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Abstract—This paper considers the problem of fixed-interval
smoothing for Markovian switching systems with multiple linear
state-space models. An enhanced algorithm that is capable of
accurately approximating the Bayesian optimal smoother is
proposed. It utilizes the exact expression for the quotient of
two Gaussian densities to help solve the backward-time recursive
equations of Bayesian smoothing, and computes the joint poste-
rior of the state vector and model index. The proposed algorithm
only involves the approximation of each model-matched state
posterior, which is a Gaussian mixture, with a single Gaussian
density for maintaining computational tractability in retrodiction.
The validity of the newly developed smoother is verified using a
simulated maneuvering target tracking task.

I. INTRODUCTION

Estimating the state of a dynamic system at a particular time

can be carried out through utilizing either the measurements

collected before and up to that time, or the measurements

received before and beyond that time. The former approach

is commonly referred to as filtering [1], while the latter is

called smoothing or retrodiction [2], [3]. For linear state-space

models with white Gaussian noise, the Rauch-Tung-Striebel

(RTS) smoother [4], also known as the Kalman smoother,

provides the optimal smoothing solution in closed form.

In practice, the system state may be subject to abrupt

changes due to e.g., load disturbances, additive faults [5],

[6] and target maneuvering [7]. This type of impulsive dis-

turbances often leads to jumps in the state and they cannot be

modeled by Gaussian process noise effectively. In [5], [6],

smoothing in the presence of state jumps is accomplished

by solving a convex optimization problem with sum-of-norms

regularization to make use of the sparsity of the disturbances.

Multiple model smoothing is another popular technique to

handle the abrupt changes. It employs a set of candidate state-

space models and finds the state estimates by combining the

model-conditioned smoothed state posteriors [8].

We shall consider in this paper fixed-interval multiple model

smoothing. Here, the system of interest is assumed to switch

among a prefixed set of candidate state-space models. Its states

over a time window are identified using all the measure-

ments collected within the time window. For this problem,

there exist a few suboptimal methods in literature. They are

approximations to the Bayesian optimal solution, which is

computationally intractable due to the number of hypotheses

growing exponentially with respect to the window length.

These techniques have been applied to help extract accurate

tracks in multiple hypothesis tracking (MHT) [9]. They were

also shown to be able to improve the performance of sensor

registration and fusion in radar networks [10], articulatory

inversion [11], maneuvering target tracking [12]–[14] and air

traffic control (ATC) trajectory reconstruction [15].

Among the existing multiple model smoothers, the two-

filter approach [16] finds the smoothed state estimates through

combining the output of a forward-time interacting multiple

model (IMM) filter and a backward-time IMM filter. This

method is in fact an extension of the Frazer-Potter optimal

linear smoother [17], [18] developed for the case with a single

state-space model. It uses the normalizable state posterior

provided by the backward-time filter to replace the non-

normalizable measurement likelihood, which may be a poor

approximation [3], [19]. In [20], the system states over a few

consecutive time instants are collected to form an augmented

state so that the forward-time IMM filter can be used to achieve

multiple model smoothing. This approach assumes that there

are no model switchings within the time span of the augmented

state.

In [9], a generalized pseudo-Bayesian of order 2 (GPB2)-

type multiple model smoother was proposed. To bypass the

difficulty in evaluating the integral required for retrodiction,

it assumes that smoothed state estimates are sufficiently ac-

curate and can be considered noise-free. This could lead to

performance degradation under relatively large noise levels. In

[21], an IMM-type smoother was developed. Besides the use of

sufficient statistics to replace measurements when computing

the posterior probability of the model index, several strong

assumptions on state-space models are also introduced [22].

In [22]–[24], the proposed algorithm combines the output of a

forward-time IMM filter and backward-time RTS smoothers to

carry out state smoothing. Laplace approximation is utilized in

its model interaction step to approximate the non-normalizable

quotient of two Gaussian densities. Its performance is close

to that of the two-filter approach but it does outperform the

methods in [9] and [21]. Recently, based on the framework

of [22], the problem of multiple model smoothing when the



process and measurement noises are both non-Gaussian was

considered in [25].

