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Abstract: Despite significant advances in the development of high-resolution digital cameras in the
last couple of decades, their potential remains largely unexplored in the context of input-output modal
identification. However, these remote sensors could greatly improve the efficacy of experimental
dynamic characterisation of civil engineering structures. To this end, this study provides early
evidence of the applicability of camera-based vibration monitoring systems in classical experimental
modal analysis using an electromechanical shaker. A pseudo-random and sine chirp excitation is
applied to a scaled model of a cable-stayed bridge at varying levels of intensity. The performance
of vibration monitoring systems, consisting of a consumer-grade digital camera and two image
processing algorithms, is analysed relative to that of a system based on accelerometry. A full set of
modal parameters is considered in this process, including modal frequency, damping, mass and mode
shapes. It is shown that the camera-based vibration monitoring systems can provide high accuracy
results, although their effective application requires consideration of a number of issues related to the
sensitivity, nature of the excitation force, and signal and image processing. Based on these findings,
suggestions for best practice are provided to aid in the implementation of camera-based vibration
monitoring systems in experimental modal analysis.

Keywords: experimental modal analysis; modal damping; modal mass; computer vision; vibra-
tion testing

1. Introduction

Camera-based optical motion capture systems (MCS) have been widely used in the
vibration monitoring of civil engineering structures in the last few decades due to their
non-contact measurement capabilities [1]. The rapid development of camera-based MCS
is best reflected in the number of review studies on the subject which contain a wealth
of information related to recent advances in technology, methodology, applications, chal-
lenges and frontiers [2–8]. The typical application of camera-based MCS involves the
measurement of structural responses to ambient or imposed loading at one spatial location
at the time [8–13]. A simultaneous measurement of the structural response at spatially-
distant points is less common, although single- and multi-camera MCS have been shown
to enable this task. Various types of camera systems have been used, including high-
speed cameras [14], action cameras (e.g., GoPro) [15], smartphones [16], consumer-grade
digital cameras (CGC) [17], high resolution video cameras [18], stereo cameras [19], multi-
camera systems [20–22], and camera systems on board of unmanned autonomous vehicles
(UAV) [23,24]. The obtained data are most often used to extract modal frequencies and
mode shapes [15,18,25,26], and very rarely damping [20–22], using various operational
modal analysis (OMA) algorithms [15,26] which rely on the measurement of the structural
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response only. The modal parameters established with OMA are used for updating numeri-
cal models of structures [25], and for the assessment of load bearing capacity [27], structural
serviceability [13,28] and structural health [26,29]. Apart from the structural response mea-
surements, a few studies estimated the dynamic input loads to civil engineering structures
using optical MCS [30–32]. These loads were generated from humans jumping [30,33] or
walking [34], or by passing vehicles [31]. Other studies explored the potential of hybrid
instrumentation systems, combining measurements from typologically different sensors,
although the main focus of this work has been on recovering more accurate structural
response signals [35–38].

Notwithstanding the applicability of OMA in dynamic characterisation of civil engi-
neering structures [39], its inherent limitation is associated with the unknown force input.
This makes it difficult to obtain the modal mass (i.e., a measure of the mass being mo-
bilised for a given mode), and hence scale the mode shapes. Although several propositions
have been put forward to overcome this limitation, they rely on various interventions
introducing changes in local mass or stiffness of the structure, which can be impractical to
apply on large-scale structures, or require a high fidelity numerical model, which is often
difficult to obtain [40,41]. Consequently, modal mass is often overlooked in the dynamic
characterisation of structures [42]. However, modal mass is an important design parameter
as it governs the dynamic behaviour of structures subjected to dynamic actions (e.g., due
to wind and humans), as encapsulated by the Scruton number [43] and pedestrian Scruton
number [44,45]. Therefore, classical experimental modal analysis (EMA), relying on the
measured input force and output response, is favoured in the full dynamic characterisation
of structures. Within this context, the only study known to the authors reporting the modal
mass based on measurements from camera-based MCS is that of Kalybek et al. 2021 [46].
An instrumented hammer was used to provide excitation force to a simple spatial struc-
ture monitored with various optical MCS. The estimates of modal frequencies and mode
shapes were found compatible with those obtained with accelerometry and laser Doppler
vibrometer (LDV), while the maximum error magnitudes in the modal damping and mass
for modes at 2.7, 8.7, 13.5 and 18.7 Hz were all within 12% and 20%, respectively. However,
shaker excitation is often preferred over an instrumented hammer in modal testing, as it
generally enables a better signal-to-noise ratio [47]. An accurate determination of modal
damping and mass is of increasing importance, considering the advances in engineering
materials coinciding with trends towards building lighter and slenderer structures, which
are becoming increasingly susceptible to dynamic excitation. However, these dynamic
system parameters are rarely reported, even in the case of carefully-arranged laboratory
studies. The main reason for that is the significant uncertainty in the determination of
modal damping and mass associated with the variety of damping mechanisms and mod-
elling simplifications, and sensitivity to the vibration amplitudes and parameter extraction
methods, in particular the type and arrangement of instrumentation systems and data
processing algorithms [42,48]. This uncertainty reveals itself in the discrepancy between
the estimated modal damping and mass relative to the benchmark, e.g., an instrumentation
system of higher accuracy and sensitivity, reaching several dozen percent [46,48,49].

Although the interest in camera-based MCS stems from contactless monitoring of
full-size structures, laboratory-based tests allow the performance of these systems to
be scrutinised while removing error sources associated with the outside environment,
e.g., wind and illumination changes, and random unmeasured loads. Apart from simple
structural elements, such studies generally include scaled-down and simplified models of
buildings [19,23,50], bridges [51], and grandstands [30]. Therefore, this approach is also
adopted in this study.

Considering the above points and building on the work presented in [46], the purpose
of this study was to assess the performance of optical MCS in experimental modal analysis
using shaker excitation. To this end, the behaviour of a scaled model of a cable-stayed
bridge set in a laboratory environment was investigated subjected to pseudo-random white
noise-type and sine chirp excitation. The response of the bridge was measured with a set
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of wired accelerometers and two motion tracking algorithms available in an open access
domain, relying on videos collected with a consumer-grade digital camera. A complete set
of modal parameters was used in benchmarking of the performance of optical MCS against
accelerometery, including modal frequency, damping, mass and mode shapes. To the best
of the authors’ knowledge, this is one of the first studies exploring the performance of
camera-based MCS in the context of EMA conducted with a shaker.

The rest of the paper is organised as follows. The tested structure, instrumentation
and data processing is discussed in Section 2. Section 3 presents the main results, starting
from the assessment of data quality, through data processing considerations associated
with the optical MCS, to a complete set of modal parameters. The results from Section 3
are discussed in Section 4. Concluding remarks are given in Section 5.

