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Abstract—The brittleness of deep learning models is ailing their
deployment in real-world applications, such as transportation
and airport security. Most work focuses on developing accurate
models that only deliver point estimates without further infor-
mation on model uncertainty or confidence. Ideally, a learning
model should compute the posterior predictive distribution,
which contains all information about the model output. We
cast the problem of density tracking in neural networks using
Particle Filtering, a powerful class of numerical methods for
the solution of optimal estimation problems in non-linear, non-
Gaussian systems. Particle filters are a powerful alternative to
Markov chain Monte Carlo algorithms and enjoy established
convergence and performance guarantees. In this paper, we
advance a particle filtering framework for neural networks,
where the predictive output is a distribution. The mean of this
distribution serves as the point estimate decision and its variance
provides the model confidence in the decision. Our framework
shows increased robustness under noisy conditions. Additionally,
the predictive variance increases monotonically with decreasing
signal-to-noise ratio (SNR); thus reflecting a lower confidence
or higher uncertainty. This paper serves as a pioneering proof-
of-concept framework that will allow the development of a
theoretical understanding of robust neural networks.

Index Terms—Bayesian Learning, Particle Filtering, Neural
Networks, Uncertainty Quantification.

I. INTRODUCTION

Bayesian approaches in neural networks are being revisited

due to their ability to provide much needed uncertainty in-

formation, which is not carried by classical “point estimate”

machine learning approaches, such as neural networks. The

inability to evaluate a system’s uncertainty or confidence in its

output can have disastrous consequences, especially when the

output of the model is fed into higher-level decision making

processes. Such models include recommendation systems in

the medical domain, autonomous drones and vehicles, and

high frequency trading [1]–[3]. In fact, model uncertainty

information is a requirement for successful deployment of

the system. Unlike deterministic learning methods that aim

at estimating a single set of parameters (weights and biases),

the Bayesian setting poses a distribution over the network

parameters [4]. Through Bayesian inference, the posterior

predictive distribution can be derived and the variance of this

distribution is then used as a measure of model confidence.

However, exact Bayesian inference in neural networks is

mathematically intractable as it involves propagation of distri-

butions across non-linearities. Consequently, approximation or

numerical techniques are needed. Markov Chain Monte Carlo

(MCMC) methods were proposed jointly with neural networks

to tackle Bayesian inferential and prediction problems. The

main challenges posed by neural networks to MCMC devel-

opments include lack of parameter identifiability due to weight

symmetries, prior specification effects, and high computational

cost [5]. Variants to MCMC were proposed to mitigate these

issues, but these methods do not deliver the same convergence

guarantees as the basic MCMC [6], [7]. The development and

applicability of these approaches remains limited.

On the other hand, approaches like Monte Carlo (MC)

- Dropout [8] that implicitly perform Bayesian inference,

have gained great success [9]–[11]. These methods exploit

regularization techniques and/or injection of noise as means

to produce samples from an approximate distribution, e.g.

Bernoulli. Considering an ensemble of models allows to com-

pute the predictive uncertainty at inference time by evaluating

the variation of the predictions. Even though these methods

are very simple, since their integration into current neural

network training is straightforward, they still suffer from the

demand of sampling at inference time. Additionally, ensemble

models are not considered as fully Bayesian since they rely

on a deterministic training.

A popular approximation method is based on the Varia-

tional Inference (VI) technique [12]. In VI, the inference is

formulated as an optimization problem, where the Kullback-

Leibler (KL) divergence between the posterior distribution

and an approximate parametric distribution is minimized.

Several scalable approaches have been developed within the

VI framework, including some of our own work [13]–[16].

However, this optimization process relies on a known form of

the approximating distribution, thus constraining the posterior

density to be of a particular shape. For example, Bayes by

BackProp (BBB) [14] places a fully-factorized Gaussian over

the network parameters and samples one set of parameters

from this approximating distribution for each forward pass.

Consequently, the predictive power of these approaches is still

limited by the Gaussian assumption.

This work is inspired by powerful statistical frameworks for

optimal tracking in non-linear and non-Gaussian dynamical

systems. Different from the VI framework, we do not impose



a parametric form on the posterior predictive distribution and

develop a Particle Filter (PF) solution to track this posterior

across the network non-linearities. The contribution of this

paper can be summarized as follows:

• We develop a novel framework to track the posterior

distribution through the neural network’s layers without

imposing any parametric constraint on the form of such

distribution.