The main contributions of this paper are as follows. 1) We

develop an enhanced fixed-interval smoother for Markovian

switching systems under Gaussian noises. The smoothed joint

posterior of the state and model index are obtained recursively

through solving the backward-time recursive equations of

Bayesian smoothing for linear systems. For this purpose, in-

stead of resorting to methods such as those adopted in [9], [22],

the exact formula for the quotient of two Gaussian densities

[26] is used to evaluate the integral for retrodiction. The

only approximation involved in the algorithm development

is replacing the smoothed model-matched state posterior, a

Gaussian mixture, with a single Gaussian density to achieve

computational tractability. 2). Simulation is carried out to

evaluate the newly developed technique. We find that the

proposed smoothing algorithm has a complexity similar to

that of the GPB2-type method [9] but it could accurately

approximate the Bayesian optimal solution. Specifically, in the

simulated maneuvering target tracking problem, the proposed

enhanced smoother performs slightly better than the two-filter

approach [16] while being superior to the method from [9].

The rest of this paper is organized as follows. Section

II formulates the fixed-interval multiple model smoothing

problem in consideration and gives the exact formula for the

quotient of two Gaussian densities. Section III presents the

enhanced smoothing algorithm and discusses some implemen-

tation aspects. Section IV shows the simulation results. Section

V concludes the paper.

II. PROBLEM FORMULATION AND THE QUOTIENT OF TWO

GAUSSIAN DENSITIES

A. Fixed-Interval Multiple Model Smoothing

Suppose we have collected k measurements zt, t =
1, 2, ..., k, from a dynamic system whose state is going to be

identified. At each sampling time t, zt is generated using one

of the following r linear state-space models1

xt = F
j
t−1xt−1 + v

j
t−1, (1a)

zt = H
j
txt +w

j
t , (1b)

where j = 1, 2, ..., r. xt is the system state at time t. Fj
t−1 and

Ht
j are the state transition and measurement matrices under

model j. v
j
t−1 and w

j
t are the process and measurement noises

under model j . They are independent white Gaussian noises

with zero mean and covariance Q
j
t−1 and R

j
t . That is, v

j
t−1 ∼

N (vj
t−1;0,Q

j
t−1) and w

j
t ∼ N (wj

t ;0,R
j
t ).

The model switching is assumed to be independent of the

process noise. Let M j
t be the model index indicating that

during the time interval (t− 1, t], the dynamics of the system

can be described using the jth state-space model defined in

(1). It evolves according to a homogeneous Markovian jump

process with a transition probability matrix P equal to

P(i, j) = p(M j
t |M

i
t−1) = pij , (2)

1But the model index is not known a priori.

where i, j = 1, 2, ..., r and
∑M

j=1
pij = 1.

We are interested in finding the smoothed state posterior

p(xt|Z
k) for t ≤ k to achieve fixed-interval multiple model

smoothing. Here, Zk = {z1, z2, ..., zk} denotes the set of the

measurements obtained within the time window spanning from

time 1 to time k.

B. Quotient of Two Gaussian Densities

The quotient of two Gaussian densities can be derived from

the product rule of Gaussian density that is given by [26], [27]

N (x;µa,Σa)N (x;µb,Σb) = α · N (x;µc,Σc), (3)

where

α = N (µa;µb,Σa +Σb), (4a)

Σc = (Σ−1

a +Σ−1

b )−1, (4b)

µc = Σc(Σ
−1

a µa +Σ−1

b µb). (4c)

From (3), it is straightforward to write the quotient of two

Gaussian densities as

N (x;µc,Σc)

N (x;µa,Σa)
=

1

α
· N (x;µb,Σb), (5)

where according to (4), we have

Σb = (Σ−1

c −Σ−1

a )−1, (6a)

µb = Σb(Σ
−1

c µc −Σ−1

a µa). (6b)

To simplifiy the factor 1/α, we note that

Σa+Σb = Σa+(Σ−1

c −Σ−1

a )−1 = Σa(Σa−Σc)
−1Σa, (7)

µa − µb = µa − (Σ−1

c −Σ−1

a )−1(Σ−1

c µc −Σ−1

a µa)

= (Σ−1

c −Σ−1

a )−1Σ−1

c (µa − µc)

= Σa(Σa −Σc)
−1(µa − µc).

(8)

As a result, 1/α can be expressed as

β = 1/α = 1/N (µa;µb,Σa +Σb)

=
√

|2πΣa(Σa −Σc)−1Σa|

× exp

(

1

2
(µa − µc)

T (Σa −Σc)
−1(µa − µc)

)

=
|Σa|

|Σa −Σc|
·

1

N (µa;µc,Σa −Σc)
.

(9)

Inserting (9) into (5) yields the following expression for the

quotient of two Gaussian densities2

N (x;µc,Σc)

N (x;µa,Σa)
=

|Σa|

|Σa −Σc|
·

N (x;µb,Σb)

N (µa;µc,Σa −Σc)
, (10)

which will be utilized in the next section to derive the

enhanced fixed-interval multiple model smoother.

