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Many experimental paradigms in neuroscience involve driving the

nervous systemwith periodic sensory stimuli. Neural signals recorded

using a variety of techniques will then include phase-locked oscilla-

tions at the stimulation frequency. The analysis of such data often

involves standard univariate statistics such as T-tests, conducted

on the Fourier amplitude components (ignoring phase), either to

test for the presence of a signal, or to compare signals across differ-

ent conditions. However, the assumptions of these tests will some-

times be violated because amplitudes are not normally distributed,

and furthermore weak signals might be missed if the phase infor-

mation is discarded. An alternative approach is to conduct multi-

variate statistical tests using the real and imaginary Fourier com-

ponents. Here the performance of two multivariate extensions of

the T-test are compared: Hotelling’s T 2 and a variant called T 2

ci r c
.

A novel test of the assumptions ofT 2

ci r c
is developed, based on the

condition index of the data (the square root of the ratio of eigen-

values of a bounding ellipse), and a heuristic for excluding outliers

using the Mahalanobis distance is proposed. The T 2

ci r c
statistic is

then extended to multi-level designs, resulting in a new statistical

test termed ANOVA2

ci r c
. This has identical assumptions to T 2

ci r c
,

and is shown to be more sensitive than MANOVA when these as-

sumptions are met. The use of these tests is demonstrated for two

publicly available empirical data sets, and practical guidance is sug-

gested for choosing which test to run. Implementations of these

novel tools are provided as an R package and a Matlab toolbox, in

the hope that their wider adoption will improve the sensitivity of

statistical inferences involving periodic data.

K E YWORD S

multivariate statistics, Fourier analysis, steady-state, condition index,

Mahalanobis distance
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1 | BACKGROUND

A widely used approach in many branches of neuroscience is to drive the nervous system using periodic stimuli. This

entrains neural responses at the stimulation frequency, resulting in high signal-to-noise ratios relative to single stim-

ulus presentations. These periodic responses, often called the steady-state or frequency following response, can be

recorded using invasivemethods from single neurons (Enroth-Cugell and Robson, 1966) and local field potentials (Mor-

rone et al., 1987), or with non-invasive electroencephalography (EEG) and magnetoencephalography (MEG) systems,

both in humans (Norcia et al., 2015) and in diverse animal species including insects (Afsari et al., 2014), birds (Porciatti

et al., 1990), rodents (Hwang et al., 2019) and primates (Nakayama and Mackeben, 1982). Steady-state methods are

used to measure early sensory responses in vision (Regan, 1966), hearing (Rees et al., 1986) and somatosensation

(Snyder, 1992), and closely related paradigms have been developed to target specific stimulus features such as orien-

tation (Braddick et al., 1986), and facial expression (Gray et al., 2020) and identity (Liu-Shuang et al., 2014). In fMRI

research, travelling wave methods (Engel et al., 1994; Sereno et al., 1995) are used to map the retinotopic responses

of early visual cortex using stimuli that change periodically in spatial position. Finally, physiological reflexes such as

the pupillary response to light can be entrained in a similar way (Spitschan et al., 2014).

A convenient way to analyse the data from periodic stimulation experiments is to take the Fourier transform

of the measured signal. The amplitude of the response at the stimulation frequency (and its harmonics - integer

multiples of the stimulation frequency) is a precise and well-isolated index of the brain’s response (see Figure 1a,b).

Fourier spectra comprise both amplitude and phase information that can be expressed in polar coordinates (Figure

1c), or equivalently as complex numbers with real and imaginary components (Figure 1d). In many studies the phase

information is routinely discarded, and statistical comparisons are performed on the amplitude data (or equivalently

power or signal-to-noise ratios) only (e.g. Liu-Shuang et al., 2014; Afsari et al., 2014; Hou et al., 2020; Itthipuripat

et al., 2014; McFadden et al., 2014; Smith et al., 2017; Vanegas et al., 2015, note this is a non-exhaustive selection

of recent studies). Typically researchers wish to test the experimental hypothesis that a signal is present against the

null hypothesis that it is absent, or they wish to know if responses differ in amplitude and/or phase between two (or

more) experimental conditions. However, there are several objections to using univariate statistics to answer these

questions, as will be demonstrated below. An alternative is to use multivariate statistics, which take into account

both the amplitude and phase information (represented as real and imaginary Fourier components in a Cartesian

space). Multivariate methods have the advantage that they are more sensitive to weak signals, and therefore offer

increased statistical power relative to univariate methods for typical applications (detecting the presence of a signal,

or comparing multiple signals).