• The posterior is tracked using a set of weighted particles,

which can be used to estimate moments of any order.

In particular, these samples, with their corresponding

weights, are employed to compute the second moment,

i.e., the predictive variance and render the model’s con-

fidence.

• We study the second moment behaviour under noisy

conditions. We show that the predictive variance mono-

tonically increases as the Signal-to-Noise Ratio (SNR)

decreases, reflecting a higher uncertainty or lower confi-

dence in the model prediction.

The paper is organized as follows: in Section II, we

review the fundamentals of Bayesian learning and particle

filtering. The proposed enhanced particle filter (E-PF) for

neural networks is presented in Section III. Our experiments

and a discussion of the results are provided in Section IV.

Conclusion remarks and future work are given in Section V.

II. BAYESIAN LEARNING AND PARTICLE FILTERING

For the completeness of the paper, we first provide a brief

background review of Bayesian learning, state-space modeling

and Particle Filtering.

A. Bayesian Learning

In Bayesian neural networks (BNNs), the parameters W

are interpreted as random variables with a prior distribution,

i.e., W ∼ p(W). As data D is observed, we compute the

likelihood p(D|W) and infer the posterior probability density

function p(W|D) using Bayes’ Theorem. By inferring the

posterior, we are able to compute the predictive distribution,

i.e., the distribution of unseen data points:

p(ỹ|x̃,D) =

∫
p(ỹ|x̃,W) p(W|D) dW, (1)

where x̃ and ỹ denote, respectively, the unseen input and its

corresponding output. The predictive distribution carries all

information about the prediction; in particular, the mean rep-

resents the network prediction while the variance is interpreted

as confidence (or uncertainty) information.

Various approaches have been proposed to estimate predic-

tions’ uncertainty. For a comprehensive review of popular and

most recent methods for uncertainty quantification in machine

learning we refer the reader to [17].

B. State-Space Models

The general state-space model formulation for a dynamical

system is given by

θk+1 = G(X,θk),

yk = F (X,θk),
(2)

where θk represents the hidden state at time k, X is the

input, and yk is the output vector. The potentially non-linear

maps G and F represent, respectively, the state-transition and

measurement models that are nonlinear in general.

Training multilayer perceptrons was formulated as an iden-

tification problem for a dynamic system modeled with a state-

space representation, which can be solved using the Extended

Kalman filter and sequential Monte Carlo methods [18]–

[22]. This rendering is mathematically grounded given that

parameters of a neural network (NN) can be seen as a discrete-

time system that evolves as data is seen.

Within the neural network framework, the state θk repre-

sents the vector of parameters of the NN at epoch k. The map

G describes the evolution of the parameters during training

while the measurement function F is approximated via the

NN input-output mapping. In a stochastic framework, θk and

yk are treated as random variables, and the filtering problem

amounts to finding the posterior density p(θk|Y 1:k), where

Y 1:k = {yi}
k
i=1 denotes the history of observations. This

filtering distribution is obtained sequentially by alternating an

update step for the hidden state followed by a measurement

evaluation step.

C. Particle Filtering

Particle Filtering (PF) is a flexible and powerful sequen-

tial MC method designed to solve numerically the optimal

filtering problem within non-linear and non-Gaussian systems

[23]–[26]. Moreover, PF converges asymptotically toward the

optimal filter in the mean square error sense [27]. PF employs

a set of weighted samples, also called particles, to approximate

the posterior distribution. In particular, the posterior of the

state is approximated by a large set of Dirac-delta masses

(samples/particles) that evolve stochastically in time according

to the dynamics of the model and the observations.

PF relies on the fundamental method of Importance Sam-

pling (IS) which builds on the introduction of an importance

distribution, π(θ). Unlike the true posterior, p(θ|Y ), the

importance distribution has a simpler form so it is easy to

draw samples from, e.g., a multivariate Gaussian.

To adjust for the posterior distribution, an appropriate

weight is computed for each particle based on the available

observations, as follows:

θ(i) ∼ π(θ), u(i) =
p(θ(i))

π(θ(i))
for i = 1, 2, . . . N. (3)

Hence, each importance weight, u(i), reflects the likelihood of

the particle (sampled from the importance distribution) to be

a probable realization of the true posterior.