2Note that (10) is equivalent to but more succint than (C.10) and (C.11) in
[26].



III. PROPOSED ALGORITHM AND ITS IMPLEMENTATION

A. Approximating the Bayesian Optimal Smoother

In the multiple model smoothing problem described in

Section II, the system state xt and model index M j
t are both

unknown. Thus, we shall attempt to calculate the smoothed

state posterior p(xt|Z
k) (t ≤ k) via first finding the joint

posterior p(xt,M
j
t |Z

k) and then marginalizing out M j
t .

According to the backward-time recursive equations of

Bayesian optimal smoothing [3], the desired joint posterior

p(xt,M
j
t |Z

k) can be written as [9]

p(xt,M
j
t |Z

k) =

r
∑

i=1

∫

p(xt,M
j
t ,xt+1,M

i
t+1|Z

k)dxt+1

=

r
∑

i=1

∫

p(xt,M
j
t |xt+1,M

i
t+1,Z

t)p(xt+1,M
i
t+1|Z

k)dxt+1,

(11)

where we have, by Bayes theorem,

p(xt,M
j
t |xt+1,M

i
t+1,Z

t) =

p(xt+1,M
i
t+1|xt,M

j
t )p(xt,M

j
t |Z

t)

p(xt+1,M i
t+1|Z

t)
.

(12)

The Markov property that the composite vector [xT
t ,M

j
t ]

T

would be independent of the measurements collected from

time t + 1 to k given [xT
t+1,M

i
t+1]

T has been applied to

establish the second equality in (11).

More importantly, it can be seen that (11) relates the pos-

terior of [xT
t ,M

j
t ]

T , p(xt,M
j
t |Z

k), to that of [xT
t+1,M

i
t+1]

T ,

p(xt,M
i
t+1|Z

k). This backward-time retrodiction enables the

recursive computation of the smoothed joint posterior of the

state and model index, which is essential for fixed-interval

smoothing. To evaluate (11), we use (1a), (2) and the fact that

model index M j
t is independent of the state to arrive at

p(xt+1,M
i
t+1|xt,M

j
t ) = p(xt+1|M

i
t+1,xt)p(M

i
t+1|M

j
t )

= N (xt+1;F
i
txt,Q

i
t) · pji.

(13)

Next, note that p(xt,M
j
t |Z

t) in (12) is the filtered joint

posterior of the state and model index given measurements

up to time t. It can be computed using the forward-time IMM

filter (see e.g., [1]) such that it can be expressed as

p(xt,M
j
t |Z

t) = p(xt|M
j
t ,Z

t)p(M j
t |Z

t)

≈ N (xt;µ
j

t|t,P
j

t|t) · w
j

t|t.
(14)

Here, p(xt|M
j
t ,Z

t) is the model-matched state posterior,

which is approximated using the single Gaussian density

N (xt;µ
j

t|t,P
j

t|t), and p(M j
t |Z

t) is the posterior probability

of the model index.

Besides, the denominator p(xt+1,M
i
t+1|Z

t) in (12) is the

predicted density of the state and model index. It is calculated

in the prediction stage of the forward-time IMM filter, which

is equal to

p(xt+1,M
i
t+1|Z

t) =

r
∑

l=1

pli · w
l
t|t · N (xt+1;µ

li
t+1|t,P

li
t+1|t)

≈ wi
t+1|t · N (xt+1;µ

i
t+1|t,P

i
t+1|t),

(15)

where µ
li
t+1|t = Fi

tµ
l
t|t, Pli

t+1|t = Fi
tP

l
t|t(F

i
t)

T + Qi
t,

l = 1, 2, ..., r, and wi
t+1|t =

∑r

l=1
pli · w

l
t|t. The approx-

imation in (15) is obtained by applying moment matching

to replace the Gaussian mixture
∑r

l=1
(pli · wl

t|t/w
i
t+1|t) ·

N (xt+1;µ
li
t+1|t,P

li
t+1|t) using a single Gaussian density with

mean µ
i
t+1|t and covariance Pi

t+1|t. This is needed in the

forward-time IMM filter to realize model interaction and

maintain computational tractability.

Finally, we express p(xt+1,M
i
t+1|Z

k) in (11) as, by using

notations similar to those in (14),

p(xt+1,M
i
t+1|Z

k) = p(xt+1|M
i
t+1,Z

k)p(M i
t+1|Z

k)

≈ N (xt+1;µ
i
t+1|k,P

i
t+1|k) · w

i
t+1|k.

(16)

In other words, we shall approximate the smoothed joint

posterior of the state and model index for t ≤ k using a

scaled Gaussian density, as in the forward-time IMM filter.