For pointwise and pairwise comparisons, Hotelling’s T 2 statistic (Hotelling, 1931) is a multivariate extension of

the T-test. For the one-sample case, the test statistic is defined as:

T 2
= N (x̄ − µ)′C−1(x̄ − µ), (1)

where N is the number of observations, x̄ is the multivariate sample mean, µ is the point of comparison, C−1 is the

inverse covariance matrix, and ′ denotes vector transposition. Conceptually, the T 2 statistic extends the univariate

T-statistic by incorporating the covariance between the dependent variables. Two-sample and paired variants are also

available, and the test can be applied with an arbitrary number of dependent variables (though here only the bivariate

case will be considered).

More recently, Victor andMast (1991) proposed a simpler version ofT 2, calledT 2

ci r c
. TheT 2

ci r c
statistic makes the

strong assumption that the dependent variables (real and imaginary Fourier components) are uncorrelated and have
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F IGURE 1 Illustration of the principles of Fourier analysis for time-varying signals. Panel (a) shows a sinusoidal

signal waveform, and simulated neural responses for successive observations (repetitions in the same individual, or

recorded from multiple individuals). Panel (b) shows the Fourier amplitude spectra of the waveforms in (a), with clear

peaks at the signal frequency (5Hz) in each example. The Fourier spectrum also includes a phase term, which can

be represented in polar coordinates (amplitude and phase); panel (c) shows this for example responses at the signal

frequency (grey points) and their average (blue point), which is computed separately for amplitude and phase terms.

Alternatively, the same information is contained in a Cartesian representation of the real and imaginary parts of the

complex spectrum (panel (d)). Notice that the individual observations (grey points) are the same in panels (c,d), but the

different representations have implications for how the average (blue points) and measures of spread (shaded regions)

are calculated.
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equal variance. When these conditions are met, the test statistic for the one-sample case is defined as:

T 2

ci r c = (N − 1)
|x̄ − µ |2

Σ |xj − x̄ |2
, (2)

where xj denotes the j th observation of the dependent variables, and all other terms retain their previous meanings.

Notice that no covariance term is present in equation (2), because of the independence assumption. This makes the

statistic simpler to calculate, but causes problems when the assumption is violated (as will be demonstrated below).

Conceptually, this statistic takes the vector difference between the bivariate sample mean (x̄ ) and a comparison point

(µ), and scales by the mean length of the residual vector lines joining each data point to the sample mean. Two-sample

and repeated measures versions of theT 2

ci r c
statistic are also possible.

In the present paper, best practice guidelines are developed for performing statistical tests onmultivariate Fourier

components derived from periodic stimulation paradigms. It is first demonstrated why parametric univariate statistics

are inappropriate for such data, primarily because amplitudes for weak signals are not normally distributed. Then

conditions are investigated under which either the T 2 or T 2

ci r c
statistic should be used. The range of sample sizes

and effect sizes where T 2

ci r c
is more sensitive is identified. A novel method for testing the assumptions of the T 2

ci r c

statistic is developed, based on calculating the condition index of a multivariate data set. Appropriate methods for

identifying outliers using the Mahalanobis distance are discussed, and a heuristic proposed. Next the logic of T 2

ci r c

is extended to situations with more than two levels of the independent variable, and the performance of this novel

ANOVA2

ci r c
statistic is compared to MANOVA. Finally, the proposed techniques are demonstrated on two example

data sets (from mice and humans), and best practice guidelines are recommended for analysis decisions.

All scripts used to generate this manuscript are available at: https://github.com/bakerdh/FourierStats. This

includes a Matlab toolbox and an R package called FourierStats, featuring functions to implement Hotelling’s (1931)

T 2 statistic, Victor & Mast’s (1991)T 2

ci r c
statistic, and the condition index and ANOVA2

ci r c
statistics proposed in this

paper.

2 | FOURIER AMPLITUDES VIOLATE PARAMETRIC ASSUMPTIONS OF UNI-
VARIATE STATISTICS

Many empirical studies use univariate T-tests or analysis of variance (ANOVA) to analyse periodic data. Specifically,

the amplitude component of the Fourier spectrum at the stimulation frequency is used as the dependent variable,

discarding the phase information. This is problematic, because the amplitude is an absolute quantity, and can never

fall below zero. Distributions of amplitudes for weak signals are therefore positively skewed, and will generally violate

the assumption of normality.

The upper row of Figure 2 shows scatterplots of simulated Fourier components, expressed using real (x) and

imaginary (y) components. The amplitudes are the lengths of the lines joining each grey point to the origin. The

lower row in Figure 2 shows distributions of amplitudes for the same set of signal strengths. These distributions only

approach normality when the signal strength is more than twice the standard deviation (Cohen’s d > 2; Cohen’s d

is the difference of sample means scaled by the standard deviation, see Cohen (1988)). One consequence of this is

that T-tests will potentially have an inflated Type I error (false positive) rate for many signals encountered empirically,

especially if used to make pointwise comparisons to an amplitude of 0.