The set of weighted particles is used to form a numerical

approximation for the posterior. Additionally, the PF allows for



Algorithm 1 E-PF

1: for k = 1, 2, . . . ,K do

2: for l = 1, 2, . . . , L do

3: for i = 1, 2, . . . , N do

4: η(i) ∼ N (0, σ2
ηI)

5: W
(i)
[l][k] ←W[l][k−1] + η(i)

6: Evaluate y(i) = F (X,W[1][k], . . . ,W[l−1][k],W
(i)
[l][k],W[l+1][k−1], . . . ,W[L][k−1])

7: Evaluate the quality of fit of the particle through L(y(i))

8: Compute u
(i)
[l] ∝ L(y(i))

9: end for

10: Normalize importance ratios ũ
(i)
[l] =

u
(i)

[l]
∑

j
u
(j)

[l]

for i = 1, 2, . . . , N

11: Resample W
(i)
[l][k] and associate a weight of 1/N with each offspring

12: Estimate W[l][k] ←
1
N

∑
i W

(i)
[l][k]

13: end for

14: perform a forward pass using Wk: y = F (X,Wk)

15: Compute loss L(y)

16: Update Wk ←Wk − α∇WL

17: end for

output: W
(i)
[l][K], ũ

(i)
[l] , i = 1, 2, . . . , N and l = 1, 2, . . . , L

the evaluation of any mathematical expectation of the form:

Eθ∼p(θ)(h(θ)) =

∫

θ

h(θ)p(θ)dθ =

∫

θ

h(θ)
p(θ)

π(θ)
π(θ)dθ

= Eθ∼π(θ)

[
h(θ)

p(θ)

π(θ)

]
≈

1

N

N∑

i=1

u(i)h(θ(i)),

(4)

where h is any function and we have simplified the notation

for the true posterior, i.e., p(θ) := p(θ|Y ). The notation E

refers to the mathematical expectation.

In sequential estimation, the importance weights are com-

puted as new evidence data is acquired based on the measure-

ment model and the posterior is updated accordingly. In PF,

the variance of the importance weights increases over time. To

mitigate this issue, resampling schemes have been proposed

in the literature. For detailed derivations, importance density

choices, resampling schemes and modifications of PF methods,

the reader is referred to surveys and tutorials [28]–[30].

III. ENHANCED PARTICLE FILTER FOR NEURAL

NETWORKS

Throughout the rest of this paper, we refer to the available

data as D = {(x,y)j}
M
j=1, M being the total number of

datapoints. W = {W[1], . . . ,W[L]} is the set of network

parameters, where L is number of layers and W[l] incorporates

both the weights and biases for layer l. Wk denotes all

network parameters (in all layers) estimated at time-step k,

i.e., Wk = {W[l][k]}
L
l=1. The notation W

(i)
[l][k] is employed to

denote the ith particle of layer l at time-step k. Finally, to avoid

any confusion, we refer to the weights u(i) of the PF process as

importance ratios to circumvent the potential misinterpretation

with the weights of the neural network. Additionally, we

employ the notation u
(i)
[l] to specify the layer l.

We formulate the learning problem using a state-space

model as in (2). The system dynamic equation G is chosen as

the Gradient Descend (GD) update rule, i.e.,

Wk+1 = Wk − α∇WL,

yk = F (X,Wk),
(5)

where L is the loss function for the network and α is the

learning rate.

This idea of an enhanced transition model has been pre-

viously applied in the context of NN training for pricing

option contracts traded in financial markets [22]. It was

shown that this choice of parameter evolution leads to a

better convergence as compared to a random-walk model [22].

However, unlike the previous and other methods that exploit

the state-space framework, we break the state vector into

L components, one for each layer’s parameters W[l], and

perform PF separately for each of these. We elaborate this

trick to mitigate the high-dimensionality problem of PF. In

particular, we perform L forward passes through the network

to evaluate the map F and compute the loss L for each particle.