2. Materials and Methods

Four forced vibration tests were conducted on a scaled model of a cable-stayed
bridge set in a laboratory environment. The whole experimental campaign, including the
deployment of the instrumentation systems, lasted three hours and there was no significant
variation in the environmental and laboratory conditions during that time. A pseudo-
random and a sine chirp excitation with frequency content between 3 and 25 Hz were
delivered to the structure with a vibration exciter at two levels of intensity each. The range
of excitation frequencies was chosen such as to mobilise the main vertical modes of the
deck of the bridge model, as informed by the results presented in [52]. Each test lasted
approximately 10 min. A summary of the tests and their identifiers used throughout the
paper are presented in Table 1. To enable comparison of the excitation signals’ intensity,
Table 1 includes the root-mean-square (RMS) value of the measured excitation force for
each test.

Table 1. Summary of the conducted modal tests.

Test ID Excitation Type Rate [Hz/s] Intensity
[RMS *, N]

Approximate Test
Duration [s]

Frequency Range
[Hz]

T1 pseudo-random n/a 13.35 600 3–25
T2 pseudo-random n/a 28.95 600 3–25
T3 sine chirp 0.037 9.69 600 3–25
T4 sine chirp 0.037 19.8 600 3–25

* RMS = root-mean-square.

An outline of the steps undertaken to capture and process the data used in EMA is
presented in Figure 1. The bridge model, instrumentation systems and data processing
steps are described in the following sections.

2.1. Bridge Model

The scaled model of a cable-stayed bridge used in this study and the layout of the
instrumentation systems are shown in Figure 2. The geometry and dynamic properties
of the bridge model were tuned to represent those of real-life full-scale counterparts. The
long and short spans of the bridge are 4550 mm and 1550 mm long, respectively, with
50 mm offset from the outer boundaries of the deck to the centre lines of the supports, and
the pylon is 2880 mm high. The pylon consists of two legs, each equipped with a cable
anchorage plate at the top, connected by a cross-beam. The short span has an auxiliary
support enabling longitudinal movement. The deck is made of a solid steel plate 15 mm
thick and 250 mm wide. Four pairs of cable stays connect the long span of the bridge to the
pylon, back tied on the other side to two anchor blocks by two pairs of cable stays. The
deck, sitting 595 mm above the ground, is fixed against longitudinal movement at the pylon
but is free to rotate, and free to move longitudinally over all other supports. The bridge
model has low frequency modes with relatively low damping. A detailed description of
the bridge model can be found in [52].
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Figure 1. Outline of the data fusion undertaken to enable experimental modal analysis (EMA).

Figure 2. Layout of the bridge model and instrumentation systems; (a) overview, (b) zomed-in section of the deck near the
shaker attachment. All dimensions in mm. In modal analysis, the performance of the bridge model in XY plane only was
of interest.
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2.2. Instrumentation

The instrumentation systems included wired accelerometers, vibration exciter (elec-
tromechanical shaker) and optical motion capture system. Basic specification of the in-
strumentation systems as provided by the manufacturers is given in Table 2, and a more
detailed description is given in Sections 2.2.1–2.2.3. The vibration exciter and accelerom-
eters were connected to Brüel & Kjær PULSE data acquisition system operating with
resolution of 24 bit and frequency of 4096 Hz.

Table 2. Basic specification of the instrumentation systems used in this study.

System Sensor Quantity Operational Frequency and
Resolution/Range/Sensitivity

Accelerometry Brüel & Kjær miniature DeltaTron® 4507 B005 10 0.4 Hz–6 kHz
150 µg & 100 mV/(m·s−2)

Vibration exciter Brüel & Kjær Type 4808 1 5 Hz–10 kHz *
112 N

Force transducer Brüel & Kjær DeltaTron® 8230-003 1
22000 N (compression) & 2200 N

(tension)
0.22 mV/N

Data acquisition system Brüel & Kjær PULSE 1 4096 Hz
24 bit

Consumer-grade camera
(CGC)

Canon EOS 200D with DIGIC 7 processor and
20 mm Canon lens with maximum aperture f/2.8 1 59.94 fps

24.2 MP

* Although 5 Hz in the nominal lowest frequency at which the input force can be fully controlled, the shaker can deliver force below that
frequency, as shown in Section 4.

2.2.1. Vibration Exciter

The excitation force was delivered via a Brüel & Kjær Type 4808 permanent magnetic
vibration exciter with a force rating of 112 N. Although the range of fully controllable
excitation frequencies of the shaker starts at 5 Hz, the shaker is capable of delivering force
at lower frequencies, albeit with lesser controllability. The shaker was mounted on a rigid
plate supported by the laboratory strong floor and attached to the deck with a stinger via
a Brüel & Kjær DeltaTron® 8320-003 force transducer, centrally in the transverse direction
and 2.075 m away from the axis of the support furthermost from the pylon. The pseudo-
random white noise excitation and sine chirp excitation, with a frequency content up to
25 Hz, were applied to the structure, each at two levels of intensity as defined in Table 1. The
rate of the frequency sweep for the sine chirp excitation was 0.037 Hz/s. Having two types
of excitation signal served to strengthen confidence in the obtained modal results but also to
examine whether the performance of the optical vibration monitoring systems differ in this
respect. The pseudo-random and sine chirp excitations were chosen because they prevent
bias error and offer a good signal-to-noise ratio [47] (p. 316). An important consideration in
the case of pseudo-random excitation is that, although the inherent periodicity of the signal
avoids leakage (i.e., spread of energy over frequency bins), the same force is effectively
applied to the structure repeatedly over the duration of the test [53] (p. 167). Therefore, the
influence of slight nonlinearities and random inputs will not be removed due to averaging
to the same extent as in the case of periodic random excitation. Examples of the measured
force and response at the point of application of force for T2 and T4 are shown in Figure 3.
The repeating patterns of the input force and output acceleration can be seen for pseudo
random excitation in Figure 3a,b, respectively. The three parts of the response to sine
chirp excitation in Figure 3b for which the amplitude modulus grows beyond 2 m·s−2

correspond to the periods in which the harmonic components of the excitation signal are
passing through the natural frequencies. These three parts correspond to the dips in the
sine chirp excitation force in Figure 3a which indicate that the deck is moving away from
the shaker at resonances [47] (p. 316).
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Figure 3. Truncated time histories of (a) excitation force and (b) structural response at the point of application of force
during T2 and T4.

2.2.2. Accelerometers

Acceleration of the deck was measured with ten Brüel & Kjær miniature DeltaTron
4507 B005 accelerometers sitting in dedicated clips attached to the deck with hot melt
glue. Seven accelerometers were mounted along the edge of the bridge’s main span facing
the camera, as shown in Figure 2a. The locations of these accelerometers correspond to
the locations of fiducial markers used with the optical MCS. Therefore, only these seven
accelerometers and the corresponding fiducial markers were used to measure the bridge
model response for the use in EMA reported in Section 3.2. There were two accelerometers
mounted on the other side of the deck, as shown in Figure 2b, to check for horizontal
and torsional modes. Another accelerometer was collocated and coaxial with the force
transducer mounted on the shaker’s stinger, except that it was mounted on the top rather
than bottom side of the deck, to be able to obtain direct point frequency response functions
(FRF) hence scale the mode shapes for calculating modal mass.

