
This is a repository copy of Reverse-engineering EFSMs with data dependencies.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/177494/

Version: Accepted Version

Proceedings Paper:
Foster, M. orcid.org/0000-0001-8233-9873, Derrick, J. and Walkinshaw, N. (2022) 
Reverse-engineering EFSMs with data dependencies. In: Testing Software and Systems. 
ICTSS 2021 : The 33rd IFIP International Conference on Testing Software and Systems, 
10-11 Nov 2021, Virtual conference. Lecture Notes in Computer Science . Springer Nature
, pp. 37-54. ISBN 9783031046728 

https://doi.org/10.1007/978-3-031-04673-5_3

This is a post-peer-review, pre-copyedit version of a paper published in Testing Software 
and Systems, Proceedings. The final authenticated version is available online at: 
http://dx.doi.org/10.1007/978-3-031-04673-5_3.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Reverse-Engineering EFSMs with Data

Dependencies⋆

Michael Foster1[0000−0001−8233−9873], John Derrick1[0000−0002−6631−8914], and
Neil Walkinshaw1[0000−0003−2134−6548]

Department of Computer Science, The University of Sheffield
Regent Court, Sheffield, S1 4DP, UK

{m.foster, j.derrick, n.walkinshaw}@sheffield.ac.uk

Abstract. EFSMs provide a way to model systems with internal data
variables. In situations where they do not already exist, we need to in-
fer them from system behaviour. A key challenge here is inferring the
functions which relate inputs, outputs, and internal variables. Existing
approaches either work with white-box traces, which expose variable val-
ues, or rely upon the user to provide heuristics to recognise and gener-
alise particular data-usage patterns. This paper presents a preprocessing
technique for the inference process which generalises the concrete values
from the traces into symbolic functions which calculate output from in-
put, even when this depends on values not present in the original traces.
Our results show that our technique leads to more accurate models than
are produced by the current state-of-the-art and that somewhat accurate
models can still be inferred even when the output of particular transitions
depends on values not present in the original traces.

Keywords: EFSM Inference · Model Inference · Genetic Programming

1 Introduction

Reactive systems – systems that respond to their environment, their users, or
other systems – are commonly modelled as Finite State Machines (FSMs). These
offer an intuitive basis upon which to model and reason about the sequential
behaviours of a wide range of systems from network communication protocols to
GUIs, and form the foundation of many verification and testing techniques [24].
Reactive systems that incorporate data (where computation requires a memory,
or where data can be supplied and received through inputs and outputs) can
be represented as Extended Finite State Machines (EFSMs) [14]. Despite their
utility, models can be neglected due to the pressures of system development.

The challenge of reverse-engineering FSMs and EFSMs has been the subject
of a considerable amount of research. Where the field of FSM inference is ma-
ture and has produced many powerful approaches [11,22,38], current techniques
to infer EFSMs tend to suffer from a variety of drawbacks. Some approaches

⋆ Michael Foster and Neil Walkinshaw are funded by the EPSRC CITCoM project.



2 M. Foster et al.

produce results that are only partial, in that they do not infer how data vari-
ables change throughout execution [26,39], or lack internal data variables entirely
[12,34]. Those approaches that do infer fully-fledged EFSMs are limited either
in terms of their practical applicability [6,10,13,18,35], or accuracy [37].

Inferring accurate, complete EFSMs is particularly challenging when the up-
date functions have interdependencies; when a function on one transition de-
pends on a value computed by another transition. Empirical work by Androut-
sopoulos et al. [7] suggests that these are widespread, arising in around a third
of the transitions in the models that they studied. Current inference approaches,
such as MINT [37], cannot handle such interdependencies because they infer
transition functions on an individual basis, without considering relationships to
other transitions. A further problem in the case of MINT is that it is incapable of
inferring variables that are not explicitly part of the execution trace. This means
that it is not a truly black-box technique. Finally, its update functions are only
inferred after the transition structure of the machine has been decided, which
is often too late because the underlying structural inference algorithm (which
is largely data-insensitive) can end up merging transitions together that should
remain separate because they should have different update behaviours [22].