The scaling factor is just the model index probability wi
t+1|k,

while the Gaussian density N (xt+1;µ
i
t+1|k,P

i
t+1|k) is the

smoothed model-matched state posterior. This follows from

the fact that the backward-time recursion of the Bayesian

optimal smoother in (11) would start with t = k − 1. In

this case, p(xt+1,M
i
t+1|Z

k) becomes equal to p(xk,M
i
k|Z

k),
which is the IMM-filtered posterior at time k given in (14). It

has the same functional form as (16).

Inserting the results in (12)-(16) into (11), we obtain the

following approximation to the backward-time Bayesian opti-

mal smoother as the basis for developing the proposed fixed-

interval smoothing algoritm

p(xt,M
j
t |Z

k) ≈
r

∑

i=1

pji · w
j

t|t · w
i
t+1|k

wi
t+1|t

N (xt;µ
j

t|t,P
j

t|t)×

∫

N (xt+1;F
i
txt,Q

i
t)

N (xt+1;µi
t+1|t,P

i
t+1|t)

N (xt+1;µ
i
t+1|k,P

i
t+1|k)dxt+1.

(17)

In the presence of multiple state-space models, the de-

nominator of the integrand in (17) N (xt+1;µ
i
t+1|t,P

i
t+1|t) is

not equal to the solution to the Chapman-Kolomogrov equa-

tion
∫

N (xt+1;F
i
txt,Q

i
t)N (xt;µ

j

t|t,P
j

t|t)dxt. This is differ-

ent from the single model case. Thus, the classic RTS smoother

[4] cannot be directly applied to solve the backward-time

recursive equation (17) without adopting approximations such

as the one in [9] that assumes Pi
t+1|k ≈ O and

N (xt+1;µ
i
t+1|k,P

i
t+1|k)dxt+1 ≈ δ(xt+1 − µ

i
t+1|k).

Here, δ(·) is the Dirac delta function.



B. Proposed Fixed-Interval Multiple Model Smoother

We shall evaluate the integral in (17) using the exact formula

for the quotient of two Gaussian densities in (10) to develop

the proposed fixed-interval multiple model smoother.

The theoretical derivation starts with noting that

N (xt+1;F
i
txt,Q

i
t)

N (xt+1;µi
t+1|t,P

i
t+1|t)

= ait · N (xt+1;µ
i
a,t,Σ

i
a,t), (18)

where according to (10), we have

Σi
a,t = ((Qi

t)
−1 − (Pi

t+1|t)
−1)−1, (19a)

µ
i
a,t = Σi

a,t((Q
i
t)

−1Fi
txt − (Pi

t+1|t)
−1

µ
i
t+1|t), (19b)

and after some straightforward manipulations,

ait =
|Pi

t+1|t| · |F
i
t|

|Pi
t+1|t −Qi

t|
×

1

N (xt; (Fi
t)

−1µ
i
t+1|t, (F

i
t)

−1(Pi
t+1|t −Qi

t)(F
i
t)

−T )
.

(20)

Substituting (18) into the integral in (17), we can show that

the integral is equal to, using the product rule in (3),

∫

N (xt+1;F
i
txt,Q

i
t)

N (xt+1;µi
t+1|t,P

i
t+1|t)

N (xt+1;µ
i
t+1|k,P

i
t+1|k)dxt+1

= ait · N (yi
t;G

i
txt,Σ

i
a,t +Pi

t+1|k),

(21)

where

yi
t = µ

i
t+1|k +Σi

a,t(P
i
t+1|t)

−1
µ

i
t+1|t, (22a)

Gi
t = Σi

a,t(Q
i
t)

−1Fi
t. (22b)

Substituting (18)-(21) into (17) yields

p(xt,M
j
t |Z

k) ≈
r

∑

i=1

pji · w
j

t|t · w
i
t+1|k · |Pi

t+1|t| · |F
i
t|

wi
t+1|t · |P

i
t+1|t −Qi

t|
×

N (yi
t;G

i
txt,Σ

i
a,t +Pi

t+1|k)N (xt;µ
j

t|t,P
j

t|t)

N (xt; (Fi
t)

−1µ
i
t+1|t, (F

i
t)

−1(Pi
t+1|t −Qi

t)(F
i
t)

−T )
.