2.2.3. Optical Motion Capture System

Optical MCS consisted of a Canon EOS 200D with DIGIC 7 processor and a Canon
20 mm lens consumer-grade camera, hereafter referred to as CGC, and a set of fiducial
markers based on ArUco library [54], facilitating feature recognition and tracking, as shown
in Figure 4. A set of ten 80 × 80 mm ArUco markers with a 10 mm white border was used,
such that each marker was 100 × 100 mm in total. The markers were printed on 5 mm thick
laminated Styrofoam boards and attached to the side of the deck facing the camera using
hot melt glue. There were ten markers spaced every 450 mm between the pylon and the
furthermost support away from the pylon. The data from the two outermost markers were
not used in the subsequent analysis as there were fewer accelerometers dedicated to the
corresponding measurement of the vertical bridge’s response. The short span of the bridge,
having auxiliary support at midspan, was not instrumented as it is relatively stiff and it
does not participate significantly in the lowest vibration modes which were of interest. The
camera-to-structure distance was 5 m. To maximise the accuracy of measurement, the CGC
was positioned at the level of the deck such that the angle of incidence was approximately
zero degrees in the middle of the long span of the bridge. The horizontal tilt from the
zero degrees incident angle at the middle of the long span of the bridge, established from
the recorded videos, was approximately three degrees. These angles are within the range
recommended for obtaining reliable camera calibration enabling data to be resolved to
real-world (i.e., physical) coordinates. The videos were captured at 59.94 frames per second
(fps), with autofocus mode disabled. The arrangement of the optical MCS is shown in
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Figure 4. The big ArUco markers in the background were used for calibration, i.e., scaling
the readings from the camera to world coordinate system.

Figure 4. Optical motion capture system.

Two motion tracking algorithms commonly used for structural vibration monitoring
and available in an open access domain were used in video post processing—an area-
based template matching, hereafter referred to as template matching and denoted as TM,
and sparse optic flow, denoted as OF. Both algorithms were implemented in a custom
software package written in C++ enabling camera calibration (i.e., compensation for the
lens’ distortion), definition of the homography matrix [55] (i.e., specification of the transfer
function between the world coordinate system and the image coordinate system), and the
assignment of the region of interest (ROI) (i.e., an area within the captured image within
which to perform the tracking).

The area-based TM is a method that searches for an area in a frame that best matches
the template image. Although the laboratory in which the experiments took place had
small windows enabling ambient light to get through, the light intensity fluctuations
were rather small during the 2 h testing period. Nevertheless, the normalized correlation
coefficient was used as a correlation criterion as it is proven to be the most robust against
light intensity fluctuations [56]. Once the areas matching the template image are found
within a given video frame, the pixel coordinates are further refined using an enhanced
cross-correlation (ECC) interpolation method [57].

The sparse OF estimation is an image processing method that computes the motion or
flows of sparse feature points (e.g., edges and corners) between two subsequent images
caused by the relative movement between the object and camera. The method first extracts
the feature points within the predetermined target ROI using the Shi-Tomasi method [58]
and then calculates the optical flow at these points using the Lukas and Kanade OF
estimation algorithm [59]. The average coordinates of tracked points for each target area
are then estimated.

2.3. Data Processing

The data processing consisted of two main steps, signal resampling and time alignment
outlined in Section 2.3.1, and modal analysis outlined in Section 2.3.2.

2.3.1. Signal Resampling and Time Alignment

The following procedure was implemented in order to obtain frequency response func-
tions (FRF) for modal analysis. In the first step, the signals from the CGC, accelerometers
and force sensor had to be reconciled to a common sampling frequency, which was chosen
as 333 Hz. This was dictated by a desire to convert the decimal frequency of the CGC at
59.94 Hz to an integer, while ensuring the sampling frequency is high enough to enable
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good time alignment between signals from different sensors. To prevent the loss of signal
energy associated with this process, the resample function in Matlab R2020b [60] was used,
employing a finite impulse response filter. The outcome of this process is shown in Figure 5.
It can be seen that the original signals are represented well by the resampled signals, both
in the time and frequency domains, insomuch as the difference between them is hardly
visible on the plots. Further evidence supporting this point, in particular in relation to the
phase relationships, is given in Section 3.1.

Figure 5. Original and resampled acceleration measured at the excitation point during T2 in (a) time and (b) frequency
domain and the corresponding plots for T4 in (c,d). Signals in (a,c) were filtered with a 4th order Butterworth filter with cut
off frequencies of 3 & 23 Hz and 1 & 23 Hz, respectively. PSDs in (b,d) were obtained without averaging and windowing.

Having obtained signals sampled at a common frequency, time-alignment was achieved
by matching spatially correspondent acceleration and displacement signals by finding the
best fit in the least-squares sense. The point of application of force was chosen for that
purpose; to guarantee sufficient motion amplitude. To avoid excessive inaccuracies associ-
ated with numerical operations, acceleration and displacement signals were, respectively,
integrated and differentiated only once to obtain velocity signals. A 4th order two-way
Butterworth band-pass filter with cut-off frequencies at 3 and 20 Hz was applied through-
out this process. The results of signal alignment are shown in Figure 6. It can be seen that
the match is generally good, although there are small amplitude differences at the peaks.

The time-aligned signals served in modal analysis, outlined in Section 2.3.2.
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Figure 6. Truncated time-aligned response signals recorded at the excitation point during (a) T2 and (b) T4.

2.3.2. Modal Analysis

Modal analysis was conducted using Siemens Test.Lab 18.2 PolyMAX™ based on
poly-reference least-squares complex frequency domain algorithm.

The input-output relationship in a linear time-invariant system can be quantified in
terms of frequency response functions (FRF). The two main methods of estimating FRF
are denoted as H1 and H2. They differ in their definition and main assumption. H1 is
defined as a ratio of the cross-spectral density of the output with input to the auto-spectral
density of the input, and it assumes that the noise at the input is negligible. H2 is defined
as a ratio of auto-spectral density of the output to the cross-spectral density of the input
with output, and it assumes that the noise at the input is non-negligible. In theory, for
noise-free input and output, H1 and H2 should yield the same results, however, this is
not the case in real engineering systems. The phase of H1 and H2 is then the same, but
the magnitudes differ [61]. H1 and H2 were used in modal analysis, however, since H1
turned out to outperform H2, the reported results are based on H1. H2 is sometimes
preferred in the case of shaker excitation to define resonances, as in these conditions the
response of the structure is significant but the input signal is relatively weak, hence errors
are expected at the input. The choice of the FRF estimator is discussed further in Section
3.1, when considering the FRF obtained with sine chirp excitation which, in theory, should
not necessitate windowing of the signals.