Typical solutions for dealing with skew, such as log-transforming the data, are unlikely to be equally applicable to

all conditions. For example, if one wishes to compare a baseline where no stimulus was presented with a condition
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F IGURE 2 Demonstration of skew in absolute Fourier amplitudes for signals of different strengths. Signal strength

is quantified as Cohen’s d, defined as the ratio of the sample mean to the sample standard deviation. The upper row

shows samples of 50 grey points, and the population mean (coloured points). The lower row shows kernel density

functions generated from 100,000 amplitude values. Note that the mean phase of the signal is irrelevant for these

simulations, and is shown in the positive x-direction for consistency.

involving a strong signal, the former will be skewed and the latter normal. Applying a transform to both conditions

is therefore problematic. Non-parametric statistics are a potential option, but these have generally lower statistical

power than their parametric equivalents. Instead, the multivariate statistics discussed in the introduction avoid these

issues and have greater statistical power, as will be demonstrated in the following section.

3 | COMPARISON OF STATISTICAL POWER BETWEEN UNIVARIATE AND
MULTIVARIATE TESTS

Using theT 2 orT 2

ci r c
statistic allows the phase information to be retained, and therefore provides greater power than

running univariate T-tests on amplitudes, as well as avoiding problems caused by using absolute amplitude values. Vic-

tor and Mast (1991) report simulations showing situations whereT 2

ci r c
has greater power thanT 2, which is expected

on theoretical grounds because the additional degrees of freedom in theT 2

ci r c
test make it more efficient. Their simu-

lations involved generating random data sets of different sample sizes, and different signal strengths (sample means),

and comparing the number of such tests where each statistic was significant. The simulations showed the largest

advantage for T 2

ci r c
for effect sizes around d = 1 (where the sample mean is equal to the sample standard deviation).

The advantage appeared to be stronger for smaller sample sizes.

Here these simulations are replicated and extended (see Figure 3). The real and imaginary Fourier components

of a periodic signal could in principle be analysed using two separate univariate t-tests. To detect the presence of a

signal, each t-test would compare to a value of zero (i.e. the origin in Figure 1d), to test against the null hypothesis that

there is no signal (H0x : x = 0;H0y : y = 0). Without correction for familywise error, this approach has high statistical

power for detecting when at least one test is significant (see grey triangles in Figure 3a-c). However the use of two
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F IGURE 3 Simulations estimating the proportion of significant tests for simulated data with different sample sizes

and effect sizes (100,000 simulated data sets per condition). Panels a-c replicate conditions reported by Victor and

Mast (1991), and extend them to include univariate tests for comparison. Panels (d) and (e) show a wider range of

conditions for each multivariate statistic. Panel (f) shows the difference between the two statistics, with contour lines

indicating power differences of 0.02, 0.05, 0.1, 0.2 and 0.4.

separate tests inflates the familywise error rate such that 10% of tests are significant (assuming α = 0.05), even in the

absence of a signal. Using Bonferroni correction to ameliorate this problem substantially reduces the power (white

triangles in Figure 3a-c).

Using multivariate tests allows high power to be maintained without inflating the Type I error rate. Here, the

multivariate mean (or equivalently, the difference in means between two conditions) is compared to zero, again testing

against the null hypothesis that there is no signal (H0 : x = y = 0). The T 2

ci r c
statistic (red squares in Figure 3a-c) has

greater power than either theT 2 statistic (black circles) or the corrected univariate tests (white triangles). The power

advantage overT 2 occurs particularly for large effect sizes and small sample sizes (see Figure 3f). However, for effect

sizes around 0.5 < d < 1, T 2

ci r c
is more sensitive even with around 16 observations. This advantage is lost for large

sample sizes (N > 32) and large effect sizes (when d > 2 and N > 8). These simulations suggest a straightforward

heuristic - there is no advantage to using the T 2

ci r c
statistic for large sample sizes (when N > 32), so its use can be

restricted to small-sample studies.

As mentioned above, an alternative approach that is widely used in the literature is to discard the phase infor-

mation and calculate the amplitude values instead (lengths of the lines in the top row of Figure 2). Because the

amplitudes can never be negative, the presence of a signal must be detected by comparison to a baseline condition in

which no stimulus was presented, typically using a paired t-test. Here, the null hypothesis is that the stimulus-present

and stimulus-absent conditions produce equal amplitudes at the stimulus frequency (H0 : Apr esent = Aabsent ). This

approach has markedly lower power than the multivariate tests (see blue diamonds in Figure 3a-c). In principle, one

could also conduct circular statistical tests on the phase component of the signal (Berens, 2009). However in the

limit, testing both the amplitude and phase separately can be no more sensitive than testing the real and imaginary
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F IGURE 4 Simulations showing the Type I error rate for both tests as a function of the correlation between two

variables (a) and the ratio of variances (b). Estimates are for 100,000 simulated data sets per condition, with N = 10

observations. The icons at the foot of each panel show example scatterplots with bounding ellipses and eigenvectors.

components (because these are just the polar and Cartesian representations of the same information), and suffers

the same issues with familywise error from multiple tests. Multivariate approaches avoid these problems and provide

high statistical power.

