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Abstract: Using numerous transaction data on the number of stock trades, we conduct a forecasting exercise

with INGARCH models, governed by various conditional distributions; the Poisson, the linear and quadratic

negative binomial, the double Poisson and the generalized Poisson. The model parameters are estimated

with efficient Markov Chain Monte Carlo methods, while forecast evaluation is done by calculating point and

density forecasts.

Keywords: count time series; forecasting; INGARCH models; MCMC.

1 Introduction

In recent years, there has been a surge of interest in integer-valued generalized autoregressive conditional

heteroscedastic (INGARCH) models (Ahmad and Francq 2016; Aknouche, Bendjeddou, and Touche 2018;

Chen et al. 2016; Christou and Fokianos 2014; Davis and Liu 2016; Doukhan, Fokianos, and Tjøstheim 2012;

Ferland, Latour, and Oraichi 2006; Fokianos, Rahbek, and Tjøstheim 2009). Such processes are designed to

model integer-valued series that are characterized mainly by small values and overdispersion that cannot be

adequately accounted for by standard real-valued ARMA models; see also Cameron and Trivedi (2013).

In its original formulation (Heinen 2003; Rydberg and Shephard 2000), the INGARCH process had a

Poisson conditional distribution with a time-varying intensity that was a linear function of its q lagged values

and its p recent observations. Later, many generalizations of the Poisson INGARCH (P-INGARCH) were put

forward that differed in their conditional distributions (Poisson, negative binomial, double Poisson, etc.,)

and/or their specifications for the conditional mean equation (linear, exponential, threshold); see, among

others, Zhu (2011, 2012a, 2012b) as well as Weiss (2018).

Quite a few studies in the literature on count time series have conducted forecasting comparisons of

various models for count processes (e.g., Homburg et al. 2019, 2020 and references therein). These models

include, among others, the Poisson-INAR, the Poisson-INARCH, the negative binomial INAR, the ZIP-INAR,

and the binomial AR and ARCH.

However, none of these studies have focused exclusively on the INGARCH models in terms of their

forecasting performance. As such, despite the large numbers of the INGARCH models that have been put
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forward, the relevant literature lacks a coherent forecast comparison exercise. This paper aspires to fill this

gap.

Using numerous empirical time series on the trade intensity of stocks, we evaluate the out-of-sample

forecasting performance of several INGARCH models. This is our main contribution that differentiates our

work from previous ones. Our set of competing INGARCH models includes those with the most popular

conditional distributions, namely the Poisson, the generalized Poisson, the (linear and quadratic) negative

binomial and the double Poisson.

We estimate the model parameters by efficient Bayesian methods, in particular Markov Chain Monte

Carlo (MCMC). The dispersion parameters are updated using an efficient universal self-tuned sampler within

Gibbs sampler, proposed by Martino et al. (2015), whilst for the GARCH parameters, the adaptive Metropolis

adjusted Langevin (MALA) algorithm of Atchadé (2006) is exploited. The forecasting performance of the

models is evaluated by calculating point and density forecasts.

It is also worth mentioning that Bayesian forecasting of count series has been performed, among others,

by McCabe and Martin (2005), McCabe, Martin, and Harris (2011) and Berry and West (2020). McCabe and

Martin (2005) considered estimates of h-step ahead predictive mass functions for INAR models, McCabe,

Martin, and Harris (2011) estimated non-parametrically the forecasting distributions for the same class of

models and Berry and West (2020) utilized various forecast metrics, such as, the scaled mean squared error

(sMSE). For a frequentist approach, the interested reader is referred to Homburg et al. (2019, 2020).

The structure of the paper is as follows. Section 2 describes the models in question and Sections 3 and 4

describe the posterior analysis. Several Monte Carlo experiments are conducted in Section 5 and in Section 6

we present the empirical results. Section 7 concludes. An Online Appendix accompanies this paper.