To minimise leakage in spectral analysis, windowing and weighting functions are
often applied onto the analysed signals to enforce periodicity [53]. The pseudo-random
signal contained a number of repeating windows within which the harmonic components
were perfectly periodic, see Figure 3. Therefore, the excitation and response signals were
truncated such as to cover an integer number of windows while removing transients due
to initial conditions and the ramp function. In the case of sine chirp excitation, since the
periodicity requirement is in this case was met by default, no weighting functions were
initially applied in modal analysis. However, as will be later shown, this turned out to be
inadequate for EMA, in particular in the case of optical vibration monitoring systems, and
hence this step of signal processing was later introduced.

3. Results

The quality of the recorded data was assessed first and this is reported in Section 3.1,
followed by the evaluation of the performance of camera-based MCS in Section 3.2.
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3.1. Quality of Data

An initial assessment of the data quality was made based on the driving point FRF
obtained from signals collected with spatially collocated and axially aligned force and
response sensors, as shown in Figure 2b. A H1 estimator was used herein under the
assumption of the measured input signal being free from noise.

To verify whether the attachment of the shaker to the deck is adequate, the imaginary
part of driving point FRF should contain well defined peaks in one direction only. This
is shown based on the resampled signals collected during T2 and T4 in Figure 7. There
are well defined positive peaks at the frequencies close to those previously identified as
the natural frequencies based on a numerical model and experimental data [52], which
satisfies this quality requirement. The slight bumps at the frequencies close to 11Hz are
also indicative of a natural frequency, however, the instrumentation system was not tuned
to capture it, as discussed in the subsequent paragraphs.

Figure 7. Imaginary part of driving point accelerance FRF from (a) T2 and (b) T4.

In the case of driving point measurement, the FRF magnitude was expected to contain
an antiresonance dip between each pair of resonance peaks, while the FRF phase was
expected to exhibit a sharp transition from π to 0 rad around the resonances and from
0 to π rad around the antiresonances. For good quality results, the magnitude-squared
coherence should take the values close to unity at and around the natural frequencies. To
verify this condition, the random error in FRF magnitude at the peaks (which will be later
shown to correspond to natural frequencies) was calculated using the formula stated in
Brandt [47] (p. 294), after Bendat and Piersol [62]. Furthermore, in theory, no averaging
nor windowing should be necessary to obtain smoothly varying FRF magnitudes in the
case of sine chirp excitation. All of these issues will be dealt with in turn, for the pairs of
tests conducted with the same type of excitation signal.

Figure 8a,b present the FRF mobility magnitude for T1 and T2, respectively, obtained
using 71 blocks of 16 s length with a uniform window and 50% overlap, giving a fre-
quency resolution of ∆f = 0.0625 Hz. It can be seen that, although the magnitude varies
non-smoothly for all signals, it is generally well recovered by the optical systems relative
to accelerometry, except at the antiresonances where it fluctuates. Using more averages
produces much smoother results, but it masks the fact that the variance of the FRF magni-
tude for optical MCS is compatible with accelerometry down to the level of the discrete
frequency value at and around the two well-defined peaks at the lowest frequencies. The
measurements from sine chirp tests were processed in the same way in order to compare
the distinct features of FRF between the two excitation methods. For frequencies below
approximately 0.5 Hz, not presented explicitly, the FRF magnitude is more reliable for



Remote Sens. 2021, 13, 3471 11 of 25

optical systems, since the amplitude and phase error in piezoelectric accelerometers is
relatively high at low frequencies.

Figure 8. Driving point mobility for T1 & T2, respectively, in terms of (a,b) magnitude and (c,d) phase, together with (e,f)
magnitude-squared coherence. All signals were processed using 71 blocks of 16 s length with uniform window and 50%
overlap, giving frequency resolution ∆f = 0.0625 Hz.
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Out of the four peaks visible in the FRF magnitudes for T1 and T2 in Figure 8a,b,
respectively, only three correspond to well defined modes. The split peak at around 11.6 Hz
is not well defined with any of the MCS, including accelerometry, which is corroborated
by the lack of phase transition in Figure 8c,d, which is clearly visible for the other peaks.
According to the numerical model of the bridge created for the purpose of the previous
study [52], this peak corresponds to a mode dominated by the vertical bending behaviour
of the deck accompanied by the less pronounced bending behaviour of the pylon. However,
the setup of the instrumentation systems disallowed its full characterisation, as the shaker
was exciting the bridge in very close proximity to a node for that mode, nor was the full
modal characterisation the purpose of the current study. Therefore, in the remainder of this
study the focus will be on modes with frequencies at approximately 5.2, 15.1 and 19.2 Hz,
referred to as mode 1, mode 3 and mode 4, respectively.

The magnitude squared coherence presented in Figure 8e,f for T1 and T2, respectively,
is always above 0.81 at the three clearly identifiable peaks in Figure 8a,b, and can reach up
to 0.96. The match between accelerometry and optical MCS is generally very good, with
the maximum discrepancy of 0.05 for the three peaks. OF typically outperforms TM.

In the case of T1 and T2, the random error at the FRF magnitudes’ peaks (correspond-
ing to natural frequencies) always falls below 3.65% and is almost identical between all
MCS for a given test and peak, with differences in the range of 0.006% to 0.079% from the
(percentage) error obtained from accelerometry.

Figure 9a,b present driving point FRF magnitudes for T3 and T4 (both involving
sine chirp excitation), respectively, obtained without windowing and averaging, having
a frequency resolution of ∆f = 0.0017 Hz. As could be expected, the magnitude obtained
from accelerometry is varying smoothly, except for the frequencies below 3 Hz, for which
there was no excitation force, and frequencies between 3 Hz and 4.5 Hz, for which the
excitation force controllability and the accelerometer’s performance was not optimal, and
for the frequencies above 18 Hz and close to the expected antiresonance dips. However, the
FRF magnitudes for the optical MCS show a high level of noise across the whole frequency
range shown, except for the resonance peaks. This is due to the low response amplitudes of
the bridge at frequencies away from the resonances relative to the sensitivity of the optical
MCS and internal data processing algorithms used in the motion extraction. This shows
that, despite the harmonic nature of the excitation signal in T3 and T4, the signals need
to be windowed and averaged to minimise the errors associated with the internal data
processing inherent to optical MCS. Furthermore, the H1 estimator is preferred in this case,
since the internal processing of MCS data seems to generate significant noise away from the
resonances. The results obtained using 71 blocks of 16 s duration with a uniform window
and 50% overlap, giving a frequency resolution of ∆f = 0.0625 Hz, are shown in Figure 10.