4 | LIMITATIONS OF T 2

c i r c
WHEN ASSUMPTIONS ARE VIOLATED

AlthoughT 2

ci r c
can be more sensitive thanT 2, this greater sensitivity relies on satisfying theT 2

ci r c
test’s more stringent

assumptions. The two dependent variables must be independent (i.e. uncorrelated), and of equal variance. These

restrictions may hold for some data sets, but it is instructive to ask what happens when they do not. Figure 4 shows

the results of simulations with randomly generated bivariate data in which no signal is present. When the data are

uncorrelated and have equal variance (mid-points of the functions in each panel), both tests have the nominal Type I

error (false positive) rate of α = 0.05 (horizontal dashed lines). However, as the data become increasingly correlated

(Figure 4a), or the sample variances of the two dependent variables grow more disparate (Figure 4b), the Type I error

rate of theT 2

ci r c
statistic (shown in red) increases by almost a factor of 2. In contrast, theT 2 statistic, which explicitly

takes account of the covariance matrix (see equation (1)) shows no increase (black curves).

One possible remedy to control the Type I error rate would be to adjust either the α level or the degrees of

freedom (as is done in repeated measures ANOVA when sphericity assumptions are violated). However, this will

reduce the statistical power of the T 2

ci r c
test, and its advantage over T 2 is relatively marginal in most situations to

begin with (see Figure 3). What is required is a method to objectively assess whether the assumptions of T 2

ci r c
hold;

this is developed in the following section.

5 | A NOVEL METHOD TO TEST THE ASSUMPTIONS OF T 2

c i r c

Despite the severe consequences of violating the assumptions of the T 2

ci r c
statistic (see Figure 4), there is currently

no accepted test of those assumptions that could be applied to an empirical data set. Victor and Mast (1991) suggest

that their test should be applicable to multiple repetitions of a stimulus condition collected from a single participant,

whereas data pooled across multiple participants may be less likely to exhibit independence of the real and imaginary

components (see also Pei et al., 2017). However it would be useful to develop a method that can tell us whether the

assumptions hold for a given data set.
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One convenient way to test the assumptions ofT 2

ci r c
is to assess the condition index of a data set, which describes

the ratio of eigenvalues for a cloud of points. The eigenvectors are the major and minor axes of the bounding ellipse

(the straight lines in the example icons at the foot of Figure 4a,b). Conventionally, the condition index is calculated as

the square root of the longest/shortest eigenvector length. For uncorrelated random numbers the expected distribu-

tion of condition indices is positively skewed, with a minimum of 1 (Edelman, 1988). This is because two independent

samples of numbers from the same underlying distribution will generally by chance have unequal eigenvectors, and

the definition of the condition index (
√

l ongest/shor t est ) prevents its values dropping below 1 (values < 1 would

imply that the shortest eigenvector is longer than the longest one). For bivariate data, Edelman (1988) provides an

equation (his Eq. 14) for the probability density function of condition indices (x) as a function of sample size (N):

pdf = (N − 1)2N−1 x2 − 1

(x2 + 1)N
x (N−2)

. (3)

Attempts to validate this by simulation (100,000 random data sets) found that for small sample sizes (N < 10), there is

a mismatch between the equation’s predictions and the simulations (the black curve does not match the blue shading

in Figure 5a). Instead, a closer approximation to the simulations is given by:

pdf = (N − 2)2N−2 x2 − 1

(x2 + 1)(N−1)
x (N−3)

. (4)

The red curve in Figure 5a shows the predictions of this modified equation, which are much closer to the simulation

results (blue shading). The vertical lines show the critical (95%) threshold for the analytic and simulated results. A ratio

lying beyond this threshold can be considered to violate the assumption of either independence or equal variance,

because it has a condition index larger than expected by chance (assuming α = 0.05). Ratios below the threshold imply

that the eigenvalues can be considered equal (in a statistical sense). Figure 5b shows how these critical thresholds

change as a function of the number of observations (N), and it appears that the modified expression (red) most closely

approximates the simulation results (blue).