(23)

Through invoking the state update stage of the linear Kalman

filter [3], the Gaussian product in the numerator of the sum-

mand in (23) can be shown to be equal to

N (yi
t;G

i
txt,Σ

i
a,t +Pi

t+1|k)N (xt;µ
j

t|t,P
j

t|t)

= bjit · N (xt;µ
ji
b,t,Σ

ji
b,t),

(24)

where

Σ
ji
b,t = ((Pj

t|t)
−1 + (Gi

t)
T (Σi

a,t +Pi
t+1|k)

−1Gi
t)

−1, (25a)

µ
ji
b,t = Σ

ji
b ((P

j

t|t)
−1

µ
j

t|t + (Gi
t)

T (Σi
a,t +Pi

t+1|k)
−1yi

t),

(25b)

bjit = N (yi
t;G

i
tµ

j

t|t,G
i
tP

j

t|t(G
i
t)

T + (Σi
a,t +Pi

t+1|k)).

(25c)

Putting (24) into (23) and again applying (10), we have

N (xt;µ
ji
b,t,Σ

ji
b,t)

N (xt; (Fi
t)

−1µ
i
t+1|t, (F

i
t)

−1(Pi
t+1|t −Qi

t)(F
i
t)

−T )

= cjit · N (xt;µ
ji
c,t,Σ

ji
c,t),

(26)

where

Σ
ji
c,t = ((Σji

b,t)
−1 − (Fi

t)
T (Pi

t+1|t −Qi
t)

−1Fi
t)

−1, (27a)

µ
ji
c,t = Σ

ji
c,t((Σ

ji
b,t)

−1
µ

ji
b,t − (Fi

t)
T (Pi

t+1|t −Qi
t)

−1
µ

i
t+1|t),

(27b)

and cjit is equal to, after some algebraic manipulations,

cjit =
|Pi

t+1|t −Qi
t|

|Pi
t+1|t −Qi

t − Fi
tΣ

ji
b,t(F

i
t)

T | · |Fi
t|

×

1

N (µi
t+1|t;F

i
tµ

ji
b,t,P

i
t+1|t −Qi

t − Fi
tΣ

ji
b,t(F

i
t)

T )
.

(28)

Using the results from (24) and (26), (23) now becomes

p(xt,M
j
t |Z

k) ≈
r

∑

i=1

djit · N (xt;µ
ji
c,t,Σ

ji
c,t), (29)

where

djit =
pji · w

j

t|t · w
i
t+1|k · |Pi

t+1|t|

wi
t+1|t · |P

i
t+1|t −Qi

t − Fi
tΣ

ji
b,t(F

i
t)

T |
×

N (yi
t;G

i
tµ

j

t|t,G
i
tP

j

t|t(G
i
t)

T + (Σi
a,t +Pi

t+1|k))

N (µi
t+1|t;F

i
tµ

ji
b,t,P

i
t+1|t −Qi

t − Fi
tΣ

ji
b,t(F

i
t)

T )
.

(30)

This completes the development of the proposed fixed-interval

multiple model smoother. It is an approximated solution to

the backward-time recursive equations of Bayesian optimal

smoothing in (11).

To extract the smoothed model-matched state posterior as

well as the smoothed posterior probability for the model index

from (29), we can factorize p(xt,M
j
t |Z

k) as in (16) into

p(xt,M
j
t |Z

k) ≈ N (xt;µ
j

t|k,P
j

t|k) · w
j

t|k. (31)

Comparing it with (29), we have that the smoothed posterior

probability for the model index M j
t is equal to

wj

t|k =

∑r

i=1
djit

∑r

l=1

∑r

i=1
dlit

. (32)

Besides, the mean and covariance of the smoothed model-

matched state posterior p(xt|M
j
t ,Z

k) = N (xt;µ
j

t|k,P
j

t|k)
can be found, using moment matching, to be equal to

µ
j

t|k =
1

∑r

i=1
djit

r
∑

i=1

djit · µji
c,t, (33a)

P
j

t|k =
1

∑r

i=1
djit

r
∑

i=1

djit (Σ
ji
c,t + (µji

c,t − µ
j

t|k)(µ
ji
c,t − µ

j

t|k)
T ).

(33b)



The state posterior p(xt|Z
k) can then be obtained by

marginalizing out M j
t in p(xt,M

j
t |Z

k) through

p(xt|Z
k) =

r
∑

j=1

p(xt,M
j
t |Z

k) ≈
r

∑

j=1

N (xt;µ
j

t|k,P
j

t|k) · w
j

t|k.

(34)

Again, the rightmost summation can be evaluated using

moment matching to approximate p(xt|Z
k) using a single

Gaussian density as the output of the proposed algorithm.

C. Algorithm Summary

With the fixed-interval multiple model smoother developed

in the last two subsections, computing the desired smoothed

state posterior p(xt|Z
k) can be performed in two stages.

