, 12).964

It is important to consider where magnetic layer for-965

mation and the associated enhanced transport may be966

of significance astrophysically. As shown in Figure 1,967

diffusive magnetic buoyancy instabilities are found in968

both the first and fourth quadrants in the (Rb, Rt) plane;969

furthermore, as we have demonstrated, the parameter970

regime of layer formation extends from close to the line971

of neutral stability in the first quadrant all the way972

into the fourth quadrant. In stellar convective zones,973

with strongly supercritical turbulent convection, mag-974

netic buoyancy will presumably not be a major player.975

However, in radiative zones, where conditions are more976

quiescent and timescales much longer, there is the op-977

portunity for magnetic buoyancy to act as the agent for978

layer formation. For small values of σ and τ , and979

considering elevator modes, inequality (66) shows980

that with α > 0 and β > 0, oscillatory convection981

occurs for982

R−1
2 &

γ

(γ − 1)
, (69)

or, in dimensional terms,983

(γ − 1)
ga2

c2
d

dz
ln

(
B

ρ

)
> N2 (70)

(cf. inequality (8)). The magneto-Boussinesq ap-984

proximation holds under the assumption that985

a2 ≪ c2. Inequality (70) thus requires that for986

instability the subadiabatic gradient is smaller987

than the gradient of B/ρ. As explained by Cor-988

field (1984) and Bowker et al. (2014), this con-989

dition is indeed necessary for asymptotic con-990

sistency of the magneto-Boussinesq approxima-991

tion2. Application of inequality (70) to the Sun992

suggests that the most favorable conditions for993

oscillatory instability with α > 0 and β > 0 will994

be towards the top of the radiative zone, where995

the subadiabatic gradient is indeed weak, and996

where the strong magnetic field in the overlying997

tachocline will inevitably lead, locally, to a mag-998

netic field that increases with height. Although,999

it is hard to be definitive in asserting that lay-1000

ering will occur — owing to the impossibility of1001

simulations in the astrophysical regime or the1002

lack of a rigorous theory — we have shown unam-1003

biguously in § 4.2 that for small σ and τ (though1004

not astrophysically small), pronounced layering1005

does indeed occur with α > 0 and β > 0 (Rb > 0,1006

Rt < 0).1007

A non-solar application (but still drawing phenomeno-1008

logically from our understanding of the solar radiative1009

zone and tachocline dynamics) is provided by the study1010

of Busso and collaborators (Busso et al. 2007), discussed1011

above. Our work shows that the transport in a layered1012

context is substantially greater than the simple advec-1013

tive transport associated with the small-scale magnetic1014

structures that initially emerge, and hence may well be1015

very different from that of highly conceptual flux tubes.1016

We conclude by considering future directions for the1017

study of magnetic layering. Our approach in this1018

study has been to exploit the analogy of Spiegel &1019

2 To be precise, the magneto-Boussinesq approximation is based
on an expansion in two small parameters: ε1 = d/H (H is scale
height) and ε2 = δρ/ρ0, with ε1 & ε2. The ratio a2/c2 is O(ε2/ε1)
and the subadiabatic gradient is O(ε2), not O(ε1) as one might
naively suppose.
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Weiss (1982), thus allowing us to translate between1020

two-dimensional thermohaline convection and inter-1021

change modes of magnetic buoyancy instability under1022

the magneto-Boussinesq approximation. It is though1023

important to look beyond the constraints imposed by1024

the analogy. For thermohaline convection, the nature of1025

two-dimensional versus three-dimensional simulations1026

was investigated in some detail by Garaud & Brum-1027

mell (2015). It was found that two-dimensional simu-1028

lations of the diffusive case (as performed here) were1029

reasonably representative of the full three-dimensional1030

dynamics (although more care is definitely needed for1031

the fingering case). More significantly, for the magnetic1032

system in general, we expect similarities between the1033

two- and three-dimensional evolutions since the basic1034

state field imposes a preferred horizontal direction. The1035

most readily excited linear mode of magnetic buoy-1036

ancy instability, although three-dimensional, has a very1037

long wavelength in the direction of the imposed field1038

(see, e.g., Acheson 1979). Furthermore, the nonlin-1039

ear evolution of three-dimensional magnetic buoyancy1040

instabilities (Matthews et al 1995) has many features1041

in common with that of two-dimensional (interchange)1042

modes (Cattaneo & Hughes 1988). The most important1043

consequence of relaxing the Boussinesq approximation1044

(through considering either the anelastic approximation1045

or the full compressible equations) is the introduction1046

of a preferred lengthscale into the system, through, for1047

example, the pressure scale height. It is clearly impor-1048

tant to understand the influence of this scale on the1049

layering and transport processes. Also, in seeking1050

more realism, it should be noted that, even in1051

the extension to 3D, the current problem as set1052

up only examines the instability of an initially1053

unidirectional field, and more complex initial1054

field geometries should be studied.1055

Explaining the formation, maintenance and transport1056

properties of layers is an area of intense current research,1057

not just for double-diffusive systems, but in the con-1058

texts of forced stratified turbulence, of planetary jet1059

formation (where the jets are manifestations of a po-1060

tential vorticity staircase) and of the corrugated shear1061

flow in fusion plasmas (the E × B staircase). There1062

is still considerable debate over the underlying physi-1063

cal mechanisms and, indeed, whether there is a com-1064

mon thread between the different systems that exhibit1065

layering. In terms of magnetic buoyancy layering, the1066

important challenge ahead is to build upon the numer-1067

ical simulations to devise a theoretical model valid in1068

the regime R−1
1 ≫ 1, σ ≪ 1, τ ≪ 1 that can provide1069

an estimate of where layering is to be expected and, in1070

such cases, how the turbulent transport depends on the1071

parameters of the problem.1072
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APPENDIX1090