The eigenvalue ratio can be used as a test of the assumptions of T 2

ci r c
. If a condition index is observed that is

above the critical threshold for the number of observations, then the data set can be said to significantly violate the

assumption of equal eigenvalues. Because the modified equation permits estimation of an inverse density function,

this can be used to calculate a p-value for the test. If the test is non-significant, one can proceed with T 2

ci r c
; if it is

significant, T 2 should be used instead. A function implementing this test is included in the FourierStats package (the

CI.test function in R, and CI_test function inMatlab).

6 | IDENTIFYING AND REMOVING OUTLIERS USING THE MAHALANOBIS
DISTANCE

If a data set produces a significant result using the condition index test, this could be due to the presence of one

or more outliers. The Mahalanobis distance (Mahalanobis, 1936) is a useful metric for identifying such multivariate

outliers so that they can be excluded. Note that outlier exclusion is contentious, but it is beyond the scope of this

paper to contribute to this debate beyond noting that preregistration of any outlier exclusion protocols is adviseable.

TheMahalanobis distance calculates the Euclidean distance between each data point and the sample mean, and scales

it by the variance in the direction of the vector that joins the two points. This means that any correlations in the data

set are taken into account when calculating the distance metric, D.
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F IGURE 5 Logic of the condition index test. Panel (a) shows the distribution of condition indices derived from

Equations 3 (black curve) and 4 (red curve), and by stochastic simulation (blue shading), for a sample size of N = 4

observations. The vertical lines show the 95 percent thresholds on the distributions (where 95 percent of values lie

to the left of the line). Ellipse icons above panel (a) illustrate different condition indices between 1 and 19 (note that

rotation does not affect the condition index). Panel (b) shows how 95 percent thresholds change as a function of the

number of observations.

The effectiveness of this approach to outlier exclusion can be assessed by simulation using the condition index

test. Figure 6 shows the proportion of significant condition index tests as a function of the Mahalanobis distance of

a single outlier, for a range of sample sizes (curves). In all cases, the functions depart from the Type I error rate (α

= 0.05; horizontal dashed line in Figure 6) when the outlier’s Mahalanobis distance exceeds a value around 3. This

seems a reasonable heuristic for outlier exclusion, and is the multivariate equivalent of excluding data points more

than 3 standard deviations from the sample mean (note that many implementations of the Mahalanobis distance

statistic, such as the core mahalanobis function in R, or mahal function in Matlab, return D 2, which can be converted

to D by taking the square root). Following this heuristic should reduce the likelihood that outliers will invalidate the

assumptions of theT 2

ci r c
test.

A variant of the Mahalanobis distance (the pairwise Mahalanobis distance) can also be used to compute a multi-

variate measure of effect size, equivalent to Cohen’s d statistic (see e.g. Del Giudice, 2009). This is a valuable statistic

to include when reporting the results of multivariate tests, and a function (pairwisemahal) to calculate it is available as

part of the FourierStats package.

7 | CONTROLLING FOR MULTIPLE COMPARISONS ACROSS LOCATION AND
TIME

In some studies, it is important to compare responses over space and/or time. However with large numbers of sensors,

voxels or temporal epochs, the familywise error quickly becomes problematic, inflating the Type I error (false positive)

rate. Solutions such as Bonferroni correction, which adjust the α level based on the number of comparisons, are

overly conservative and can obscure real effects by dramatically reducing power. An alternative approach is to use
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F IGURE 6 Simulations illustrating the Mahalanobis distance metric, and showing how a single outlier affects the

condition index. The upper row shows three example data sets, each with a single outlier shown in red. The outliers

have approximate Mahalanobis distances of 1, 3 and 5. The ellipses are calculated with the outlier included (red) and

excluded (black), illustrating how the outlier distorts the aspect ratio of the ellipse. The main plot shows how the

proportion of significant condition index tests depends on the outlier distance and the sample size.

cluster correction methods to control the Type I error rate, using mass univariate tests (e.g. Maris and Oostenveld,

2007). These typically involve summing test statistics such as T-values across adjacent significant locations and/or

moments in time. The summed test statistic is compared to a null distribution generated from the same data by

randomly permuting condition labels (or the sign of the data for one-sample tests). Such methods control the Type

I error rate without substantially reducing statistical power. The same approach can be applied to the T 2 and T 2

ci r c

statistics. This allows a principled method for identifying clusters of significant sensors, timepoints or frequencies

responding to periodic stimuli. The FourierStats package includes an implementation of this method with options for

multivariate statistics (the clustercorrect function).

