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Abstract—This work provides a continual learning solution in
a single-classifier to multiple classification tasks with various data
sets. A Gaussian process (GP) is combined with a Convolutional
Neural Network (CNN) feature extractor architecture (CNNGP).
Post softmax samples are used to estimate the variance. The
variance is characterising the impact of uncertainties and is
part of the update process for the learning rate parameters.
Within the proposed framework two learning approaches are
adopted: 1) in the first, the weights of the CNN are deterministic
and only the GP learning rate is updated, 2) in the second
setting, prior distributions are adopted for the CNN weights.
Both the learning rates of the CNN and the GP are updated. The
algorithm is trained on two variants of the MNIST dataset, split-
MNIST and permuted-MNIST. Results are compared with the
Uncertainty Guided Continual Bayesian Networks (UCB) multi-
classifier approach [1]. The validation shows that the proposed
algorithm in the Bayesian setting outperforms the UCB in tasks
subject to Gaussian noise image noises and shows robustness.

Index Terms—deep learning, Bayesian learning, classification,
artificial intelligence, machine learning, continual learning

I. INTRODUCTION

Continual learning is a sub-field of machine learning that

aims to study the performance of deep neural networks

(DNNs) on non-stationary datasets [2]. The past two decades

of Artificial Intelligence (AI) witnessed a rise in algorithms

that can learn from stationary datasets and perform with near

or beyond human-level accuracy [3], [4]. A further study

on the vulnerabilities of DNNs, in the form of erroneous

predictions and sensitivity to imperceptible input changes,

has led to research in robustness and interpretability [5], [6].

As a solution in cases of noises and adversarial attacks, an

extensive study on Bayesian learning methods and adversarial

learning has contributed to advances in explainable and robust

AI [7], [8]. This paper takes a step further in this direction to-

wards achieving Bayesian methods in both continual learning

and adversarial robustness.

Neural networks face challenges such as catastrophic for-

getting [9], a phenomenon in which a substantial drop in

performance is observed when a network is presented with

a new task. This happens both when the new task resumes a

portion of the current operating dataset and when it switches

to a completely new data set. Continual learning [2] aims at

solutions able to deal with such forgetting challenges so that

the network has a reliable and robust performance when the

environment changes or conditions become uncertain. Most of

the available solutions have substantial memory requirements,

especially in the cases of per-parameter regularisation [1], or

require dynamic storage in the case of replay methods [10].

Bayesian methods provide different ways to characterise

the impact of uncertainties on the final solutions, including

in classification tasks. This provides confidence measures in

the predictions in DNNs [11]. It also gives an insight into

interpretability and explainability in AI systems [6]. Recently,

different approaches for uncertainty quantification were pro-

posed aimed at assisting continual learning. These include

Variational Continual Learning (VCL) networks [12] and

Uncertainty Guided Continual Bayesian (UCB) networks [1].

Both VCL and UCB are Bayesian inference approaches able

to perform continual learning. The difference in their imple-

mentation is that VCL updates its posterior distribution by

simply multiplying the prior by the likelihood, while UCB

uses a special class of DNNs that assigns prior distribution

over weights. These solutions belong to the class of Bayesian

neural networks (BNNs) [7].

Each of them has its pros and cons. The VCL can be trained

on small representations of the dataset and is an inference

approach that is easier to implement compared with the UCB.

UCB adjusts the learning rates of the means of the posterior

distributions based on the variance of each of the weights.

Both the VCL and UCB use a multiple classifiers approach.

This means that for each task, a separate classifier is learned.

A study on a single classifier will fill in this research gap.

This paper investigates the performance of a single classifier

in a continual learning scenario where there are multiple

classification tasks, with multiple classes. The same method

for updating the learning rate parameters from the variance is

used as in the UCB method [1].

Particularly, there are three questions that this paper investi-

gates: 1) can a single-classifier outperform a multi-classifier, 2)

does the difference in performance change with the number of

tasks or the type of weight setting used and 3) which method

is more robust in the presence of Gaussian noise.