In this work we present a technique that addresses these limitations. The key
contributions of this paper are as follows:
– An approach to infer update functions before any structural state machine

inference has taken place, instead of afterwards, so that transitions with
different update functions that should remain separate can be kept apart.

– An approach based on Genetic Programming to infer hidden variables (as
part of update inference) using values observed in other transition update
functions. This captures interdependencies between transitions, enabling the
inference of state machines that are more precise than the state-of-the-art.

– An openly available [16] proof-of-concept implementation, along with the
full experimental data-set and scripts.

– A small empirical study that assesses the accuracy of our approach in com-
parison to the state-of-the-art, with respect to two systems.
The rest of this paper is structured as follows. Section 2 introduces a mo-

tivating example and gives some necessary background. Section 3 explains the
details of our technique, the implementation of which is discussed in Section 4.
Section 5 evaluates our technique experimentally. Finally, Section 6 concludes
the paper and discusses possible future work.

2 Background

This section defines EFSMs and traces, and gives an overview of the current
state-of-the-art in EFSM inference. We then highlight the limitations of existing
techniques. Throughout this work, we draw from a toy example of a simple
vending machine. Users first select a drink. They then insert coins, with the total
balance being displayed as output on a small screen. Once sufficient payment
has been inserted, the machine vends the selected drink.



Reverse-Engineering EFSMs with Data Dependencies 3

2.1 Definitions

Traces. As systems execute, we can record the sequence of actions performed,
along with any inputs and return values. Figure 1 shows some traces of our simple
drinks machine. In our notation, coin(50)/[100] represents the event coin being
called with the input 50 and outputting 100. We delimit events with commas
and omit the outputs from events like select(“tea”) which do not produce any.

〈select(“tea”), coin(50)/[50], coin(50)/[100], vend()/[“tea”]〉
〈select(“tea”), coin(100)/[100], vend()/[“tea”]〉
〈select(“coffee”), coin(50)/[50], coin(50)/[100], vend()/[“coffee”]〉

Fig. 1: Exemplary traces of the vending machine.

EFSMs. An EFSM is a conventional FSM that has been extended to explicitly
model how a system handles data. While there are many different EFSM repre-
sentations in the literature [14,25], our technique is designed to work with the
inference process from [18], so we use that definition [17,18,19,20].

Definition 1. An EFSM is a tuple, (S, s0, T ) where S is a finite non-empty
set of states, s0 ∈ S is the initial state, and T is the transition matrix T :
(S × S) → P(L × N × G × F × U) with rows representing origin states and
columns representing destination states. In T , L is a set of transition labels. N
gives the transition arity (the number of input parameters), which may be zero.
G is a set of Boolean guard functions G : (I × R) → B. F is a set of output
functions F : (I ×R) → O. U is a set of update functions U : (I ×R) → R.

In G, F , and U , I is a tuple [i1, i2, . . . , im] of values representing the inputs
of a transition, which is empty if the arity is zero. Inputs do not persist across
states or transitions. R is a mapping from variables [r1, r2, . . .], representing
each register of the machine, to their values. Registers are globally accessible
and persist throughout the operation of the machine. All registers are initially
undefined until explicitly set by an update expression. O is a tuple [o1, o2, . . . , on]
of values, which may be empty, representing the outputs of a transition.

This differs from the traditional EFSM definition [14] in several ways. In
[14], transitions take one literal input, produce one literal output. Our definition
assigns each transition an explicit label and allows multiple inputs and outputs
(or none at all). Transitions may also produce outputs as a function of input
and register values, which allows transition behaviour to be generalised.

Definition 1 technically only affords each transition one guard, output, and
update, but syntactic sugar allows a transition from state qm to qn to take

the form qm
label:arity[g1,...,gg ]/f1,...,ff [u1,...,uu]
−−−−−−−−−−−−−−−−−−−−−−−−→ qn in which guards g1, . . . , gg are

implicitly conjoined, output functions f1, . . . , ff are evaluated to produce a list
of outputs, and update functions u1, . . . , uu are executed simultaneously. We use
this notation throughout this work, for example in Figure 3.