Stage-1: We first begin with the initial model-matched state

posterior p(x0|M
j
0 ) = N (x0;µ

j

0|0,P
j

0|0) and initial model

index probability p(M j
0 ) = wj

0|0, where j = 1, 2, ..., r. Then,

the forward-time IMM filter [1] is applied to the measure-

ments in Zk to obtain p(xt|M
j
t ,Z

t) ≈ N (xt;µ
j

t|t,P
j

t|t) and

p(M j
t |Z

t) = wj

t|t sequentially for t = 1, 2, ..., k.

Stage-2: Next, we start the retrodiction in (29) with t =
k − 1, p(xt+1|M

i
t+1,Z

k) ≈ N (xt+1;µ
i
t+1|k,P

i
t+1|k) =

N (xk;µ
i
k|k,P

i
k|k) and p(M i

t+1|Z
k) = wi

k|k found by the

forward-time IMM filter at time k, where i = 1, 2, ..., r.

The obtained smoothed joint posterior p(xt,M
j
t |Z

k) is then

inserted into (29) again to compute p(xt−1,M
j
t−1|Z

k). This

process is repeated until t = 1. The smoothed state posterior

p(xt|Z
k), which is also the algorithm output, is found via (34).

D. Implementation Aspects

At each time t < k, the evaluation of (29) can be achieved

by carrying out the following four steps in sequence.

• Step-1: calculate Σi
a,t using (19a);

• Step-2: find yi
t and Gi

t using (22);

• Step-3: perform the Kalman update to find µ
ji
b,t and Σ

ji
b,t

defined in (25a) and (25b);

• Step-4: compute µ
ji
c,t, Σ

ji
c,t and djit using (27) and (30).

Several remarks on the implementation of the backward-

time recursive smoother in (29) are in order.

Remark 1: The proposed smoother requires that the covari-

ance matrices of the process noises in all the r models, Qi
t, are

non-singular. Their inverses are needed when calculating Σi
a,t,

yi
t and Gi

t (see (19a) and (22)). If Qi
t is singular, the method of

diagonal loading can be used to achieve invertability. Further

improvement of the proposed multiple model smoother to

eliminate this constraint is under way.

Remark 2: From (29), we can see that for every model index

M j
t , a total number of r “smoothers” are needed. Therefore,

the proposed fixed-interval smoother has a similar complexity

as that of the GPB2-type algorithm in [9]. Specifically, both

methods requires a total number of r2 “smoothers” for each

backward recursion.

Remark 3: The proposed algorithm involves moment

matching-based approximation to replace the Gaussian mix-

ture with a single Gaussian density (see e.g., (15) and (33)).

The purpose is to limit the number of Gaussian components

used to represent the smoothed state posterior p(xt|M
j
t ,Z

k)
in order to maintain computational tractability.

Remark 4: When computing Σ
ji
c,t in (27a) using

Σ
ji
c,t = ((Σji

b,t)
−1 − (Fi

t)
T (Pi

t+1|t −Qi
t)

−1Fi
t)

−1

= Σ
ji
b,t +Σ

ji
b,t(F

i
t)

T (Pi
t+1|t −Qi

t − Fi
tΣ

ji
b,t(F

i
t)

T )−1Fi
tΣ

ji
b,t,

we may find that the matrix Pi
t+1|t − Qi

t − Fi
tΣ

ji
b,t(F

i
t)

T is

invertible but no longer positive definite. This would make the

Gaussian density in the denominator of djit in (30) invalid.

To address this issue, in this work, we adopt the so-called

uncertainty-injection (UI) technique [28], [29] and scale up

the covariance Pi
t+1|t as

Pi
t+1|t ← λ ·Pi

t+1|t, (35)

where λ > 1. In particular, we increase the scaling factor λ
until the matrix Pi

t+1|t−Qi
t−Fi

tΣ
ji
b,t(F

i
t)

T can be factorized

using the Cholesky decomposition (i.e., it is now positive

definite). Besides, in this case, we compute djit using

djit =
pji · w

j

t|t · w
i
t+1|k · |Pi

t+1|t|

wi
t+1|t · |P

i
t+1|t −Qi

t − Fi
tΣ

ji
b,t(F

i
t)

T |
. (36)

We shall justify the effectiveness of the UI technique by

examining (19a) and (25a). It can be seen from (25a) that Σ
ji
b,t

is also dependent on Pi
t+1|t through Σi

a,t. However, scaling up

the predictive covariance Pi
t+1|t would not significantly affect

Σi
a,t. This is because in many practical tracking scenarios,

the process noise covariance is generally much smaller than

the state prediction covariance (i.e., Pi
t+1|t ≫ Qi

t), which

indicates Σi
a,t ≈ Qi

t (see (19a)). As a result, increasing Pi
t+1|t

will not scale up Σ
ji
b,t much but it will make Pi

t+1|t −Qi
t −

Fi
tΣ

ji
b,t(F

i
t)

T positive definite, as desired.