For the choice of the single-classifier, this study proposes a

joint framework of a convolutional network Gaussian process

(CNNGP). The classifier is a Gaussian process (GP) with a

convolutional neural network (CNN) feature extractor. The

CNN is used for learned feature extraction. Using CNN only

for training is not sufficient since it cannot output uncertainty



alone. The CNN component consists of two convolutional

layers and a single fully connected layer for feature extraction.

The uncertainty is characterised by the post softmax sample

variance and is used to update the learning parameters of the

GP only (in deterministic weight setting) and for both CNN

and GP (in Bayesian weight setting). It is important to note that

in the first setting, the CNN weights are deterministic scalars.

In the Bayesian setting, they are probabilistic. The joint

framework is trained on both split-MNIST [13], permuted-

MNIST [14], CIFAR-10 and CIFAR-100 [15]. Accuracy mea-

sures are used to evaluate performance alongside comparing

run times between two settings of the proposed framework

(deterministic and Bayesian) and with the UCB approach. The

contributions of this work are as follows.

• a framework able to characterise the impact of uncertain-

ties on the performance of a single-classifier and multi-

classifier in continual learning is proposed,

• a GP is combined with a CNN feature extractor and pro-

vides the classification result in the process of continual

learning,

• the efficiency of using either a deterministic or a Bayesian

weights setting is investigated,

• the performance of proposed CNNGP framework is

evaluated on both split-MNIST and permuted-MNIST

datasets is thoroughly evaluated.

The rest of this paper is organised as follows. Sections II-

IV deal with background information regarding BNNs and

GPs. Section VI provides the full description of the proposed

framework while Section VIII details the experiments. A

discussion of results is provided in Section IX. Finally, the

paper summarises the results in conclusion and discusses

future work in Section X.

II. BAYESIAN NEURAL NETWORKS

A simple DNN architecture can be represented as a function

f that takes the input vector X and outputs the vector Y. The

input X = [x1, x2, · · · , xN] is a vector that contains a series

of samples xn, n = 1, ...,N, where N denotes the sample size/

Each sample is drawn independently from the data distribution

say D = (X,Y). The term data ‘set’ and data ‘vector’ are often

used interchangeably in literature. In the case of a set based

representation, the input dataset takes the form X = {xn}
N
n=1.

The hidden layers consist of a series of linear and non-linear

activation performed with respect to the input X, the weight

w and the bias b vectors of the DNN, where

Y = f (X,w, b). (1)

Given a sequence of layers, the outputs from the activation

from one layer l become the inputs of the activation of the

consecutive layer l +1, such that the expression of activation

is given by

a
(l+1)
i = b

(l+1)
i

(

1+
N j

∑
j=1

w
(l+1)
i, j x

(l)
j

)

,

where x
(l)
j = φ(a

(l)
j ).

(2)

Here, al+1
i denotes the activation for the ith node in layer l+1

connecting node j in the previous layer l for which the associ-

ated weights and biases are w
(l+1)
i, j and b

(l+1)
i , respectively. The

1 denotes the unit vector. The activation a
(l)
j of the jth node in

the past layer l undergoes a non-linear transformation through

the function φ to obtain the output x
(l)
j . These are weighted

and summed for all N j nodes in the layer l. Common choices

for φ include Rectified Linear Unit (ReLU) [16] in the form

of (3) or the tanh function [3]. The approaches of this paper

make common use of the ReLU activation, where

φ(a
(l)
j )→ x

(l)
j =

{

a
(l)
j if a

(l)
j ≥ 0

0 if a
(l)
j ≤ 0.

(3)

In classic DNN architectures, the weights and biases are

deterministic. This means, regardless of the number of runs,

the output would always be a point estimate. This is different

in the case of BNNs that assume a prior distribution of the

weights [7]. A common choice of prior distribution is the

Gaussian one and the weights w
(l+1)
i, j of BNNs [7] can be

calculated according to

w
(l+1)
i, j = µ

(l+1)
j +σ

(l+1)
j ε (4)

and ε ∼ N (0,1) is a zero mean, unit variance random

Gaussian variable. The terms µ
(l+1)
j and σ

(l+1)
j refer to the

mean and standard deviation of the BNN weights.