In detail, at time-step k = 0, for each layer l, we initialize

W[l] drawing from a prior distribution p(W[l]). If we let N
denote the number of particles and K the total number of
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Fig. 1. We trained and tested our E-PF for various numbers of particles N . The reported results are obtained after training for one time-step (epoch). We
plot the training time vs the number of particles N in (a) while we report the testing accuracy in (b). As expected, both time and accuracy are increasing as
N increases.
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Fig. 2. The E-PF Predictive Variance at various levels of signal-to-noise ratio (SNR) from additive Gaussian Noise. The Predictive variance is defined as the
variance value corresponding to the label predicted by the network. The reported values are averaged over all images in the test set.

time-steps (epochs), the steps of the proposed E-PF algorithm

are provided above in algorithm 1.

In the NN set up, we assess the goodness of fit of each

particle through the loss function. Specifically, we want to

favor particles with lower loss values. Hence, we set the

importance ratios u(i) to be proportional to the loss L of the

network, e.g., cross-entropy loss in classification problems. In

our implementation, the importance ratios for each layer l are

computed using the most recent estimates W[j][k] for layers

j = 1, 2, . . . , l − 1 and the previous time-step estimates, i.e.,

W[j][k−1], for layers j = l+1, l+2, . . . , L. At the end of the

training, particles and normalized importance ratios,

{W
(i)
[l][K], ũ

(i)
[l] =

u
(i)
[l]

∑
j u

(j)
[l]

}Ni=1,

are used to approximate the posterior distribution of W[l], for

l = 1, 2, . . . , L.

As mentioned in Section II-A, once the posterior is ap-

proximated, we are able to derive the predictive distribution.

In addition, the availability of weighted particles enables

us to compute any order moment. The second moment of

the predictive distribution, i.e., the predictive variance, is

of particular interest as a measure of model uncertainty or

confidence. Specifically, we can employ the dispersion of the

particles cloud as an approximation for the variance.

IV. PERFORMANCE VALIDATION AND EVALUATION

We evaluate our approach, E-PF, on a classification task

using MNIST handwritten digits dataset [31]. We compare

the performance of the proposed approach with state-of-the-

art frameworks. We consider two popular Bayesian approaches

MC-Dropout and BBB [8], [14]. For our framework, we

conduct a noise analysis and study the predictive variance

information.

A. Experiments

We evaluate the performance of E-PF using a two-layers

FC NN with 50 and 10 neurons, respectively, followed by

ReLU and Softmax activations. We employ cross-entropy loss

with L2 regularization. For the MNIST data, the number of

classes is C = 10. We use the classical split of 60, 000
images for training and 10, 000 for testing. We employ a



(I) Ground truth label: “4”

(II) Ground truth label: “0”

(III) Ground truth label: “6”

Fig. 3. Predictive distributions of E-PF for three randomly chosen images from the MNIST test dataset with added Gaussian noise with variance equal to
0.01, 0.2 and 0.4 (left to right). For each test image, the top row shows the noisy images along with the E-PF predicted labels, i.e., the labels corresponding
to the mean predictions, and the predictive variance values. The bottom row shows the particles’ predictions (particles softmax scores). Observe that the
variances of the predictive distributions increase with increasing noise levels, reflecting higher uncertainty (lower confidence) into the prediction.



Gaussian distribution as the prior for both layers: N (0, σ2I)
with σ = 0.1. For our E-PF, we consider N = 100 particles.

To generate these particles (see alg. 1), we set the standard

deviation value ση to a constant value of 0.05 for both layers.

To weight the particles, we compute the importance ratios

as −
∑C

i tilog(pi), i.e., as the cross-entropy loss computed

comparing the true label ti and the particle’s predicted output

pi. For this experiment we compare our E-PF with MC-

Dropout and BBB. At inference time, we perform and average

100 forward passes predictions for both MC-Dropout and

BBB. We show the performance of the three approaches

on noise-free data and at various levels of Gaussian noise

(see Table I). While Table I reports accuracy results for

N = 100 particles, Fig. 1 exhibits the performance and

computational cost of E-PF when we make N vary. In Fig.

2, we show the behaviour of the predictive variance of E-PF

when several levels of Gaussian noise are added to the test

data. In particular, Fig. 3 displays the predictive distributions

for three randomly selected images from the test set when

Gaussian noise is added.