Figure 9. Driving point FRF mobility from sine chirp excitation in (a) T3 and (b) T4.
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Figure 10. Driving point mobility for T3 & T4, respectively, in terms of (a,b) magnitude and (c,d) phase, together with (e,f)
magnitude-squared coherence. All signals were processed using 16 s length with uniform window and 50% overlap, giving
frequency resolution ∆f = 0.0625 Hz.
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It can be seen in Figure 10a,b that the FRF mobility magnitude for T3 and T4, respec-
tively, is generally well recovered by the optical systems relative to accelerometry at and
around the first peak. For the rest of the peaks, the optical MCS match and underestimate
the magnitude obtained from accelerometry at frequencies lower and higher than those
at the peaks, respectively. OF generally outperforms TM, and the results are better for T4.
In comparison to the results presented in Figure 8 for T1 and T2, which were obtained
with the same signal processing method, the match in the FRF magnitude is overall worse,
although the magnitude evolves more smoothly, in particular for accelerometry and OF.

There are resonant FRF phase transitions in Figure 10c,d for T3 and T4, respectively,
around the frequencies corresponding to the three clearly visible peaks in Figure 10a,b,
although the results from TM are relatively noisy, in particular for T3.

The magnitude squared coherence presented in Figure 10e,f for T3 and T4, respectively,
is always above 0.7 for accelerometry and OF at the three clearly identifiable peaks in
Figure 10a,b, and can reach up to 0.95. The match between accelerometry and OF is very
good, with the maximum discrepancy of 0.05 for the three peaks. The magnitude squared
coherence for TM takes values as low as 0.62 for mode 4, and the match with accelerometry
is much worse, with maximum discrepancy of 0.33.

In the case of T3 and T4, the random error in FRF magnitude at the peaks (which
will be later shown to correspond to natural frequencies) always falls below 5.59% and is
almost identical between all MCS for a given test and peak, with differences in the range of
0.007% to 0.052% from the (percentage) error obtained from accelerometry.

3.2. Modal Parameters

In general, modal parameters are sensitive with regards to the data processing method.
In particular, the number of averages and the size of blocks of data chosen in the calculation
of the FRF will affect the random and bias errors, respectively. Since these two parameters
are co-dependent (i.e., longer block size will produce fewer averages for a given signal
length and vice versa), a compromise needs to be found. Furthermore, the block size
will affect the frequency resolution of FRF, and hence the accuracy of modal frequency
estimates. Therefore, to establish and verify the data processing method, stabilisation
diagrams of modal parameters were generated for each of the considered modes. Exemplar
outcomes of this process are shown in Figure 11 for T2. The number of independent
blocks (or averages), nb, was {1,3,6,9,18,36,72,144}, there was no windowing applied and no
overlap. A relatively high variability of modal parameters can be seen for nb < 18. The dif-
ference in modal parameters obtained with the three MCS becomes fairly consistent at each
nb > 18. To account for these features, a trade-off between the random and bias error, and
FRF frequency resolution was established at nb = 36. For consistency and compatibility,
this condition was applied in all analyses presented hereafter.

The modal parameters for all tests were established using 36 nonoverlapping blocks
of 16 and 16.65 s duration for T1 and T2, and T3 and T4, respectively, applying a uniform
window with 50% overlap, giving a total of 71 blocks. The results are shown in Table 3.
The percentage errors relative to the results from accelerometry are given in the brackets
and, for better observability of trends, visualised in Figure 12.
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Figure 11. Exemplar stabilisation plots for modal parameters derived for (a) mode 1, (b) mode 3 and (c) mode 4 from T2.
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Table 3. Modal properties. Values in brackets denote percentage error relative to the results from accelerometry.

Frequency (Hz) Damping Ratio (%) Generalised Mass (kg)

Test Mode Accelerometry TM OF Accelerometry TM OF Accelerometry TM OF

T1 1 5.384 5.373
(−0.2)

5.368
(−0.3) 4.79 5.00

(4.38)
4.97

(3.76) 89.5 83.7
(−6.45)

84.1
(−6.01)

T1 3 15.218 15.215
(−0.02)

15.213
(−0.03) 0.70 0.68

(−2.86)
0.71

(1.43) 353.0 418.9
(18.67)

463.3
(31.24)

T1 4 19.637 19.634
(−0.02)

19.627
(−0.05) 1.91 1.88

(−1.57)
1.89

(−1.05) 79.8 111.7
(39.91)

127.9
(60.24)

T2 1 5.182 5.180
(−0.04)

5.177
(−0.1) 3.19 3.24

(1.57)
3.22

(0.94) 87.8 92.4
(5.2)

98.3
(11.85)

T2 3 15.082 15.081
(−0.01)

15.08
(−0.01) 0.78 0.76

(−2.56)
0.77

(−1.28) 371.9 387.3
(4.14)

383.3
(3.06)

T2 4 19.178 19.183
(0.03)

19.18
(0.01) 2.09 2.06

(−1.44)
2.06

(−1.44) 80.7 101.6
(25.97)

84.13
(4.3)

T3 1 5.398 5.381
(−0.31)

5.368
(−0.56) 2.91 2.66

(−8.59)
2.82

(−3.09) 110.8 112.5
(1.51)

103.8
(−6.34)

T3 3 15.210 15.143
(−0.44)

15.155
(−0.36) 0.88 0.46

(−47.73)
0.52

(−40.91) 369.7 640.5
(73.22)

426.5
(15.35)

T3 4 19.410 19.499
(0.46)

19.326
(0.43) 1.15 1.70

(47.83)
0.70

(−39.13) 119.2 104.5
(−12.36)

171.9
(44.2)

T4 1 5.182 5.215
(0.64)

5.214
(0.62) 2.92 2.89

(−1.03)
2.79

(−4.45) 94.0 90.9
(−3.21)

96.2
(2.4)

T4 3 15.059 15.015
(−0.29)

15.053
(−0.04) 0.90 0.60

(−33.33)
0.72

(−20) 396.3 466.2
(17.63)

469.6
(18.47)

T4 4 18.960 19.084
(0.65)

18.912
(−0.25) 1.07 1.43

(33.64)
0.71

(−33.64) 109.2 134.0
(22.71)

182.2
(66.85)

It can be seen that the modal parameters are sensitive to the excitation method, both
in terms of the nature of the excitation signal and its intensity. This is true regardless of
the MCS being considered. The modal mass for mode 3 is much higher than for mode 1
and 4, due to that mode significantly mobilising the pylon. The pseudo random excitation
consistently yields better results in terms of modal frequency and damping, but similar
results in terms of modal (generalised) mass. The closest match between the modal
damping and mass is typically found for mode 1. The error magnitude is typically the
highest for modal mass, reaching maximum slightly above 73%, and the lowest for modal
frequency, reaching maximum at just below 0.66%. Overall, the best set of data in terms of
the congruence between the accelerometry and optical MCS comes from tests conducted
at a higher excitation intensity (i.e., T2 and T4), and the pseudo-random excitation yields
better results than the sine chirp excitation.