Training of DNNs involves simple backpropagation of gra-

dients with respect to a loss function. There are different ways

to train BNNs. Specifically, this work considers the training

method Bayes by Backprop (BBB) [17]. BBB training is

a variant of variational inference (VI) [18]. This forms the

subject of the next subsection.

III. VARIATIONAL INFERENCE

The fundamental idea of VI is to convert the problem of

Bayesian inference to an optimisation task. In the Bayesian

framework, the objective is to compute the posterior distribu-

tion P(w|D) where

P(w|D) =
P(w)P(D |w)
∫

P(D |w)P(w)
, (5)

based on the prior P(w) and likelihood function P(D |w).
For brevity, the term w denotes the weights of the model

(e.g. BNN) and D is the data. The immediate observable

drawback of this approach is that the denominator represents

the sum of all possible prior values along with the weights.

For large architectures with billion of weight parameters, the

denominator is intractable and computationally expensive. The

evidence term in the denominator of (5) is often neglected.

VI applies a proxy distribution q(w|θ), parameterised by

θ , to best approximate the posterior distribution. This is

performed by minimising the Kullback-Leibler divergence

(KLD) between the variational posterior and the real posterior



P(w|θ), [18], [19], where the optimal parameter vector is

given by

θ ∗ = argmin
θ

KL [q(w|θ)‖P(w|θ)],

= argmin
θ

KL [q(w|θ)‖P(w)]−Eq(w|θ)[logP(D |w)].

= argmin
θ

LV I ≈
Q

∑
i=1

logq(w(i)|θ)− logP(w(i))− logP(D |w(i)).

(6)

The BBB approach [17] is briefly described in the next

subsection.

A. Bayes by Backpropagation

The optimal weights of the variational parameters θ ∗ are

found by standard gradient descent until the variational loss

LV I is optimised. In the BBB approach, Monte Carlo sam-

ples are drawn from the variational posterior to approximate

the exact cost, where w(i) is the ith sample and Q is the

total runs. Gaussian processes, on the other hand, can be

trained directly on the negative marginal log-likelihood term,

−Eq(w|θ)[logP(D |w)] (known as the reconstruction term [20]).

Hence, there is no need to compute the KLD term for Gaussian

processes training unless one uses non-Gaussian likelihoods

(see Section IV). For BNNs, this is unavoidable. The problem

is that the KLD term and its gradients do not have closed-

form solutions. BBB circumvents the problem by exploiting a

reparameterisation process [21]. The objective is to reparam-

eterizes q(w|θ) with a parameter-free distribution q(ε) [21].

BBB chooses zero-mean Gaussian distribution.

The reparameterisation works two-folds: 1) sample from

the parameter-free distribution q(ε) and 2) transform the ε
samples and θ into a sample from q(w|θ). The function g(.)
transforms ε and θ to a sample from θ , it takes the form

θ = (µ,σ2),

ε ∼ q(ε) = N (0,1),

g(θ ,ε) = w = µ +σε.

(7)

Here, µ and σ represent the mean and the standard deviation

used to parameterise q(w|θ). It is common [1], to adopt a

soft-normalisation on σ , such that σ2 = log(1+exp(σ)). This

yields positive values. Based on (7) the gradients ∆µ and ∆σ
can be obtained in the following way

∆µ =
∂g

∂w
+

∂g

∂ µ
,

∆σ =
∂g

∂w

ε

σ
+

∂g

∂σ
.

(8)

However, this reparameterisation has been shown to yield

biased gradients with a high variance. Studies of uncertainty

propagation have assisted in achieving improved calibration

approaches to uncertainties [22]. These overcome the short-

comings of VI based methods.