TABLE I
TEST ACCURACY FOR E-PF, BAYES BY BACKPROP, AND MC-DROPOUT

Noise Level E-PF BBB MC-Dropout

Zero 96% 96% 96%

Low (Var = 0.01) 95% 95% 94%

Medium (Var = 0.2) 75% 74% 70%

High (Var = 0.4) 47% 46% 40%

B. Discussion

Table I shows that all Bayesian approaches have comparable

accuracy on noise-free data. BBB and the proposed E-PF NN

outperform MC-dropout on noisy data with E-PF’s accuracy

slightly higher than BBB. Beyond accuracy, E-PF provides

valuable information about uncertainty quantification, i.e., the

predictive variance. We define such quantity as the variance

corresponding to the label predicted by the network. Table

II reports the predictive variance for the noise-free case. It

is known that most models produce overconfident predictions

[32], [33]. Note that the predictive variance value is larger for

incorrect predictions as compared to the average value for all

test images and the value for correctly classified images (the

smallest). Hence, our model is able to highlight what it knows

and what it does not know.

A study of the model response when a Gaussian noise

is added to the test data has been performed. The focus of

this paper is on the first and second order moments, i.e.,

TABLE II
E-PF PREDICTIVE VARIANCE

All Correct Incorrect

Predictive
variance 0.0016 0.0012 0.0098

the predicted mean and the predicted variance, but the full

predictive distribution is available and any order statistic can

be computed and examined under noisy conditions. Figure 2

shows the predicted variance versus the Signal-to-Noise Ratio

(SNR). It is very interesting to observe that the variance

increases monotonically with decreasing SNR values. For

higher values of added Gaussian noise, the network becomes

more uncertain which is reflected in an increasing predictive

variance.

This response to noise is also demonstrated in Fig. 3 which

displays the predictive distribution of E-PF for three randomly

selected images from the test set. Given the classification task,

it is informative to display the particles’ softmax score for

each label. For each test image, we show the noisy image and

report the network predicted label, i.e., label corresponding

to the mean prediction, and the predictive variance value. For

lower noise levels, the network is highly confident about the

predictions: the distribution is peaked around the mean with a

very small spread (low uncertainty). As noise increases, the

spread of the particles’ prediction increases (higher uncer-

tainty) with a more noticeable skew which suggests that some

of the particles are moving toward an incorrect prediction. This

is evident in Fig. 3 ( III - noise level variance = 0.4): the

intersection shows that some particles are correctly classifying

label 6 but others are incorrectly assigning 4 as the predicted

label. Observe that, although the network is assigning the

incorrect class label, the predictive variance is 50% higher,

reflecting a significant decrease in confidence.

We are proposing a shift in evaluating neural networks’

performance with a dual metric: (accuracy, variance). The E-

PF approach’s predictive variance can be used as a warning

sign since higher values indicate noisy conditions and/or

possibly incorrect predictions. Additionally, the full predictive

distribution can be plotted and used as an additional valuable

tool to assess the prediction’s reliability.

It is worth to mention that the PF guarantees under weak as-

sumption convergence to the true posterior. In particular, if we

denote with N the number of particles in the E-PF algorithm,

as we let N → ∞, the obtained E-PF approximation will be

preferred. However, as in many other ensemble approaches, as

we increase the particles’ cloud (number of samples N ), the

computational demand of the algorithm will grow. As we can

note from Fig. 1, both training time and test accuracy increase

as we increase the number of particles N .

V. CONCLUSIONS

This paper proposes a Particle-Filter approach that prop-

agates densities through the non-linear layers of a neural

network. We leveraged fundamental concepts from powerful

statistical frameworks in optimal estimation problems in non-

linear non-Gaussian systems. By propagating a set of random

samples through the layers of a neural network, we can

approximate the posterior distribution without relying on crude

functional approximations. Furthermore, particle filtering guar-

antees, under weak assumptions, asymptotic convergence (i.e.,

when N → ∞) and consistent estimates of the posterior



distribution. We exploit the PF framework to derive the predic-

tive variance and study its behaviour under noisy conditions.

We observed that the variance of the predictive distribution

increases monotonically with decreasing SNR values, which

reflects a higher uncertainty or lower confidence into the

decision made by the network. The results of this paper,

although preliminary, open the door to a further investigation

into the issues of robustness and trustworthiness of neural net-

works. Future work includes scaling the proposed E-PF NN to

convolutional neural networks and sequence models, exploring

the role of higher moments of the predictive distribution and

going beyond Gaussian noise, i.e., adversarial robustness.
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