4 M. Foster et al.

2.2 Genetic Programming

The technique we present in Section 3 uses Genetic Programming (GP) [21] to
infer expressions which relate sets of input-output pairs from the traces. We
therefore provide a brief introduction to the essential notions of GP that we use
in this work. For a more comprehensive overview, we refer the reader to [31].

In (tree-based) GP, candidate functions are represented as syntax trees in
which branch nodes represent operators (“non-terminals”), and leaf-nodes rep-
resent variables and constants (“terminals”). GP is an approach to synthesise
these functions by evolution. The basic loop is as follows and iterates for a fixed
number of generations or until we find a function with optimal fitness.
1. Generate an initial population of random functions.
2. Evaluate each expression according to some fitness function.
3. Select the best individuals to continue to the next generation.
4. Create a new population by a process of crossover and mutation.
5. Repeat from step 2 until some stopping criterion is met.

The most important aspect of this for our purposes is the fitness function.
This provides a metric for the suitability of candidate functions. Fitness is eval-
uated by executing each candidate function on all available inputs and then
comparing the resulting set of outputs to the corresponding outputs in the trace
data. For numerical values, the fitness function is taken as the average distance
between the predicted and the actual values. For nominal outputs, the fitness is
calculated as the proportion of instances where the outputs were correct.

Another key step in the algorithm is the creation of a new population by
crossover and mutation. Crossover recombines desirable characteristics from in-
dividuals in the population. Mutation simulates the small changes in DNA which
occur during natural reproduction, allowing us to introduce new characteristics.

2.3 EFSM Inference

Model inference enables us to make statements about the overall behaviour of a
system by generalising from its traces. A popular way to do this [18,26,39] is to
convert the traces into a tree-shaped model called a prefix tree acceptor (PTA)
like in Figure 2. States in the PTA which are believed to represent the same
program state are then merged, resulting in a smaller and more general model.

q0

q1

q2 q3 q4

q5 q6

q7 q8 q9 q10

select
: 1[i0 = “tea”]

coin : 1[i0 = 50]/o0 := 50 coin : 1[i0 = 50]/o0 := 100 vend : 0/o0 := “tea”

coin : 1[i0 = 100]/o0 := 100 vend : 0/o0 := “tea”

select : 1[i0 = “coffee”]
coin : 1[i0 = 50]/o0 := 50 coin : 1[i0 = 50]/o0 := 100 vend : 0/o0 := “coffee”

Fig. 2: The PTA of the traces in Figure 1.

As well as inferring the control flow, we also want to infer the functions that
transform inputs into outputs. For example, in Figure 2, the output of each vend



Reverse-Engineering EFSMs with Data Dependencies 5

event is the input of select, and the output of each coin event is a running total
of the inputs. To express such behaviour, we must use the internal data state of
the model. The EFSM in Figure 3 uses a register, r1, to keep track of the inputs
to coin, and uses a second register, r2, to store the input of select for later use
as the output of vend. These registers affect the behaviour of the model, but do
not appear in its traces — they are latent.

2.4 Limitations of Existing Approaches

Figure 3 shows the ideal EFSM model of the drinks machine, but there are
currently no techniques in the literature which can infer this effectively from the
traces in Figure 1. A major obstacle to overcome is that registers r1 and r2 are
latent variables, so their existence and usage must be inferred. One technique [18]
allows users to provide data abstraction heuristics to facilitate this. To provide
these heuristics, the user requires a prior understanding of the system, which
means that this technique cannot be applied to any realistic inference scenario.

q0 q1 q2
select : 1/[r1 := 0, r2 := i1]

coin : 1/o1 := r1 + i0[r1 := r1 + i0]

vend : 0/o1 := r2

Fig. 3: The EFSM representing the traces in Figure 1.

MINT [37] is an alternative approach which uses GP to infer update functions
for variables. This is done as a postprocessing step for existing models. Having
inferred a model from a set of traces, the first stage of postprocessing is to execute
the model on these traces. For each transition, the anterior and posterior variable
values are recorded. These are then used as the inputs and outputs for GP to
evolve individual update functions for each variable of each transition.