8 | GENERALISING TO MORE THAN TWO CONDITIONS

Many studies involve more than two experimental conditions that need to be compared. Again, issues with familywise

error will quickly become problematic if multiple pairwise T 2 or T 2

ci r c
statistics are calculated. One possibility is to

conduct a MANOVA, which takes covariances between dependent variables into account in much the same way as

Hotelling’s T 2, but permits independent variables with more than two levels, as well as factorial designs. However,

if the assumptions of T 2

ci r c
hold for a data set, it should alternatively be possible to extend the logic of the T 2

ci r c
test

(Victor and Mast, 1991) to the more general multiple group case, and obtain a sensitivity benefit similar to that shown

in Figure 3.

The F-statistic for a one-way independent ANOVA is calculated by taking the ratio between the variance explained
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by the modelled group means, and the residual unexplained variance:

F =
MSM

MSR
, (5)

where MSM is the mean squares of the linear model, and MSR is the mean squares of the residuals. For bivariate

data, the linear model is defined as the change in group (condition) means relative to the grand mean, calculated using

the vector distances between points:

MSM =
ΣNk (x̄k − x̄gr and )

2

dfM
, (6)

where Nk is the number of observations in group k, x̄k is the bivariate sample mean of group k, x̄gr and is the bivariate

mean of the entire sample (including all groups), Σ denotes summation across groups, and dfM is the degrees of

freedom for the model. Note that by using the vector distances between points, this equation reduces multivariate

data to a single scalar value, in a similar way to equations (1) and (2). The model degrees of freedom for k groups is

dfM = 2(k − 1), with the factor of two scaling relative to standard univariate ANOVA reflecting the additional degrees

of freedom afforded by having two dependent variables.

The residuals are the vector distances between each data point and its corresponding group mean. The denomi-

nator component for the F-ratio equation is therefore defined as:

MSR =
Σ(xi ,k − x̄k )

2

dfR
, (7)

where xi ,k is the i th data point from group k, and other terms are as described previously. The degrees of freedom

for a balanced design are calculated as dfR = 2((Nk ) − k ), where N is the number of observations per group, and k is

the number of groups. A p-value can then be determined by comparing the F-ratio calculated from equation (5) to an

F-distribution with dfM and dfR degrees of freedom.

A suitable name for such a test might be ANOVA2

ci r c
, as this reflects the similarity to ANOVA, and the extension

of the logic ofT 2

ci r c
(an alternative name might beMANOVAci r c , however this feels less appropriate given that many

of the key features of MANOVA are absent). Figure 7 shows simulations analogous to those in Figure 3 for a one-way

between-subjects design with three levels. MANOVA is directly compared to the ANOVA2

ci r c
statistic across a range

of effect sizes and sample sizes. Just as for the one-sample statistics, the advantages of ANOVA2

ci r c
are particularly

apparent for small sample sizes, and larger effect sizes (Figure 7f).

Following a significant ANOVA2

ci r c
test, one could calculate T 2

ci r c
statistics to make post-hoc pairwise compar-

isons between conditions, providing that appropriate multiple comparison correction is applied (e.g. Bonferroni cor-

rection). Univariate ANOVAs on the real and imaginary components are unlikely to be informative, as the relative

magnitudes of the two measures depend on stimulus phase (which is arbitrary; see Figure 1d). A repeated measures

version of ANOVA2

ci r c
can also be implemented following the same logic. The project repository contains a func-

tion (anovacirc.test in R, anovacirc_test inMatlab) to run both of these tests for one-way designs. In principle factorial

versions might also be derived.
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F IGURE 7 Simulations comparing the sensitivity of MANOVA and ANOVA2

ci r c
. The format mirrors that of Figure

3. In these simulations, there were three conditions, with the signal being added to one condition only.

9 | DECIDING WHICH TEST TO RUN

The flowchart in Figure 8 illustrates a proposed decision structure for the analysis of periodic data, once any outliers

have been removed. Initially, data for each condition should be tested against the expected distribution of eigenvalue

ratios using the condition index test. Comparisons with one or two conditions should be tested with theT 2

ci r c
statistic

if the condition index test is non-significant, and the T 2 statistic otherwise. Comparisons with more than two con-

ditions should be tested with the ANOVA2

ci r c
statistic if the condition index test is non-significant, or a MANOVA

otherwise. Many MANOVA implementations cannot deal correctly with random factors (repeated measures), partic-

ularly in complex factorial designs. However themultRM function in theMANOVA.RM package (Friedrich et al., 2019)

is able to handle such designs appropriately using a bootstrapping approach.

10 | APPLYING MULTIVARIATE METHODS TO EMPIRICAL DATA SETS

Having developed some novel tools for the analysis of periodic data, in the following sections their use is demon-

strated for two different publicly available empirical data sets. The first study recorded responses to auditory and

optogenetic stimulation in mice. The second study measured visual responses to flickering grating patterns in humans.