IV. GAUSSIAN PROCESS

A GP is a stochastic process defining a distribution over

possible functions that fit a set of points [20]. A GP is a non-

parametric method that in the considered type of classification

problems can define a distribution over the weights of a

network for classification. Given the input data X of size N,

a function f = [ f1, f2, · · · , fN ] is used to best approximate the

real function Y = f (X). This is a typical regression case. If

these functions can be represented by the sufficient statistics

µ and σGP = diag(K(X′,X
′)), the Gaussian process can be

denoted as p(f|X) = GP(µ,K(X′,X
′)). The diag(.) refers to

the operator that returns the diagonal elements of the input

matrix.

In theory, a GP has an infinite hypothesis space, as a

non-parametric process. In practice, this space is defined by

the covariance function K(X′,X
′). Also referred to as the

covariance matrix or the kernel matrix [20], the K function

determines the discrepancy between the real data point X′
and the consecutive data point X′ from the training data X.

This paper adopts the squared exponential covariance kernel

(SQE) [20], where

K
(

X′,X
′
)

= σ2
0 exp

[

−
1

2

(

X′−X′

λ

)2
]

. (9)

In the next section KXX will denote the kernel matrix based

on the training inputs X . Then, σ2
0 and λ represent the associ-

ated amplitude and lengthscale parameters, respectively. These

parameters determine the distance from the mean and the

length of extrapolation respectively. Usually, for the regression

case, computing the posterior mean and covariance function

is straightforward. This is because Gaussian likelihoods have

closed-form expressions for the sufficient statistics of the

posterior p(f|y) based on a multi-class label set y = {yn}
N
n=1.

For classification, a Gaussian approximation to the posterior is

required since non-Gaussian likelihoods make the integrating

over a functional space f intractable.

Although there are different VI approaches, this paper

specifically is inspired by ideas from the scalable VI approxi-

mation from [23] and [24]. There are two reasons behind this

selection: firstly, scalable approximations are ideal for complex

inputs such as image data and secondly, that VI is simple to

implement and allows gradient-based optimisation which is

part of machine learning libraries like Tensorflow and Torch.

This is considered in the next section.

V. SCALABLE VARIATIONAL INFERENCE FOR SPARSE

GAUSSIAN PROCESS CLASSIFICATION

The marginal likelihood and the KLD term in ELBO do

not have a closed form solution, especially for non-Gaussian

observation likelihoods which are commonly used in classifi-

cation applications. To tackle this, scalable and computation-

ally efficient GP approaches can be implemented in different

ways [25], including by introducing sparsity. In particular, the

approach used in this work is inspired by the sparse methods

in [23] and [24].



In sparse GP frameworks, inducing points Z and inducing

output variable u approximate the inputs X and the functional

value f respectively. This can reduce the complexity of the

covariance matrix inversion which is O(N3) in general. The

difference is that the approach from [23] reduces inversion cost

from O(N3) to O(NM2) while [24] reduces it to O(m1+ 1
O )

where m is the number of inducing points and O is the

dimension of the kernel matrix, N and M are total training

and testing points. Using the sparse methods, the likelihood

of the GP can be simplified in the form

p(f|u) = N (f|KX ,ZKZ,Zu, K̃),

where K̃ = KX ,X −KX ,ZK−1
Z,ZKZ,X ,

(10)

and the ELBO takes the form

LV I ≈−Eq(u)p(f|u)[log p(y|u)]−KL[q(u‖p(u))]. (11)

Here, the KZZ represents the kernel matrix based on induc-

ing points Z. The choice of inducing points is a large field of

research on its own. Scalable VI handles this issue by using

a variational Bayes approach that automatically selects the

inducing points by optimising the KLD term (see Section III).

This involves closely matching the posterior to the variation

distribution q(u). The variational bound on the logarithm of

the marginal likelihood log p(y) can be obtained from (12)

given below.

log(p(y|u))≥ Ep(f|u)

[

p(y|f)
]

, (12)

From here, the optimisation process follows the same proce-

dure mentioned in Section III. The difference is that scalable

VI is used to find the optimal inducing points. The gradients

for the sufficient statistics of the variational distribution q(u)
with respect to the bound are computed. Standard optimisation

schemes e.g. stochastic gradient descent [26] can then be used

to update the learning parameters of the covariance kernel of

the GP. The next section will discuss the proposed framework

in detail.