2 INGARCH specifications

A stochastic process {Yt, t ∈ ℤ} is said to be an INGARCH(p, q) if its conditional distribution is given by

Yt|t−1 ∼ f𝜆t (1)

and

𝜆t = 𝜔+

q∑

i=1

𝛼iYt−i +

p∑

j=1

𝛽 j𝜆t− j, (2)

where𝜔 > 0, 𝛼i ≥ 0 and 𝛽 j ≥ 0, t is the 𝜎-Algebra generated by {Yt−k, k ≥ 0} and f𝜆t (yt) := fYt (yt|t−1) is a

discrete distribution with conditional mean 𝜆t.

In this paper we consider the following distributions for Yt|t−1:

– The Poisson (P-INGARCH) (Ferland, Latour, and Oraichi 2006; Heinen 2003); Yt|t−1 ∼  (𝜆t).

– The double Poisson (DP-INGARCH) (Heinen 2003); Yt|t−1 ∼  (𝜆t, 𝛾), with 𝛾 > 0.

– The Negative binomial II (NB2-INGARCH) (Christou and Fokianos 2014; Davis and Liu 2016; Zhu 2011);

Yt|t−1 ∼ (
r2,

r2
r2+𝜆t

)
, with r2 > 0.

– The Negative binomial I (NB1-INGARCH) (Aknouche and Francq 2021; Xu et al. 2012); Yt|t−1

∼ (
r1𝜆t,

r1
r1+1

)
, with r1 > 0.

– The Generalized Poisson (GP-INGARCH) (Zhu 2012a); Yt|t−1 ∼  (𝜆t (1− 𝜏) , 𝜏), with 𝜏 > 0.

The functional forms of these distributions along with their conditional means and conditional variances are

given in Table 1. The parameters 𝛾, 𝑣, 𝜏, r1 and r2 are usually called the dispersion parameters. As can be

seen from Table 1, the conditional variance is linear in the intensity parameter 𝜆t for the Poisson, GP, and NB1
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Table 1: Various conditional distributions for the INGARCH model.

Notation fYt (yt | t−1) E (yt | t−1) Var (yt | t−1)

P  (𝜆t ) e−𝜆t
𝜆
yt
t

yt !
𝜆t 𝜆t

GP  (𝜆t (1− 𝜏) , 𝜏)
𝜆t (𝜆t+𝜏yt )

yt−1e−(𝜆t+𝜏yt )

yt !
𝜆t

1

(1−𝜏)2
𝜆t

DP  (𝜆t , 𝛾) 𝛾1∕2e−𝛾𝜆t
e−yt y

yt
t

yt !

(
e𝜆t
yt

)𝛾yt
𝜆t ≃ 1

𝛾
𝜆t

NB1 (
r1𝜆t ,

r1
r1+1

)
Γ(yt+r1𝜆t )

yt !Γ(r1𝜆t )

(
r1

r1+1

)r1𝜆t
(

1

r1+1

)yt
𝜆t

(
1+ 1

r1

)
𝜆t

NB2 (
r2,

r2
r2+𝜆t

)
Γ(yt+r2)

yt !Γ(r2)

(
r2

r2+𝜆t

)r2 ( 𝜆t
r2+𝜆t

)yt
𝜆t 𝜆t +

1

r2
𝜆2
t

cases, is approximately linear for the DP case and quadratic for the NB2 case. Under

q∑

i=1

𝛼i +

p∑

j=1

𝛽 j < 1, (3)

the models under consideration are stationary and ergodic with finite mean (Aknouche and Francq 2021).

3 MCMC

We want to sample iteratively from the full conditional posteriors 𝜋(Δ|disp, y) and 𝜋(disp|Δ, y), where
Δ = (𝜔, 𝛼1, 𝛽1)

′ and disp represents the dispersion parameter, depending on the model. For Δ we used a

truncated log-normal prior

log(Δ) ∼ N(𝜇Δ,ΣΔ)1(𝛼1+𝛽1<1),

that satisfies the stationarity condition that𝛼1 + 𝛽1 < 1,whereas for thedispersionparameterweuse agamma

prior

G(kdisp,mdisp).

Both conditionals are intractable and therefore we use Metropolis-Hastings type algorithms. For the

update of the dispersion parameter we use the Fast Universal Self-Tuned Sampler (FUSS) of Martino et al.