Figure 4 shows a model MINT might infer of the traces in Figure 1. Crucially,
the longitudinal dependency between vend and select is missed. There are two
reasons for this. Firstly, MINT infers data updates per-transition, so cannot dis-
cover relationships between different transitions. Secondly, a variable is required
to store the input to select for later reuse. Figure 3 uses r2 for this, but MINT
only considers variables that appear in the traces, so has no way to facilitate the
relationship. The technique we present in Section 3 overcomes these limitations
to enable Figure 3 to be effectively inferred from the traces in Figure 1.

This work tackles the problem of passive inference — inferring a model using
only the traces provided — but there is also much literature on active inference
[8]. Here, the learner asks questions about the system under inference of the form
“Is this trace acceptable behaviour?”. These are often answered by running the
proffered traces directly on the system under inference. There are many active
EFSM inference techniques [5,6,10,13,35], but these do not support arithmetic
operations in data updates, only simple assignments. Functions that update



6 M. Foster et al.

q0 q1 q2
select(i0 ∈ {“tea”, “coffee”})

coin(i0 ≥ 50, o0 ≥ 50)/o0 := o0 + i0

vend(o0 ∈ {“tea”, “coffee”})

Fig. 4: An EFSM of the traces in Figure 1 as might be inferred by MINT. MINT
has no notion of outputs, so o0 here represents an internal register.

registers in terms of their anterior values, such as the coin transition in Figure 3,
are beyond them. Another limitation of all active learners is the requirement to
run arbitrary traces to answer queries, which may not always be viable.

Another group of approaches [12,33] rephrase the EFSM inference problem as
an instance of SAT. The solution is then a set of boolean variables which together
represent the automaton. Unfortunately, these approaches only consider boolean
data values and do not support internal variables, so have limited applicability.

3 Inferring Output and Update Functions

This paper addresses the challenge of inferring EFSMs from truly black-box
systems where we cannot inspect the internal state or ask arbitrary queries.
Instead, we must reason about the system purely in terms of the observable
behaviour recorded in a fixed set of its traces. The key challenge here is to infer
the necessary internal variables that enable us to capture functionality where
there is a dependence on some input data that might have been provided several
steps previously, without relying on the visibility of the internal data state.

Our approach works by inferring the key internal variables and the functions
that update them during an execution. This allows for “longitudinal” depen-
dencies, where an input is provided at one point (e.g. the user selects a drink),
and referenced several steps later in the machine (e.g. the machine dispenses the
drink, but only after the user has paid for it). As established by Androutsopoulos
et al. [7], such dependencies are common in EFSM specifications.

To infer these functions accurately, we cannot adopt the approach of existing
techniques such as MINT, which infer the transition functions as a postprocess-
ing step after the transition structure has been inferred. The process of state
merging leads to a loss of information which is vital to track these longitudinal
dependencies. Hence, the situation in Figure 4, where the inferred model allows
for the undesirable situation where a user selects tea but receives coffee.

To avoid this information loss, our approach operates as a preprocessing tech-
nique. We take advantage of the detailed trace-by-trace information in the PTA
before it is merged, inferring internal variables and associated update functions
directly from the prefix tree. We therefore retain flexibility as our approach does
not impose any restrictions on the state merging algorithm that is subsequently
used to infer the model structure. Our approach tackles three interdependent in-
ference challenges: (1) the functions to compute output from transition inputs,
(2) the registers needed to support this, and (3) the functions required to update
register values to ensure they hold the correct values when evaluated.



Reverse-Engineering EFSMs with Data Dependencies 7

Algorithm 1: Outline of our GP preprocessing technique.
Input: A set of traces T
Output: A prefix tree pta
// Generate a PTA from the traces using the conventional approach.

1 pta← buildPTA(T );
/* Group transitions by their structure (label and arity) and history (to

restrict the inference challenge for each group to the same context). */

2 groups← groupTransitions(pta);
3 for g1 ∈ groups do

/* Use GP to infer functions that accurately predict outputs for group,

including the ability to infer the presence of memory registers that

can be presumed to contain any missing values if required. */

4 fun← inferOutputFun(g1);
// Replace literal outputs with inferred functions.

5 newPTA← replaceLitWithFun(pta, g1, fun);
// Infer updates to the inferred memory registers.