The (partial) mode shapes of the longest span of the bridge are shown in Figure 13.
The limits on the horizontal axes were scaled to represent the total length of that span
between the supports. The 50 mm difference between the span length in Figures 2 and 13
is caused by the offset of the deck’s support furthermost away from the pylon from the
boundary of the bridge. It can be seen that the match between accelerometry and optical
MCS is generally good.

The modal assurance criterion (MAC) obtained between the mode shapes from ac-
celerometry and optical MCS is presented in Table 4 and, for better observability of trends,
visualized in Figure 14.

In all cases the MAC takes values above 0.95, indicating that the eigenvectors derived
from accelerometry and optical MCS are well correlated [61] (p. 426). The results obtained
with the two image processing algorithms are similar, but OF gives slightly better match
with accelerometry on average.
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Table 4. Modal assurance criterion (MAC) for all tests.

Test Optical MCS Mode 1 Mode 3 Mode 4
T1 Template matching (TM) 0.9650 0.9763 0.9875
T1 Optic flow (OF) 0.9982 0.9986 0.9964
T2 Template matching (TM) 0.9513 0.9903 0.9931
T2 Optic flow (OF) 0.9528 0.9966 0.9928
T3 Template matching (TM) 0.9904 0.9617 0.9901
T3 Optic flow (OF) 0.9926 0.9759 0.9865
T4 Template matching (TM) 0.9866 0.9723 0.9921
T4 Optic flow (OF) 0.9870 0.9841 0.9962

Figure 12. Errors in modal parameters obtained with optical motion capture systems: (a) frequency, (b) damping, (c) mass.
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Figure 13. Partial mode shapes for T2: (a) mode 1, (b) mode 3 and (c) mode 4.

Figure 14. Modal assurance criterion (MAC) for all tests.

4. Discussion

Three well-defined modes were identified by all instrumentation systems, although
the presence of another mode was also evident in the measured signals, but it was not
identified explicitly due to the excitation force applied at the node for that mode. This
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agrees with the predictions of a numerical model of the bridge [52], indicating four modes
within the frequency range of interest of this study. All of these modes can be characterised
by the bending behaviour of the deck in the plain containing its weak axis, accompanied
by the bending behaviour of the pylon in the plane containing the longitudinal axes of the
two legs. Although the behaviour of the pylon was not measured explicitly, according to a
numerical model of the bridge all the mentioned modes are dominated by the movement
of the deck, except for mode 3 which is dominated by the movement of the pylon. This
explains the modal mass for mode 3 being significantly greater than for the other modes
identified herein.

The modal parameters established during this study differ slightly from those pre-
viously reported [52]. There are two main reasons for this. On the one hand, the tension
in the cable stays have been changed since the previous tests. On the other hand, the
excitation force came from the shaker rather than ambient sources. However, as could be
expected, the unity-normalised mode shapes are still in relatively good agreement.

The dynamic behaviour of the bridge was found to be sensitive to the excitation
intensity. This applies to the values of the derived modal parameters, but also to the
accuracy of results from optical MCS against accelerometry. The best set of data in the
latter sense comes from T2 (i.e., test with pseudo-random excitation of higher intensity),
where the excitation force had the highest power density of all tests, as shown in Figure 15.
In comparison, during T4 (i.e., test with sine chirp excitation of higher intensity), the force
power density has only reached half of that in T2. However, the excitation intensity alone
does not explain the better match of modal parameters derived from optical MCS for T1
(i.e., pseudo-random test with lower intensity), relative to T4 (and T3, i.e., test with sine
chirp excitation of lower intensity). Since the ambient conditions have not changed during
the tests, which were conducted in a highly controlled laboratory environment, it seems
that the internal processing of data during motion extraction favours the pseudo-random
excitation. This is corroborated by the results in Figures 8 and 10, showing a better match
of driving point FRF derived from T1 and T2 relative to T3 and T4.

Figure 15. Power spectra density of the input force for all tests.

The difference in modal parameters derived from tests at various excitation intensity
can be mainly attributed to the behaviour of the bearings away from the pylon, of which an
example is shown in Figure 16. At a relatively low level of excitation, (e.g., during T1 and
T3), the bearings have significant friction providing restraint against movement, and hence
relatively higher identified natural frequencies. The friction at the bearings is overcome by
the excitation force during T2 and T4, most likely due to static-kinetic friction transition.
Similar behaviour can be observed in real full-scale bridges. For example, for the simply-
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supported bridge reported in [63], the bearings work in different regimes depending on the
vibration amplitude. At relatively small vibration levels, the idealised bearings behave as
a pin-pin arrangement, providing restraint against longitudinal movement, and hence
higher modal frequencies. However, at higher vibration levels, the idealised bearings
behave as a pin-roller arrangement, providing allowance for longitudinal movement, and
hence lower modal frequencies. This amplitude dependence hypothesis can be further
supported illustratively in view of Figure 17a depicting the comparison of modal fre-
quencies derived solely through accelerometry for all tests relative to the results from
T2. Namely, for the pairs of tests with the same excitation type, frequency increases with
decreasing response amplitudes (or excitation intensity) for all modes. Furthermore, com-
paring Figures 17a and 12a, it can be seen that the modal frequency deviation between
results from accelerometry and optical MCS, for any mode identified from a given test,
typically falls below the modal frequency deviation obtained from accelerometry between
tests for that mode. This implies that the potential error from the optical MCS is within the
identification uncertainty bounds imposed by the excitation type and intensity in the case
of accelerometry.

Figure 16. Bearing’s arrangement.

Figure 17. Cont.
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Figure 17. Errors in modal parameters obtained with accelerometry for tests T1, T3, and T4 in comparison to T2:
(a) frequency, (b) damping, (c) mass.

In general, the errors in modal frequencies are negligible for all modes and all
modal results closely follow the qualitative and quantitative outcomes obtained in [46].
An impulse excitation delivered with an instrumented hammer was used therein to mo-
bilise a simpler and lighter structure of which response was measured with a great variety
of instrumentation systems. Only the TM outputs are directly comparable to this study.
A common feature, beyond the relative magnitudes of deviations established, is that there
is no clear trend in the identification errors of modal frequency or damping or mass. This
is to say that, relative to the baseline results from accelerometry, a higher mode does not
necessarily produce worse modal estimates than a lower and possibly more excited mode
when identified through optical means.