IV. SIMULATIONS

This section evaluates the performance of the proposed

fixed-interval multiple model smoother in a simulated maneu-

vering target tracking task. For the purpose of comparison,

the foward-time IMM filter [1], two-filter smoother [16] and

GPB2-type algorithm developed in [9] are considered as well.

A. Tracking Scenario

The tracking scenario in consideration is similar to the one

adopted in [30]. Specifically, a stationary sensor is deployed

at the origin to track a point target on the 2-D plane using

bearing and range measurements. At time t = 1, the target is

located at [234.92km, 85.50km]T , which is 250km from the

sensor. It has an initial velocity of [−176.8m/s,−176.8m/s]T .

Denote the target state at time t as xt = [xt, yt, ẋt, ẏt]
T ,

where [xt, yt]
T is the target position and [ẋt, ẏt]

T is the target

velocity. The target motion is governed by either the constant

velocity (CV) model [7]

xt = Fxt−1 + vt−1, (37)
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Fig. 1. The considered 2-D maneuvering target tracking scenario. The triangle
symbol denotes the sensor.

or the constant turn (CT) model [7]

xt = F(ω) · xt−1 + vt−1. (38)

In the CV model, the state transition matrix F is equal to

F =

[

1 T
0 1

]

⊗ I2, (39)

and ⊗ is the Kronecker product. In the CT model, ω is the

turn rate and the state transition matrix F(w) is

F(ω) =

⎡

⎢

⎢

⎣

1 0 sin(ωT )/ω −(1− cos(ωT ))/ω
0 1 (1− cos(ωT ))/ω sin(ωT )/ω
0 0 cos(ωT ) − sin(ωT )
0 0 sin(ωT ) cos(ωT )

⎤

⎥

⎥

⎦

.

(40)

The system sampling period is T = 3s. The process noise

vt−1 in the CV model and CT model is Gaussian. It has zero

mean and a covariance Qt−1 equal to

Qt−1 = σ2
vGt−1G

T
t−1 +

[

T 2I2 O

O O

]

, (41)

where the gain matrix is Gt−1 = [T 2/2, T ]T ⊗ I2 and σv =
1m/s. The first term on the right hand side of (41) is due to the

presence of random acceleration, while the second term comes

from the random target position jittering. It can be verified

that Qt−1 is invertible. In the simulation, all the smoothing

algorithms considered use the same process noise covariance.

Consider a time window of 600s. Within the time window,

the target performs two turns and they have fixed but different

turn rates. The first turn has an acceleration of 1g and a turn

rate of ω = −0.05rad/s. It starts at 200s and ends at 218s. The

second turn begins at 480s and continues until 600s. It has an

acceleration of 0.5g and a turn rate of ω = 0.022rad/s. During

other time segments in the time window, the target’s motion

follows the CV model in (37).

At each sampling time, the stationary sensor at the origin

obtains one bearing and one range measurements. They are

related to the target state xt via

yt =

[ √

x2
t + y2t

arctan(xt/yt)

]

+wt. (42)

wt is the measurement noise. It is also white Gaussian with

zero mean and covariance R = diag(σ2
r , σ

2
θ), where σr = 50m

and σθ = 0.5o.

The four algorithms in consideration, namely the forward-

time IMM filter [1], the GPB2-type method from [9], the two-

filter smoother [16] and the proposed enhanced smoothing

technique, all employ the same set of r = 7 state-space

models to tackle the target maneuvering. The measurement

equation for these state-space models is given in (42). Their

process equations are specified by (38) with their turn rates

being equal to 0, ±0.1rad/s, ±0.033rad/s and ±0.02rad/s.

Note that when the turn rate ω is 0, the CT model in (38)

reduces to the CV model defined in (37). In other words, the

set of candidate state-space models used by the filtering and

smoothing algorithms consists of one CV model and six CT

models with different turn rates.

We initialize the forward-time IMM filter using the bearing

and range measurements obtained at time t = 1. In par-

ticular, we set [x1, y1]
T to be the target position estimate

[r1 sin(θ1), r1 cos(θ1)]
T , whose covariance is

J1 ≈

[

sin(θ1) r1 cos(θ1)
cos(θ1) −r1 sin(θ1)

]

R

[

sin(θ1) r1 cos(θ1)
cos(θ1) −r1 sin(θ1)

]T

.