These examples also provide a demonstration of how the results of the tests described above might be appropriately

reported.
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F IGURE 8 Flowchart illustrating how one might decide which test to conduct for a given data set, based on the

study design and the outcome of the condition index test.

10.1 | Mouse auditory and optogenetic steady-state data

Hwang et al. (2019; 2020) measured steady-state responses using implanted scalp electrodes in 6 mice. The mice

had previously been given a targeted virus that made parvalbumin neurons in their basal forebrain responsive to

specific wavelengths of light, delivered through an optical fiber (a technique called optogenetics). Steady-state evoked

potentials were recorded from 36 electrodes for 1 second epochs of 40Hz auditory stimulation, and various schedules

of optogenetic stimulation (including at 40 Hz). The data set is described more fully by Hwang et al. (2020), and was

downloaded from: https://doi.gin.g-node.org/10.12751/g-node.e5tyek/. A processed data file is included

with permission from the authors in the FourierStats package.

Figure 9a shows Fourier amplitude spectra at two frontal electrodes (marked black in the insets) for auditory

stimulation (red) and optogenetic stimulation (blue), each at 40 Hz. There is a clear frequency-locked signal with

approximately equal amplitude for each stimulation modality. Indeed, a paired univariate T-test on the amplitudes

reveals no significant difference (t = 0.84, df = 5, p = 0.44). However, inspection of the complex Fourier components

for each condition suggests evidence of a phase difference between the two modalities (see Figure 9b). The condition

index test was non-significant for both conditions (sound: CI = 1.59, p = 0.66; light: CI = 1.69, p = 0.59), so a paired-

samples T 2

ci r c
test was conducted. This revealed a significant difference between conditions (T 2

ci r c
= 1.39, F(2,10) =

8.32, p = 0.007) with an effect size of D = 2.14. This demonstrates that sound and (optogenetic) light entrain neural

responses with different latencies (lags). The original study by Hwang et al. (2019) went on to explore interactions

between these two signals.

10.2 | Human visual steady-state data

Vilidaite et al. (2018) measured visual responses to flickering grating stimuli in a large sample of 100 adults. Each
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F IGURE 9 Summary of mouse steady-state responses to 40 Hz stimulation. Panel (a) shows the Fourier amplitude

spectrum with inset scalp plots for sound (red) and light (blue) stimulation, averaged across repetitions and individuals.

Grey and black points in the insets indicate electrode locations. Panel (b) shows complex (x = real, y = imaginary)
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participant completed a series of 11-second trials, in which stimuli of different contrasts flickered at 7Hz (on-off

sinusoidal flicker). Responses were strongest at occipital electrodes over visual cortex (see upper row of Figure 10),

were well-isolated in the Fourier domain, and increased with stimulus contrast. Significant activity was evident at 4%

contrast and above following cluster correction (with very stringent α levels given the high power of this data set),

as indicated by the red electrodes in the upper row of Figure 10. For the main analysis, responses were taken from

electrode Oz at the occipital pole (black points in the upper row of Figure 10), and averaged across repetition for

each participant. Each condition included some outlier points with Mahalanobis distances exceeding 3, marked red in

the lower row of Figure 10. Any participant that contributed at least one outlier was excluded, leaving a total of 89

participants for the main analysis.

With the outlier points removed, all seven conditions resulted in non-significant condition index tests (largest CI

= 1.20, all p > 0.23). A repeated measures ANOVA2

ci r c
test was conducted, revealing a significant effect of stimulus

contrast (F(12,1056) = 38.9, p < 0.001). PairwiseT 2

ci r c
statistics comparing the baseline (0% contrast) condition to each

subsequent condition (Bonferroni corrected for 6 tests to α = 0.008) revealed significant differences at 8% contrast

(T 2

ci r c
= 0.32, F(2,176) = 28.43, D = 1.1, p < 0.001), 16% contrast (T 2

ci r c
= 0.28, F(2,176) = 25.25, D = 1.04, p < 0.001),

32% contrast (T 2

ci r c
= 0.10, F(2,176) = 8.55, D = 0.63, p < 0.001) and 64% contrast (T 2

ci r c
= 0.40, F(2,176) = 35.35, D

= 1.17, p < 0.001). The study by Vilidaite et al. (2018) compared SSVEP responses between individuals with and

without autism, as well as in a Drosophila genetic model of developmental disorders. The raw data are available at:

http://dx.doi.org/10.17605/OSF.IO/Y4N5K, and a processed version is included with the FourierStats package.