VI. METHODOLOGY

A. Convolutional Network Gaussian Process Framework

The proposed framework consists of two components: a

CNN model feature extractor and a GP placed after that takes

these features as inputs. The CNN has two convolution layers

of 32 and 64 filters of 3x3 kernel size and one fully connected

layer. Convolution of images results in the decomposition

of features. These features are learned hierarchically, starting

from simple features (e.g. edges) in earlier layers and more

complex at the end [27]. A max-pooling layer is introduced

between the second layer and two dropout layers each with

probability 0.5 and 0.25, respectively. Pooling layers down-

sample the features and dropout is used as a regularizer. The

fully connected layer, on the other hand, converts the flattened

outputs to a 16x128 feature vector. The CNN architecture can

be seen in Figure 1. Post softmax function outputs a vector of

size 16x10 containing a prediction for each of the 10 classes in

permute-MNIST and CIFAR-10 dataset, 16x2 for split-MNIST

and 16x100 for CIFAR-100.

B. Training in CNN-GP

The training in CNN-GP is as follows: firstly, the predicted

class labels are forward propagated, secondly, the weights of

the CNN-GP are updated based on the maximum likelihood

loss between the predicted labels and the ground truth labels.

This is then followed by the backpropagation of the maximum

likelihood function of the GP regularised with the KLD loss.

The forward step before regularisation involves replacing the

input sample from the mini batch with close neighbouring

images in the mini batch. These samples are then passed

as inputs to the CNN-GP to get the new predictive labels.

The regularised loss compares the new predictive labels with

ground truth ones. The neighbour replacement step is inspired

from [28]. The only difference is that their approach focuses

on noisy labels, the approach in this work focuses on input

images. A full description of the algorithm is provided in

Algorithm 1 from Section VII along with notation definitions

in Table VIII.

C. Variance Guided Learning Rate Update

There are two versions of the network: deterministic and

Bayesian settings. In a deterministic setting, the weights of

hidden layers are scalar. The learning rate γGP of the only

GP is updated. In the Bayesian setting, it is assumed that

the weights are sampled from the prior distribution. This is

specified as follows: a scaled mixture of two Gaussian dis-

tributions with variances 0.0 and 6., respectively. The scaling

mixing coefficient is set to 0.25. This is inspired by UCB’s

approach [1].

Both the learning rates γCNN of the CNN and the GP γGP

components are updated. The GP variance characterises the

uncertainty, e.g. high variance corresponds to high uncertainty,

low variance means accurate results. Using the variance of the

post softmax samples, the learning rate is updated depending

on the variable patience (ρ). The scaling is performed by

simply multiplying the learning rates with the mean of the

variance array divided by the standard deviation of the variance

array. At each run, if the validation accuracy obtained is less

than the one from the previous episode, then ρ is dropped

by -1. If ρ reaches 0, a single-step of learning rate update is

performed. Otherwise, the default value of ρ = 5 is retrieved.

D. Datasets: Split-MNIST, Permuted-MNIST and CIFAR-10

The proposed framework is tested on the datasets split-

MNIST and permuted-MNIST. First, the original MNIST [27]

is split into five tasks. For example, task 1 will contain images

labelled 0 and 1, task 2 will have images labelled 2 and 3. The

sequence ends with task 5 which contains images labelled 8

and 9. In permuted-MNIST, a sequence of ten tasks are used,

each task being has images labelled 0 till 9. In each task,

the pixels of every image sample is randomly perturbed. This

dataset is more challenging than split-MNIST.

In this work, the configurations for both datasets follow

similarly to [1]. The default setting consists of 10 permutations

with a seed number of 100. The averaged accuracies are

computed by dividing the correctly classified samples by the



16 x 1x 28 x 28

Fig. 1. The CNNGP framework at test time. It consists of a CNN feature extractor and a GP component placed after that takes these features as inputs.
This diagram represents the deterministic version i.e. scalar weights. In the Bayesian setting, the weights of the convolutional layers are replaced with prior
distributions. The input has size 16x1x28x28 for its batch size, channel depth, height and width respectively. The output dimensions are shown for each output.

total number of samples. This is repeated for both split-MNIST

and permuted-MNIST. The CIFAR-10 [15] dataset consists

of 60000 coloured images of size 32 x 32 of 10 different

categories. The dataset is divided into 50000 training and

10000 testing images. The majority of the categories include

vehicles and animals.