(2015).1 It can be used to sample efficiently from univariate distributions. It consists of four steps. In the

first step, an initial set of support points of the target distribution is chosen. In the second step, unused

support points drop according to some pre-defined pruning criterion (for example, optimal minimax pruning

strategy). In the third step, we have the construction of the independent proposal density, tailored to the

shape of the target, with some appropriate pre-defined mechanism (for example interpolation). In the final

step, a Metropolis–Hastings (MH) method is used.

For the update ofΔwe use the adaptive MALA of Atchadé (2006) with a truncated drift. Defining the drift

as

∀ Xn,D(X) =
𝛿

max(𝛿, ‖∇ log 𝜋(Xn)‖)
∇ log 𝜋(Xn)

the general algorithm is described below,where𝜋() represents the posterior density and q𝜎n,Λn
is the proposal,

which in our case is the normal satisfying the stationarity condition. 𝜏 is set, practically to 0.5 to achieve an

acceptance rate of 50% and for numerical stability we set 𝜀 = 10−6 and 𝛿 = 1000. The sequence (𝛾)n ∈ N∗ is

chosen such that ∀n, 𝛾n > 0,
∑

n γn = +∞ and 𝛾n = O(n−𝜉) with 1∕2 < 𝜉 ≤ 1.

1 The FUSS algorithm has better mixing properties than alternative MCMCmethods such as slice sampling, MALA sampling, and

Hamiltonian Monte Carlo sampling and is faster. The FUSS matlab function is accessible from Martino’s webpage.
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4 Point and density forecasts

We conduct a recursive out-of-sample forecasting exercise in order to evaluate the predictive performance of

the competing models. To this end, we compute point and density forecasts.

The conditional predictive density of the s-step ahead yt+s, given the data Y t = (y1,… , yt) is given by

p(yt+s|Yt) = ∫ f (yt+s|Θ,Yt)dp(Θ|Yt), (4)

whereΘ denotes the model parameters.

Using Monte Carlo integration, the above expression can be approximated by

p̂(yt+s|Yt) =
1

R

R∑

i=1

f (yt+s|Θ
(i)
,Yt), (5)

whereΘ(i)
is the posterior draw ofΘ at iteration i = 1,… ,R (after the burn-in period).

The conditional predictive likelihood of yt+s is the conditional predictive density of yt+s evaluated at the

observed yo
t+s, namely, p(yt+s = yo

t+s|Yt). A usual metric for the evaluation of the density forecasts is the log

predictive score (LPS) (Geweke and Amisano 2011)

LPS =

T−s∑

t=t0

log p(yt+s = yo
t+s|Yt), (6)

where t = t0 + 1,… ,T − s is the evaluation period. The higher the LPS value, the better the (out-of-sample)

forecasting power of the model.

We also calculated s-step ahead point forecasts. As a metric for the evaluation of point forecasts we used

the scaled mean squared error (sMSE); see Berry andWest (2020). For a particular observation, yo
t+s, the scale

squared error is defined as

sSEt(s) = (yo
t+s − E(yt+s))

2∕ȳ1:t (7)

where E(yt+s) is the s-step ahead predictive mean. The average of this metric over all days t is the scaledmean

squared error for the forecast horizon s.

The lower the sMSE value, the better the (out-of-sample) forecasting power of the model. In our analysis,

s = 1, 4 and 8.
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5 Monte Carlo experiments

To assess the performance of the proposed Bayesian methodology we simulated various INGARCH series.

Throughout our simulations, we generated T = 100, T = 500 and T = 1000 data points from all models with

various sets of real values of the parameters. We run the samplers for 10,000 iterations after discarding the

initial 10,000 cycles (burn-in period).

For the INGARCH parameterΔ = (𝜔, 𝛼1, 𝛽1)
′ we used a truncated log-normal prior

log(Δ) ∼ N(𝜇Δ,ΣΔ)1(𝛼1+𝛽1<1),

where 𝜇Δ = (1, log(0.1), log(0.8))′ and ΣΔ = diag(10, 1, 1). For the dispersion parameters, we used the follow-

ing gamma prior

G(5,0.1).