11 | FURTHER CONSIDERATIONS

It is worth stating explicitly that the statistical tests discussed in this paper are applicable only when the signal phase

is expected to be consistent across observations. This is the case for most paradigms in which the nervous system

is driven by a periodic stimulus, and sometimes also when phase-locked oscillatory responses are induced by a brief
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F IGURE 10 Summary of human SSVEP data. Upper row shows scalp distributions of Fourier amplitudes at 7Hz

for stimuli of increasing contrasts (blue shading indicates higher amplitudes). Electrodes marked in red indicate cluster-

corrected significance. Lower row shows scatterplots of complex (x = real, y = imaginary) Fourier components for 100

participants per condition, from electrode Oz (marked by the black points in the scalp plots). Red points are outliers

with Mahalanobis distances exceeding 3, and blue points mark the bivariate sample means.

stimulus presentation (e.g. in time-frequency analysis of event-related potentials, see Delorme and Makeig, 2004;

Pfurtscheller and Aranibar, 1979). However, the methods are less obviously applicable to the analysis of endogenous

neural oscillations and brain rhythms (Berger, 1929; Buzsáki and Draguhn, 2004), which will typically have random

phase and broader bandwidths in the Fourier domain: other analysis methods have been developed for such signals

(e.g. Quinn et al., 2021). When phases are consistent across repetitions, greater statistical power can be obtained

by coherently averaging across repetitions to obtain a participant-level average (Baker et al., 2021). This practice is

also necessary in order to use the multivariate methods discussed here, as the alternative is to discard the phase

information and average amplitudes instead, rendering the data univariate.

The present paper has focussed on the Frequentist statistical tradition. However there are many advantages to

the Bayesian approach, in which one can make direct quantitative comparisons of the evidence supporting both the

experimental and null hypotheses (Jeffreys, 1961). Subject to determining appropriate priors, Bayes factor scores

might be calculated for Bayesian versions of all of the statistics considered here, much as has been done previously

for univariate T-tests (Rouder et al., 2009) and ANOVA (Rouder et al., 2017). However this is a non-trivial undertaking,

and is beyond the scope of the current paper.

Another possibility is to use machine learning techniques such as multivariate pattern analysis (MVPA) to analyse

periodic data. This involves training a classifier algorithm to distinguish between two (ormore) experimental conditions

or states, and then assessing classifier accuracy for predicting the group labels of fresh data. If different conditions

produce distinct patterns of neural response, then classifier accuracy will be above chance. Such methods have been

hugely influential in the fMRI literature (Schwarzkopf and Rees, 2011), and for analysing event-related potential data

collected using EEG or MEG (Grootswagers et al., 2017). However, they have not been widely applied to steady-state

data (though see West et al., 2015, for one example). In principle, the real and imaginary Fourier components can be

treated as separate dependent variables, along with different recording locations and/or frequencies. This approach

has the potential to offer sensitive, high-powered statistical tests that circumventmany of the shortcomings associated

with traditional statistics.

Even when statistics are conducted using both the real and imaginary Fourier components, it is still typical to visu-

alise themean amplitudes. Several approaches to calculating appropriate error bars have been proposed. For example,

Pei et al. (2017) suggest calculating the nearest and farthest points from the origin on the bounding ellipse, and using

these to derive standard errors for the amplitude. This approach is somewhat computationally demanding, though
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a function is provided to calculate error bars using this method (available through the amperrors function). However,

as an alternative, bootstrap resampling offers a powerful and general method for calculating confidence intervals on

amplitudes. This is achieved by resampling the complex data (with replacement) and calculating a resampled com-

plex mean. The amplitude is then derived for this resampled mean, and the procedure repeated a large number of

times (1000 or 10000 repetitions is typical) to build up a population of resampled mean amplitudes. Upper and lower

confidence intervals on the amplitude can then be taken at appropriate quantiles of this population (68% or 95% are

typical, with the 68% interval corresponding to the standard error).

12 | GENERAL RECOMMENDATIONS FOR ANALYSING PERIODIC DATA

The simulations reported here allow several recommendations to be made for how periodic data should be analysed.

Multivariate statistics should be used for phase-locked Fourier data instead of univariate statistics such as T-tests and

ANOVA. This avoids problems from non-normal distributions of amplitudes violating the test assumptions, and also

provides a sensitivity benefit from the inclusion of phase information. Outliers can be removed when they have a

Mahalanobis distance exceeding 3, and the pairwise Mahalanobis distance should be reported as a measure of effect

size. For sample sizes of N < 32, the T 2

ci r c
and ANOVA2

ci r c
statistics can be used if the condition index test is non-

significant for all conditions. Alternatively, the T 2 or MANOVA statistics should be used when these conditions are

not met. The greater power afforded by these tests should in general lead to more accurate statistical inferences

when analysing periodic data. Additionally, more sensitive methods require fewer observations to reach a given level

of power, which has important ethical implications for animal research if fewer experimental subjects are needed.
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