E. Robustness Analysis with Gaussian Noise

In network training, the parameters of the noise impacting

input images are unknown. Gaussian white noise is used

widely across DNN literature to test robustness [22], [29].

This is also used for performance validation in this paper.

Commonly, the standard deviation of the additive Gaussian

Fig. 2. Comparison of accuracy for both the deterministic (A, C) and Bayesian
setting of the proposed framework(B, D) on both split (top row) and permuted-
MNIST (bottom row).

noise can be added incrementally and used to pollute the

inputs. This procedure is usually followed by measuring the

signal-to-noise ratio (SNR) respectively for each batch of the

testing set. The calculation is performed as shown in (13) taken

from [30], where

SNR = 10 · log10

[

∑
nx−1
0 ∑

ny−1

0 [r(x, y)]2

∑
nx−1
0 ∑

ny−1

0 [r(x, y)− t(x, y)]2

]

. (13)



Here, r(x, y) and t(x, y) refer to the training and test images

and nx and ny their respective sizes. The terms ∑
nx−1
0 ,∑

ny−1

0

refer to the summation of both numerator and denominator

elements w.r.t the sizes of both training and testing datsaset.

VII. ALGORITHM DESCRIPTION

The developed is presented in Algorithm 1. All experiments

in our paper use the following default arguments; batch

size=16, episodes=200, learning rate of GP=0.1, neighbors

sampling no.=10, KLD scaling factor = 1, ρ = 5

Require: L: episodes, γ: learning rate (GP), K: number of
nearest neighbours for choice of new sample, B: batch size,
β : KLD scaling factor, ρ : patience

Do initialization of weights: θ l
CNN , θ l

GP

for l = 0, · · · ,L do

Sample mini batch (xi,yi), of length N from dataset
D = X ,Y where X and Y are 4-D tensors holding
images and labels from the entire dataset, where
xi ∈ R

hxwxc (image height, width and channel) and
yi ∈ R

1xC (C is total number of classes).

BEGIN Updating weights of CNN-GP based on the
maximum likelihood LMLE

do → forward pass of CNN component fCNN : xi→ zi,
where zi ∈ R

UxC and U is the number of hidden units’
feature outputs passed from final fully connected layer
of CNN feature extractor

do → forward pass of GP f GP : zi to obtain the posterior
likelihood p

(

yi| f
GP(zi);

(

µi,Ki)
)

where µi represents
the mean of the GP and Ki is the squared exponential
kernel and N represents the Gaussian distribution

do → Compute the expected log likelihood to obtain
max likelihood loss:

Lmax ≈ ∑
N
i=1Eq

[

log
(

p(yi‖ f GP(xi); µi,σ
2
i

)

−

βDKL

(

q(ui)‖p(ui))
)

]

do → Compute gradients of loss with respect to the
weights of CNN feature extractor and GP :
∂Lmax

∂θGP
, ∂Lmax

∂θCNN

do → Update the parameters of GP and the weights

θ l+1
CNN CNN feature extractor for the lth episode:

θ l+1
CNN ← θ l

CNN − γ ∂Lmax

∂θ l
CNN

.Lmax,

θ l+1
GP ← θ l

GP− γ ∂Lmax

∂θ l
GP

.Lmax

BEGIN backpropagation of maximum likelihood loss
regularised with KLD Lmax +L KLD

do → Replace input samples with top-10 neighbours x̂i

do → forward pass of the CNN feature extractor
fCNN : x̂i→ ẑi

do → forward pass of the GP
f GP : ẑi→ p

(

ŷi| f
GP(ẑi); µ̂i,Kx̂i

)

do → Calculate Lmax +L KLD

do → Update the new parameters of

θ l
GP,GP : θ l

GP← θ l
GP− γ ∂L GP

∂θ l
GP

L GP

do → Update the weights of the CNN feature extractor :