To monitor the performance of our sampling algorithms, we estimated the inefficiency factor (IF); see

Chib (2001). Tomonitor any lack of convergence, we also computed the Convergence Diagnostics (CD) statistic

of Geweke (1992).

From the Tables (Tables 2–6) below we see that the estimated values are close to their true values and

the mixing of the algorithms are satisfactory. No convergence problems were detected.

Table 2: Simulated data for the P-INGARCH.

True values Mean Stdev IF CD

T= 100

𝜔= 1 0.805 0.309 14.902 −0.468

𝛼1 = 0.7 0.706 0.076 16.937 −1.528

𝛽1 = 0.2 0.192 0.076 18.641 1.437

𝜔= 2 2.308 0.501 56.115 −1.759

𝛼1 = 0.3 0.155 0.091 96.098 −1.748

𝛽1 = 0.6 0.697 0.099 85.752 2.030

T= 500

𝜔= 1 1.018 0.193 12.865 −0.708

𝛼1 = 0.7 0.641 0.041 15.541 −1.106

𝛽1 = 0.2 0.248 0.046 16.795 1.026

𝜔= 2 2.108 0.418 22.098 1.298

𝛼1 = 0.3 0.286 0.035 21.815 1.650

𝛽1 = 0.6 0.612 0.044 24.141 −1.804

T= 1000

𝜔= 1 1.145 0.157 13.694 −1.389

𝛼1 = 0.7 0.671 0.028 13.265 −1.94

𝛽1 = 0.2 0.207 0.033 13.471 1.949

𝜔= 2 2.333 0.382 19.613 −0.442

𝛼1 = 0.3 0.271 0.027 32.791 −0.387

𝛽1 = 0.6 0.614 0.036 34.447 0.443
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Table 3: Simulated data for the NB1-INGARCH.

True values Mean Stdev IF CD

T = 100

𝜔 = 0.1 0.128 0.074 16.646 −0.580

𝛼1 = 0.7 0.544 0.142 15.02 1.154

𝛽1 = 0.2 0.403 0.134 18.165 −0.240

r1 = 4 3.097 0.555 2.658 0.196

𝜔 = 1 1.794 0.664 22.683 −2.606

𝛼1 = 0.3 0.407 0.104 34.131 −0.451

𝛽1 = 0.6 0.450 0.118 30.431 1.614

r1 = 8 7.312 1.609 1.061 −1.095

T = 500

𝜔 = 0.1 0.070 0.016 12.073 −0.687

𝛼1 = 0.7 0.664 0.068 12.626 −1.011

𝛽1 = 0.2 0.225 0.061 12.15 1.375

r1 = 4 3.147 1.596 1.208 1.005

𝜔 = 1 1.193 0.272 22.033 0.504

𝛼1 = 0.3 0.294 0.037 21.711 1.349

𝛽1 = 0.6 0.549 0.054 29.378 −0.970

r1 = 8 6.574 2.090 1.030 0.361

T= 1000

𝜔 = 0.1 0.097 0.014 13.324 −0.280

𝛼1 = 0.7 0.693 0.047 11.469 −0.829

𝛽1 = 0.2 0.183 0.043 12.429 −0.023

r1 = 4 3.735 0.792 1.2687 −0.472

𝜔 = 1 1.292 0.215 16.301 −2.680

𝛼1 = 0.3 0.303 0.027 17.708 −2.263

𝛽1 = 0.6 0.522 0.043 18.519 2.818

r1 = 8 7.101 2.375 1.022 −0.147

6 Empirical analysis

6.1 Data

Our empirical data consist of four time series that record the number of trades for four stocks (Glatfelter

Company (GLT), Wausau Paper Corporation (WPP), Empire District Electric Company (EDE), Ericsson B). For

the first three stocks (GLT,WPP, EDE) wemonitor the number of stock transactions in 5-min intervals between

9:45AMand4:00PM. Each of these three series hasT = 2925 observations and the timeperiod is from January

3, 2005 to February 18, 2005. For the last stock (Ericsson B) the time series is of length T = 460 and records

the number of transactions per minute between 9:35 AM and 17:14 PM on 2 July 2002. Plots of the time series

and histograms are given in Figures 1 and 2. The data are strongly overdispersed. The estimation results are

presented in the Online Appendix.