(43)

We set the target velocity estimate at time t = 1 to be [0, 0]T .

As a result, the covariance for the estimate of the true target

state x1, x1|1 = [r1 sin(θ1), r1 cos(θ1), 0, 0]
T , would be

P1|1 =

[

J1 O

O v2maxI2

]

, (44)

where vmax = 250m/s specifies the maximum possible target

speed. All the r = 7 models have the same initial state

estimate, state covariance and initial model probabilities at

time t = 1, which is equal to 1/7. The model transition

probability matrix P have its diagonal elements equal to 0.8
and its off-diagonal elements equal to 0.033.

The filtering results of the forward-time IMM filter are

shared among the three smoothers simulated for fair com-

parison. Besides, when implementing the forward-time IMM

filter and two-filter smoother, the cubature Kalman filter (CKF)

[31] is applied to perform state update and model-matched

measurement likelihood calculation.

B. Results

In the experiment, 1000 Monte Carlo runs are performed.

In Figs. 2 and 3, we plot, as a function of time, the estimation

root mean square errors (RMSEs) for the target position and

velocity from the four algorithms in consideration. To facilitate

the comparison, the forward-time IMM filter [1] is denoted by

’IMM Filter’, the two-filter smoother [16] is denoted by ’Two-

filter’ and the GPB2-type smoother [9] is denoted by ’GPB2’.

Three vertical lines are included in the figures to show the



starting time of the first turn, ending time of the first turn and

starting time of the second turn, respectively.

It can be seen from Figs. 2 and 3 that as expected, all

the smoothers outperform in terms of significantly reduced

estimation RMSEs over the forward-time IMM filter. But the

GPB2-type smoother exhibits large variation in its position

estimation RMSE, due to the use of the assumption that the

smoothed state estimates are noise-free but in fact, they have

errors (see discussions under (17)). The proposed multiple

model smoother offers evidently improved position estimation

performance over the GPB2-type smoother, probably due

to it using fewer approximations. Compared with the two-

filter approach, it provides slightly enhanced performance in

identifying both the target position and velocity.
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Fig. 2. Comparison of target position RMSEs.
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Fig. 3. Comparison of target velocity RMSEs.

To gain more insights, we plot the posterior probability of

model index M j
t as a function of time for the CV model (Fig.

4), CT model with turn rate w = 0.02rad/s (Fig. 5) and CT

model with w = −0.033rad/s (Fig. 6). The results are from a

particular Monte Carlo run.

Fig. 4 shows that from 0s to 200s and from 218s to 480s

when the target motion follows the CV model, the posterior
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Fig. 4. Comparison of the CV model probability (ω = 0rad/s).
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Fig. 5. Comparison of the CT model probability (ω = 0.02rad/s).
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Fig. 6. Comparison of the CT model probability (ω = −0.033rad/s).

probability of the corresponding model index found by the

proposed smoother is generally larger than those from the

two-filter algorithm and the IMM filter. This indicates that the

proposed smoother better matches the target motion pattern



within this time period, which leads to improved tracking

accuracy observed in Figs. 2 and 3. On the other hand, the

posterior model index probability calculated by the GPB2-type

method exhibits large variations over time. This may degrade

the tracking performance as shown in Fig. 2.

The assumed turn rates of the two CT models considered

here are very close to the true target turn rates during (480s,

600s) and (200s, 218s). By examining Figs. 5 and 6 that show

the posterior probability of their model indices over time,

observations very similar to those from Fig. 4 can be obtained.

The proposed smoother performs well in correctly identifying

the target motion model.

V. CONCLUSIONS

This paper presented an enhanced multiple model smoother

for Markovian switching systems. Its development relies on

solving the smoothing problem by jointly estimating the

posterior of the system state and model index, and applying

the exact formula for the quotient of two Gaussian densities.

The developed algorithm consists of a forward-time IMM

filter to achieve state filtering and an approximated solution

to the recursive equations of the Bayesian optimal smoother

to attain state smoothing. The only approximation required

to establish the proposed algorithm is to replace the model-

matched posterior, which is a Gaussian mixture, with a single

Gaussian density found by moment matching. This makes the

new algorithm perform as good as, if not better than, several

other smoothers in tracking a maneuvering target.

As future work, we shall generalize the developed method

to the case where the state transition is governed by nonlinear

functions (cf. (1a)). Besides, investigating its performance in

the time difference of arrival (TDOA) and frequency difference

of arrival (FDOA)-based target tracking [32] is in progress.
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