Considering all tests and tracking algorithms, the best match between optical MCS and
accelerometry was found for mode 1. The error magnitudes in modal frequency, damping
and mass fall in this case below 0.65%, 9% and 12%, respectively. As could be expected [46],
the most challenging parameter to capture in experimental studies is the modal mass. The
deviation from the baseline values from accelerometry reaches in this case up to 74% for
mode 3 and TM during T3—the test yielding the worst results overall. Damping, which is
also amenable to numerous influences and artefacts, and for this reason has been rarely
reported in previous studies probing the performance of optical MCS [64], follows close
with deviations reaching up to almost 48% for mode 3 and mode 4, again for TM and
during T3. It is worth noting that mode 4 is generally less excited than mode 3 for any test,
see e.g., Figure 3b, which is particularly influential on the results obtained from optical
MCS measuring the displacement. What seems to be working very well for identifying
both modal damping and mass with optical MCS, regardless of the considered mode, is
the application of OF during T2—pseudo-random excitation at a sufficient intensity.

To further reveal the limitations of the results obtained with optical MCS, it is also
worthwhile considering the deviations between the modal damping and mass obtained
during different tests from accelerometry only. These are shown in Figure 17b,c relative to
the corresponding results from T2—the test yielding the best results overall.

The error in modal mass seems to be identified with similar and not higher uncertainty
than modal damping. However, looking at the results in Figure 12, the opposite is true for
the results obtained with optical MCS relative to accelerometry. This is interesting in itself
and requires further investigation.

The errors in modal parameters are comparable with those established from testing
a structure moved between twelve European laboratories during a project aiming at
establishing the consistency in obtaining modal parameters [49]. The variability in the
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modal frequency, damping and scaling coefficient for mass-normalised modes (rather
than modal mass, as presented here) based on measurements from accelerometers was
within 4%, 30% and 10%, respectively. The results presented here are also in agreement
with outputs from a series of papers, e.g., [64,65], originating from a project aiming at
benchmarking the performance of optical MCS against accelerometry. However, no modal
damping nor mass was reported therein. Admittedly, it would be interesting to compare
the identification accuracy for the full set of modal parameters directly, however, similar
data are not available elsewhere. On these grounds, the relevant work presented herein
constitutes a genuine contribution to the field.

5. Conclusions

SHM using optical MCS has been gaining much popularity over conventional wired
and wireless approaches requiring direct contact with the tested structure. In the course of
a well-controlled experimental campaign on a large-scale model of a cable-stayed bridge,
a number of observations were made regarding the performance of CGC-based MCS in
EMA. Namely:

• Optic flow algorithm consistently gives better results than template matching.
• Relative to the benchmark results obtained with accelerometry, the pseudo random excita-

tion gives superior results to sine chirp excitation regardless of the excitation intensity.
• The error in modal parameters derived from optical MCS relative to accelerometry

is within the uncertainty bounds imposed by the excitation type and intensity when
considering the identification results from accelerometry only.

• The necessary processing of images by the motion extraction algorithms unavoidably
generates noise, the nature of which appears to be random. To alleviate this effect, the
duration of the test should be long enough to be able to average out the noise while
preserving sufficient frequency resolution. This also applies in the case of sine chirp
excitation, which, in theory, should not require windowing and averaging due to the
periodicity of the excitation signal.

• Although in the case of shaker excitation, a H2 estimator is sometimes preferred to
define resonances [62] (p. 288), the noise associated with the extraction of motion
data from images overwrites this casualty making a H1 estimator more suitable for
obtaining FRFs.

• As is often the case in modal analysis, the modal parameters are sensitive to the data
processing method, e.g., the length of blocks of data. This is also the case when using
optical MCS, and suitable stabilisation diagrams can be used to gain confidence in the
reliability of the results.

Overall, the results of this study encourage wider utilisation of camera-based vibra-
tion monitoring systems in engineering practice and motivate efforts to fully exploit the
high-end information (i.e., by deriving modal damping and mass), apart from the modal
frequencies and mode shapes typically reported.
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Acknowledgments: Władysław Czyryński of the Department of Roads, Bridges, Railways and
Airports at Wrocław University of Science and Technology in Poland is acknowledged for providing
assistance in laboratory work. Sumit S. Parale is acknowledged for providing assistance with the
integration of OpenCV libraries.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Feng, D.; Feng, M.Q. Computer Vision for Structural Dynamics and Health Monitoring; John Wiley & Sons and ASME Press: Hoboken,

NJ, USA, 2020.
2. Ye, X.W.; Dong, C.Z.; Liu, T. A Review of Machine Vision-Based Structural Health Monitoring: Methodologies and Applications.

J. Sens. 2016, 2016, 7103039. [CrossRef]
3. Baqersad, J.; Poozesh, P.; Niezrecki, C.; Avitabile, P. Photogrammetry and optical methods in structural dynamics—A review.

Mech. Syst. Signal Process. 2017, 86, 17–34. [CrossRef]
4. Feng, D.; Feng, M.Q. Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage

detection—A review. Eng. Struct. 2018, 156, 105–117. [CrossRef]
5. Spencer, B.F.; Hoskere, V.; Narazaki, Y. Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring.

Engineering 2019, 5, 199–222. [CrossRef]
6. Dong, C.-Z.; Catbas, F.N. A review of computer vision–based structural health monitoring at local and global levels. Struct. Health

Monit. 2020, 1475921720935585. [CrossRef]
7. Zona, A. Vision-based vibration monitoring of structures and infrastructures: An overview of recent applications. Infrastructures

2021, 6, 4. [CrossRef]
8. Xu, Y.; Brownjohn, J.M.W. Review of machine-vision based methodologies for displacement measurement in civil structures.

J. Civ. Struct. Health Monit. 2018, 8, 91–110. [CrossRef]
9. Lydon, D.; Lydon, M.; Taylor, S.; Del Rincon, J.M.; Hester, D.; Brownjohn, J. Development and field testing of a vision-based

displacement system using a low cost wireless action camera. Mech. Syst. Signal Process. 2019, 121, 343–358. [CrossRef]
10. Brownjohn, J.M.W.; Hester, D.; Xu, Y.; Bassitt, J.; Koo, K. Viability of optical tracking systems for monitoring deformations of a

long span bridge. In Proceedings of the 6th European Conference on structural Control, Sheffield, UK, 11–13 July 2016; pp. 11–13.
[CrossRef]

11. Zhao, X.; Ri, K.; Wang, N. Experimental Verification for Cable Force Estimation Using Handheld Shooting of Smartphones.
J. Sens. 2017, 5625396. [CrossRef]

12. Khuc, T.; Catbas, F.N. Completely contactless structural health monitoring of real-life structures using cameras and computer
vision. Struct. Control Health Monit. 2017, 24, e1852. [CrossRef]

13. Dong, C.Z.; Bas, S.; Catbas, F.N. Investigation of vibration serviceability of a footbridge using computer vision-based methods.
Eng. Struct. 2020, 224, 111224. [CrossRef]