6.2 Forecasting results

For our out-of-sample forecasting exercise, the evaluation period consists of the last 100 data points. The

summary of the forecasting results is presented in Tables 7 (density forecasts) and 8 (point forecasts). The

detailed forecasting results are reported in the Online Appendix.
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Table 4: Simulated data for the NB2-INGARCH.

True values Mean Stdev IF CD

T= 100

𝜔= 1 1.433 0.53323 14.28 0.626

𝛼1 = 0.7 0.614 0.114 20.843 0.407

𝛽1 = 0.2 0.242 0.106 23.353 −0.867

r2 = 8 7.324 0.960 1.076 2.487

𝜔= 2 1.642 0.645 16.53 −2.307

𝛼1 = 0.4 0.399 0.0937 19.577 −1.047

𝛽1 = 0.4 0.474 0.104 20.481 2.686

r2 = 4 3.296 0.640 1.077 −2.484

T= 500

𝜔= 1 0.970 0.189 13.018 −0.879

𝛼1 = 0.7 0.652 0.047 15.223 −1.039

𝛽1 = 0.2 0.244 0.050 16.47 0.946

r2 = 8 9.013 1.244 1 1.391

𝜔= 2 1.959 0.414 14.726 −1.188

𝛼1 = 0.4 0.422 0.047 13.091 −1.556

𝛽1 = 0.4 0.392 0.062 13.63 1.896

r2 = 4 3.911 0.301 1.486 0.877

T= 1000

𝜔= 1 1.276 0.161 11.897 −1.524

𝛼1 = 0.7 0.692 0.031 12.667 −1.624

𝛽1 = 0.2 0.176 0.033 12.447 2.585

r2 = 8 8.093 0.711 1 −0.906

𝜔= 2 2.050 0.318 15.3 −0.411

𝛼1 = 0.4 0.380 0.032 12.198 −1.050

𝛽1 = 0.4 0.413 0.049 15.073 0.761

r2 = 4 4.036 0.201 3.393 0.890

Table 5: Simulated data for the DP-INGARCH.

True values Mean Stdev IF CD

T= 100

𝜔= 4 5.165 1.323 23.868 −0.992

𝛼1 = 0.2 0.119 0.067 25.212 −0.333

𝛽1 = 0.5 0.218 0.093 23.824 1.594

𝛾 = 1 0.827 0.124 1.0251 −1.370

𝜔= 1 1.062 0.442 16.755 0.431

𝛼1 = 0.6 0.518 0.099 19.194 −1.037

𝛽1 = 0.2 0.304 0.117 27.208 −0.086

𝛾 = 0.2 0.274 0.040 1.036 −0.799

T= 500

𝜔= 4 4.823 0.945 68.29 0.326

𝛼1 = 0.2 0.158 0.040 67.554 1.534

𝛽1 = 0.5 0.343 0.105 88.009 −0.689

𝛾 = 1 1.508 0.095 1.006 −0.678
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Table 5: (continued)

True values Mean Stdev IF CD

T = 500

𝜔 = 1 1.116 0.180 13.548 −1.563

𝛼1 = 0.6 0.471 0.049 13.935 −1.740

𝛽1 = 0.2 0.181 0.064 13.467 2.154

𝛾 = 0.2 0.292 0.018 1 0.234

T= 1000

𝜔 = 4 3.994 0.681 79.012 −1.254

𝛼1 = 0.2 0.178 0.026 26.58 −0.866

𝛽1 = 0.5 0.408 0.077 60.079 1.264

𝛾 = 1 1.391 0.063 1.0026 −1.114

𝜔 = 1 1.167 0.126 11.768 −1.294

𝛼1 = 0.6 0.541 0.034 12.64 −1.270

𝛽1 = 0.2 0.133 0.041 11.994 1.598

𝛾 = 0.2 0.271 0.012 1.670 −0.093

Table 6: Simulated data for the GP-INGARCH.