θ l
CNN ← θ l

CNN − γ ∂L GP

∂θ l
CNN

.L GP

end

VIII. EXPERIMENTS

A. Accuracy Comparison Per Task - Deterministic vs Bayesian

Setting

This experiment aims to compare the performance of

the CNNGP framework on both split and permuted-MNIST

datasets for each of the two settings. The experiment is carried

out by training the framework on each of the tasks for 200

episodes and then validating with the respective task. This

is performed 100 times for each episode and then averaged.

These averaged accuracy is plotted for the deterministic setting

(CNNGP) in Figure 2A and 2C, for the Bayesian setting

(BCNNGP) in 2B and 2D. The x-axis represents the task

number ranging from 0-5 for split-MNIST (top row) and 0-9

for permuted-MNIST (bottom row).

B. Comparison of Episodes Required to Train on Permuted-

MNIST - Deterministic Vs Bayesian

The purpose of this experiment is to compare the number of

episodes required for both model configurations to converge

on permuted-MNIST. This is carried out by training each task

repeatedly 80 times. Then, the number of episodes required for

each is averaged and tabulated for both the configurations in

Table II. Comparison for split-MNIST was not required since

the results were closely similar (± 2 episodes).

C. Comparison of Computational Time Taken on Single

Episode on Permuted-MNIST - Deterministic Vs Bayesian

The focus of this experiment is to compare the computa-

tional time taken to train on a single episode of the permuted-

MNIST testing set. Once again both the deterministic and

Bayesian setting is compared. The testing time is measured

in minutes and averaged across 50 repeats for each of the 10

tasks. The results are presented in Table III.

D. Robustness Analysis - UCB Vs Bayesian Setting

The objective of this experiment is two-fold: a) to compare

per-class accuracy on split-MNIST, permuted-MNIST and

CIFAR-10 b) test robustness against Gaussian noise attacks,

all for cases of Bayesian setting and UCB. The experiments

are carried out by first training UCB on both split, permuted-

MNIST and CIFAR-10 using the hyperparameters similar

to those provided in [1] and also in Algorithm VII. In all

experiments where CNN-GP is compared with UCB, the CNN

component of CNN-GP is reduced to two fully connected

layers. This is done since UCB architecture also uses only two

fully connected layers. Furthermore, in the per-task accuracy

experiments on permuted-MNIST, two versions of CNN-GP

are tested. One where the input features are set to 128 and

grid size to 16, termed BCNNGP. The other version uses 256

input features and a grid size of 64, termed BCNNGP-256.

Once trained, the system is perturbed with Gaussian noise.

This noise is added by varying the value of the standard

deviation from 0-2 in steps of 0.25. The images are perturbed

with the noise and the respective SNR values are calculated

using equation (13) for each batch per task. This is averaged

across all batches and tasks to obtain the final SNR value.



TABLE I
PER-TASK ACCURACY ON PERMUTED-MNIST FOR BOTH UCB AND BAYESIAN SETTING

Model Type Task 0 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9

UCB 76.29 60.91 61.30 61.55 60.60 60.41 60.25 61.32 60.60 61.30

BCNNGP 40.78 43.65 34.25 35.77 37.20 34.89 32.31 33.74 36.50 39.11

BCNNGP-256 86.33 83.08 67.89 67.55 89.23 68.42 63.36 84.35 85.41 87.62

TABLE II
COMPARISON OF EPISODES REQUIRED FOR TRAINING ON

PERMUTED-MNIST FOR BOTH DETERMINISTIC AND BAYESIAN SETTING

Tasks Deterministic Bayesian

0 26 45

1 33 8

2 112 22

5 74 9

6 40 10

7 54 14

8 95 29

9 18 4

TABLE III
COMPARISON FOR AVERAGE TIME TAKEN FOR RUNNING A SINGLE

EPISODE FOR BOTH DETERMINISTIC AND BAYESIAN SETTING

Deterministic Bayesian

Average time for a single episode (mins) 5.02 11.65

As the results are obtained, the respective per-task and

per-SNR accuracies are calculated. Per-task is obtained by

averaging the accuracies across all SNR values for each task.