14. Luo, L.; Feng, M.Q.; Wu, Z.Y. Robust vision sensor for multi-point displacement monitoring of bridges in the field. Eng. Struct.
2018, 163, 255–266. [CrossRef]

15. Xu, Y.; Brownjohn, J.; Kong, D. A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed
footbridge. Struct. Control Health Monit. 2018, 25, 1–23. [CrossRef]

16. Kromanis, R.; Xu, Y.; Lydon, D.; Martinez del Rincon, J.; Al-Habaibeh, A. Measuring structural deformations in the laboratory
environment using smartphones. Front. Built Environ. 2019, 5, 44. [CrossRef]

17. Kohut, P.; Holak, K.; Uhl, T.; Ortyl, Ł.; Owerko, T.; Kuras, P.; Kocierz, R. Monitoring of a civil structure’s state based on noncontact
measurements. Struct. Health Monit. 2013, 12, 411–429. [CrossRef]

18. Yang, Y.; Dorn, C.; Mancini, T.; Talken, Z.; Kenyon, G.; Farrar, C.; Mascareñas, D. Blind identification of full-field vibration modes
from video measurements with phase-based video motion magnification. Mech. Syst. Signal Process. 2017, 85, 567–590. [CrossRef]

19. Park, S.W.; Park, H.S.; Kim, J.H.; Adeli, H. 3D displacement measurement model for health monitoring of structures using
a motion capture system. Meas. J. Int. Meas. Confed. 2015, 59, 352–362. [CrossRef]

20. Park, H.S.; Young Kim, J.; Gi Kim, J.; Woon Choi, S.; Kim, Y. A new position measurement system using a motion-capture camera
for wind tunnel tests. Sensors 2013, 13, 12329–12344. [CrossRef]

21. Oh, B.K.; Hwang, J.W.; Kim, Y.; Cho, T.; Park, H.S. Vision-based system identification technique for building structures using
a motion capture system. J. Sound Vib. 2015, 356, 72–85. [CrossRef]

22. Dong, C.Z.; Celik, O.; Catbas, F.N. Marker-free monitoring of the grandstand structures and modal identification using computer
vision methods. Struct. Health Monit. 2019, 18, 1491–1509. [CrossRef]

23. Hoskere, V.; Park, J.W.; Yoon, H.; Spencer, B.F. Vision-Based Modal Survey of Civil Infrastructure Using Unmanned Aerial
Vehicles. J. Struct. Eng. 2019, 145, 1–14. [CrossRef]

http://doi.org/10.1155/2016/7103039
http://doi.org/10.1016/j.ymssp.2016.02.011
http://doi.org/10.1016/j.engstruct.2017.11.018
http://doi.org/10.1016/j.eng.2018.11.030
http://doi.org/10.1177/1475921720935585
http://doi.org/10.3390/infrastructures6010004
http://doi.org/10.1007/s13349-017-0261-4
http://doi.org/10.1016/j.ymssp.2018.11.015
http://doi.org/10.15131/shef.data.4299752
http://doi.org/10.1155/2017/5625396
http://doi.org/10.1002/stc.1852
http://doi.org/10.1016/j.engstruct.2020.111224
http://doi.org/10.1016/j.engstruct.2018.02.014
http://doi.org/10.1002/stc.2155
http://doi.org/10.3389/fbuil.2019.00044
http://doi.org/10.1177/1475921713487397
http://doi.org/10.1016/j.ymssp.2016.08.041
http://doi.org/10.1016/j.measurement.2014.09.063
http://doi.org/10.3390/s130912329
http://doi.org/10.1016/j.jsv.2015.07.011
http://doi.org/10.1177/1475921718806895
http://doi.org/10.1061/(ASCE)ST.1943-541X.0002321


Remote Sens. 2021, 13, 3471 24 of 25

24. Morgenthal, G.; Hallermann, N.; Kersten, J.; Taraben, J.; Debus, P.; Helmrich, M.; Rodehorst, V. Framework for automated
UAS-based structural condition assessment of bridges. Autom. Constr. 2019, 97, 77–95. [CrossRef]

25. Feng, D.; Feng, M.Q. Vision-based multipoint displacement measurement for structural health monitoring. Struct. Control Health
Monit. 2016. [CrossRef]

26. Feng, D.; Feng, M.Q. Experimental validation of cost-effective vision-based structural health monitoring. Mech. Syst. Signal
Process. 2017, 88, 199–211. [CrossRef]

27. Jamali, S.; Chan, T.H.T.; Nguyen, A.; Thambiratnam, D.P. Reliability-based load-carrying capacity assessment of bridges using
structural health monitoring and nonlinear analysis. Struct. Health Monit. 2019, 18, 20–34. [CrossRef]

28. Celik, O.; Dong, C.-Z.; Catbas, F.N. Computer Vision–Based Human Comfort Assessment of Stadiums. J. Perform. Constr. Facil.
2020, 34, 04020005. [CrossRef]

29. Cha, Y.J.; Chen, J.G.; Büyüköztürk, O. Output-only computer vision based damage detection using phase-based optical flow and
unscented Kalman filters. Eng. Struct. 2017, 132, 300–313. [CrossRef]

30. Celik, O.; Dong, C.; Catbas, F.N. A computer vision approach for the load time history estimation of lively individuals and
crowds. Comput. Struct. 2018, 200, 32–52. [CrossRef]

31. Dan, D.; Ge, L.; Yan, X. Identification of moving loads based on the information fusion of weigh-in-motion system and multiple
camera machine vision. Measurement 2019, 144, 155–166. [CrossRef]

32. Tian, Y.; Zhang, J.; Yu, S. Rapid Impact Testing and System Identification of Footbridges Using Particle Image Velocimetry. Comput.
Civ. Infrastruct. Eng. 2019, 34, 130–145. [CrossRef]

33. Tian, Y.; Zhang, J.; Yu, S. Vision-based structural scaling factor and flexibility identification through mobile impact testing. Mech.
Syst. Signal Process. 2019, 122, 387–402. [CrossRef]

34. Wang, Y.; Brownjohn, J.; Dai, K.; Patel, M. An Estimation of Pedestrian Action on Footbridges Using Computer Vision Approaches.
Front. Built Environ. 2019, 5, 1–11. [CrossRef]

35. Xu, Y.; Brownjohn, J.M.W.; Huseynov, F. Accurate Deformation Monitoring on Bridge Structures Using a Cost-Effective Sensing
System Combined with a Camera and Accelerometers: Case Study. J. Bridg. Eng. 2019, 24, 05018014. [CrossRef]

36. Ozer, E.; Feng, D.; Feng, M.Q. Hybrid motion sensing and experimental modal analysis using collocated smartphone camera and
accelerometers. Meas. Sci. Technol. 2017, 28, 105903. [CrossRef]
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