True values Mean Stdev IF CD

T = 100

𝜔 = 0.8 1.0958 0.0577 8.9458 −1.8958

𝛼1 = 0.3 0.4189 0.0636 12.723 2.0518

𝛽1 = 0.4 0.3059 0.0342 14.943 −2.5536

𝜏 = 0.4 0.508 0.267 60.38 0.2622

𝜔 = 2 2.4604 0.1664 1.3222 −3.128

𝛼1 = 0.6 0.7107 0.0384 1.2769 −3.7252

𝛽1 = 0.2 0.3594 0.0343 1.2593 3.5576

𝜏 = 1 1.436 9.158 46.951 0.1369

T = 500

𝜔 = 0.8 1.0072 0.0327 1.9565 12.628

𝛼1 = 0.3 0.3558 0.0126 2.9502 −5.2772

𝛽1 = 0.4 0.4539 0.0070 18.675 0.4067

𝜏 = 0.4 0.4559 0.355 51.84 −0.0146

𝜔 = 2 2.2753 0.0187 2.1335 −3.3031

𝛼1 = 0.6 0.6420 0.0111 2.5379 −1.8379

𝛽1 = 0.2 0.2078 0.0067 1.6509 2.6845

𝜏 = 1 1.199 9.06 71.57 0.0022

T= 1000

𝜔 = 0.8 0.8358 0.0079 4.1953 7.3745

𝛼1 = 0.3 0.3211 0.0073 12.278 −0.7614

𝛽1 = 0.4 0.4080 0.0071 15.162 −0.5835

𝜏 = 0.4 0.424 0.379 70.542 −2.6647

𝜔 = 2 2.0748 0.0691 2.0951 6.3428

𝛼1 = 0.6 0.6108 0.1066 2.16 −7.4312

𝛽1 = 0.2 0.1591 0.0576 1.9985 4.8223

𝜏 = 1 1.1458 9.443 10.41 −1.3431
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Figure 1: Empirical results: Time

series plots for the four financial

series.

Figure 2: Empirical results: His-

tograms for the four financial

time series.

Table 7: Summary table for the LPS results.

Data s= 1 s= 4 s= 8

GLT NB2-INGARCH NB2-INGARCH NB2-INGARCH

WPP NB2-INGARCH NB2-INGARCH NB2-INGARCH

EDE NB1-INGARCH NB2-INGARCH NB2-INGARCH

Ericsson B NB1-INGARCH NB1-INGARCH NB1-INGARCH

Table 8: Summary table for the sMSE results.

Data s= 1 s= 4 s= 8

GLT NB2-INGARCH NB2-INGARCH NB2-INGARCH

WPP NB1-INGARCH NB1-INGARCH NB1-INGARCH

EDE NB1-INGARCH NB1-INGARCH NB1-INGARCH

Ericsson B NB2-INGARCH NB2-INGARCH NB2-INGARCH
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From Table 7 we can see that the NB2-INGARCHmodel is dominant for the first three data sets, producing

better density forecasts than the other completing INGARCH specifications across all forecast horizons. The

NB1-INGARCH yielded the best forecasting results for the Ericsson B data set only. The third-best model is the

DP-INGARCH (see Online Appendix). The GP-INGARCH produced the worst density forecasting results.

From Table 8, the results indicate that both the NB1-INGARCH and NB2-INGARCHmodels produce better

point forecasts than the P-INGARCH, the DP-INGARCH and the GP-INGARCHmodels. In most of the datasets,

the DP-INGARCH did better than the P-INGARCH and the GP-INGARCH (Online Appendix).

7 Conclusions

We conducted a Bayesian forecasting exercise using INGARCHmodels with various conditional distributions.

Our empirical application concerned the number of stock trades. We found that the NB2-INGARCH model is

superior, in terms of density forecasts, to other competing models in predicting transaction counts, whereas

the NB1-INGARCH and NB2-INGARCH models seem to dominate in point forecasting.

The set of existing forecasting models considered here could be extended to include additional models

such as the COM-poisson INGARCHmodel (Zhu 2012c), the zero-inflated versions of it, the log-linear INGARCH

model and the Softplus INGARCH model (Weiss et al. 2022). Such an extension will be examined in a future

paper.
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