Per-SNR accuracies are calculated by averaging across all

tasks for each SNR value. The results are presented for split-

MNIST in Tables IV and V, for permuted-MNIST in Table I

and for CIFAR-10 and CIFAR-100 in Table VI and VII

IX. DISCUSSION

The results show that the performance of the deterministic

and Bayesian settings is similar. The difference is approxi-

mately 5% in terms of accuracy. However, on the majority of

the tasks, the deterministic setting takes more iterations to con-

verge than the Bayesian setting. However, the computational

time for the deterministic setting (5.02mins) is nearly half that

of the Bayesian setting (11.65mins). When comparing with

the UCB approach, the CNNGP can perform better than UCB

in some tasks (Task 1 and 3) in split-MNIST. However, it is

unable to perform in permuted-MNIST. In terms of robustness,

for high SNR values (0-20) UCB is more robust to Gaussian

attacks than CNNGP, for low SNR values (0 to -6) CNNGP is

more robust. However, UCB is more robust than CNNGP in

the permuted-MNIST dataset. Therefore, the main takeaway

message of this study is that for relatively simple datasets and

few tasks, a single-classifier can perform as good as a multi-

classifier for continual learning, while being robust to noise.

However, if the dataset is difficult to train and has more than,

e.g. ten tasks, then a multi-classifier setting is better suited.

TABLE IV
PER-TASK ACCURACY ON SPLIT-MNIST FOR BOTH UCB AND BAYESIAN

SETTING

Model Type Task 0 Task 1 Task 2 Task 3 Task 4

UCB 99.52 93.23 93.23 95.59 97.87

BCNNGP 96.17 95.22 94.69 97.36 92.86

TABLE V
PER-SNR ACCURACY ON SPLIT-MNIST FOR BOTH UCB AND BAYESIAN

SETTING

Signal-to-Noise Ratio

Model Type 20 12 6 2 0 -2 -4 -5 -6

UCB 99.67 99.50 99.39 98.32 97.28 95.50 93.35 91.28 88.70

BCNNGP 94.95 93.35 95.59 95.22 96.40 96.67 95.91 91.33 97.91

For the interest of the readers, this work can be improved

further with multiple GP classifiers or by testing with other

forms of learning rate update methods such as momentum-

based learning rate schedules [26].

X. CONCLUSIONS AND FUTURE WORK

This study investigates the performance of a single-classifier

in continual learning compared to the state-of-the-art multi-

classifier methods such as UCB. In particular, a GP classifier

placed after a CNN architecture of two convolutional layers

and one fully connected layers is used. The learning rate

updates are performed by scaling according to the post

softmax sample variance. Experiments are carried out on

both split and permuted-MNIST. Two settings are adopted:

deterministic and Bayesian. The results show that the

performance of both settings is on par. However, the Bayesian

setting takes a lower number of episodes to converge. On

split-MNIST, the performance of CNNGP and UCB is on par

but UCB outperforms CNNGP in permuted-MNIST. In the

future, it is possible to further experiment with various CNN

architectures for feature extraction as well as exploring other

ways to update learning parameters.
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TABLE VI
PER-TASK ACCURACY ON CIFAR-10 FOR BOTH UCB AND BAYESIAN

SETTING

Model Type Task 0 Task 1 Task 2 Task 3 Task 4

UCB 80.63 86.41 69.92 70.66 70.68

BCNNGP 61.20 93.55 67.24 61.29 67.14

TABLE VII
PER-TASK ACCURACY ON CIFAR-100 FOR BOTH UCB AND BAYESIAN

SETTING

Model Type Task 0 Task 1 Task 2 Task 3 Task 4

UCB 44.51 38.30 39.61 38.02 37.61

BCNNGP 45.87 54.44 11.29 13.71 8.14
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