A. DERIVATION OF EXPRESSIONS FOR p/ργ , B/ρ AND ρ̂1091

Here we provide the derivations of expressions (43), (44), (46) for p/ργ , B/ρ and the density deviation ρ̂. Under the1092

Boussinesq approximation, in which scale heights of the basic state are large, we may approximate the basic state as1093

being linear in z. Thus, to first order in small quantities, we may write, before any rescaling or non-dimensionalization,1094

1095

p

ργ
=
p0
ργ0

(
1 + z

d

dz
ln

(
p

ργ

)
+
δp

p0
− γ

δρ

ρ0

)
. (A1)

Recall that, under the magneto-Boussinesq approximation, it is the variation in total pressure that is small, and,
crucially, much smaller than the individual variations of the gas and magnetic pressures; i.e. δp ≈ −δpm. On using
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this result, together with the perfect gas law, expression (A1) can be written as

p

ργ
=
p0
ργ0

(
1 + z

d

dz
ln

(
p

ργ

)
+ γ

δT

T0
+ (γ − 1)

δpm
p0

)
(A2)

=
p0
ργ0

(
1 + z

d

dz
ln

(
p

ργ

)
+ γ

δT ∗

T0
+

(γ − 1)

(1− τ)

δpm
p0

)
, (A3)

on using the definition for δT ∗, given by (20).1096

The consistent scaling is to scale p/ργ with (p0/ρ
γ
0)(d|β

∗|/T0), thus giving the dimensionless expression (43):1097

p

ργ
= const. +

(
sgn(β∗)γ +

sgn(α)

R1

(γ − 1)

(1− τ)

)
z + γ

δT ∗

T0
+

(γ − 1)

(1− τ)

δpm
p0

. (A4)

Thus for the diffusive regime, in which sgn(α) = +1 and sgn (β∗) = −1, we obtain1098

p

ργ
= const.−

(
γ −

1

R1

(γ − 1)

(1− τ)

)
z + γ

δT ∗

T0
+

(γ − 1)

(1− τ)

δpm
p0

. (A5)

Similarly, before any rescaling or non-dimensionalization, we can write,1099

B

ρ
=
B0

ρ0

(
1 + z

d

dz
ln

(
B

ρ

)
+

δpm
B2

0/µ0

)
. (A6)

Note that in the magneto-Boussinesq approximation, the term involving δρ is formally smaller (by a ratio of the square1100

of the Alfvén speed to the square of the sound speed) and hence is neglected (see Hughes & Weiss 1995). Since we have1101

chosen to scale δpm with |β∗|dp0/T0, it is consistent to scale B/ρ with |β∗|dp0µ0/T0B0ρ0. This leads to the following1102

expression for (dimensionless) B/ρ:1103

B

ρ
= const. +

sgn(α)

R1
z + δpm. (A7)

In the diffusive regime, this becomes1104

B

ρ
= const. +

1

R1
z + δpm. (A8)

In thermohaline convection, determining an expression for the overall density is straightforward. For magnetic1105

buoyancy, it is a little more involved since the basic state density profile involves quantities that are not used in the1106

scaling (unlike in thermohaline convection where the basic state density depends on the temperature and salinity1107

profiles, which then go into R0). To first order in small quantities, we may write1108

ρ = ρ0

(
1 + z

d

dz
ln ρ−

δT

T0
−
δpm
p0

)
. (A9)

We may express the equation for the magnetohydrostatic basic state,1109

d

dz

(
p+

B2

2µ0

)
= −ρg, (A10)

as1110 (
γ +

B2

2µ0p

)
d ln ρ

dz
= −

γβ

T0
−
α

p
−
ρg

p
, (A11)

where α and β are as defined in § 2.2. The second term in the bracket can be neglected (Alfvén speed ≪ sound speed).1111

Thus expression (A9) becomes1112

ρ

ρ0
= 1−

(
β

T0
+

α

γp
+
ρg

γp

)
z −

δT

T0
−
δpm
p0

. (A12)

There is no straightforward way of dealing with the third term in the bracket, since it brings in quantities that are not1113

used in the scalings of the variables. We therefore consider deviations away from the reference state defined by1114

ρ = const.−
ρ20g

γp0
z. (A13)
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If we denote the deviation from this state as ρ̂ then1115

ρ̂

ρ0
= −

(
β

T0
+

α

γp0

)
z −

δT

T0
−
δpm
p0

. (A14)

On substituting for β∗ and δT ∗, and scaling ρ̂ with dρ0|β
∗|/T0, we obtain the following dimensionless expression for1116

ρ̂:1117

ρ̂ = −

(
sgn(β∗) +

(γ − τ)

γ(1− τ)

sgn(α)

R1

)
z − δT ∗ +

(γ − τ)

γ(1− τ)
δpm. (A15)
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