6 for rn ∈ fun.latentVars do

7 for g2 ∈ groups do

8 newPTA← inferUpdateFuns(g2, targetValues(pta, rn));

// Check that inferred functions are compatible with traces.

9 if accepts(newPTA, T ) then

10 pta← newPTA;

/* Combine functions for transitions that were put into separate groups

because they had different histories (line 2). */

11 pta← standardise(pta);

12 pta← dropGuards(pta);
13 return resolveNondeterminism(pta);

Algorithm 1 outlines our technique. We first group related transitions in
the PTA together (line 2). We then infer output and update functions for each
group using GP. This works in two steps. In the first step (line 4), the GP infers
functions to compute output from input and identifies the use of registers if
required (addressing challenges 1 and 2 above). In the second step (lines 6-8)
it ensures that these registers are correctly updated by other transitions in the
PTA before they are evaluated. The rest of this section elucidates the process.

GroupTransitions (line 2) forms groups of transitions that represent the same
behaviour. Transitions are grouped together if they have the same structure, i.e.
the same label, arity, and produce the same number and types of outputs. The
PTA in Figure 2 has three structural transition groups: select, coin, and vend.

Latent variables can lead to side effects [7] such that transitions with the
same structure may be subject to different data states depending on where in a
trace they occur. To provide a degree of uniformity for the GP, we only place
transitions into the same group if they share the same history.

To account for contiguous blocks of the same event, we cannot simply look
at the previous transition. Instead, we look backwards in time until we find
one which is structurally different. For example, the most recent structurally
different transition of all the coin transitions in Figure 2 is select. Consecutive

structurally identical transitions (like q1
coin
−−−→ q2

coin
−−−→ q3 in Figure 2) represent

the same behaviour so have consistent side effects. By contrast, if our simple
drinks machine had a refund event to reset the balance to zero, coins inserted
after this event would be grouped separately to those that follow select.



8 M. Foster et al.

InferOutputFun (line 4) takes a set of input/output pairs and uses GP to
infer a function to relate them. The key challenge here is getting the GP to work
with latent variables; registers like r1 and r2 which are absent from the traces.
As mentioned in Section 2, this is not something which MINT can do. To infer
Figure 3 from the PTA in Figure 2, we need to be able to do this.

To introduce new registers, we simply add them to the set of variables used
by the GP, but this causes a problem. As discussed in Section 2, the fitness of
candidate functions is assessed by executing them on the inputs from the traces.
Unfortunately, register values do not appear in the traces, so we cannot evaluate
functions involving them. Our solution is to look to the inputs and outputs in
the traces, and assign each register the value that yields the closest output to
the target. The justification for this is that register values are usually either set
to a particular input or observed as an output. Full details can be found in [17].

Latent variables give the GP a lot of freedom when evolving expressions, so
we want to minimise their use. We expect transitions like coin to use their non-
latent inputs as part of the output, so want to find an expression involving them
if we can. Thus, we penalise the fitness of expressions which use latent variables
without using all the non-latent ones. In situations where ignoring inputs is the
correct solution, expressions cannot achieve optimal fitness but, since our GP
has a set maximum number of generations, this will not stop it from terminating.

To further limit the use of latent variables, we first call the GP without
them. If this fails, we add one latent register to the set of variables and run GP
again. If either attempt is successful, replaceLitWithFun (line 5) replaces the
literal outputs of the transition group with the inferred function. For example
in Figure 2, the output behaviour of the coin transitions generalises to i0 + r1.
Replacing the concrete outputs with this function gives Figure 5a. If the GP fails
both attempts, we keep the literal outputs from the PTA. We could continue
adding registers until the GP succeeds, but we here choose to stop after one.

Update Function Inference (lines 7-9). To ensure that registers introduced by
inferOutputFun hold the correct values when evaluated, we walk each trace
in the PTA annotating each state with target register values, as illustrated in
Figure 5a. These are propagated backwards so every state in the prefix path
has a target value. This is what allows r2 in Figure 3 to be initialised by select.
Without it, registers could only be initialised immediately prior to use, which
would not allow us to discover longitudinal relationships between transitions.

Starting at the root of the PTA, we call GP again (without latent variables)
for each group. The “inputs” are the transition input values and the anterior
register value, if defined. The “output” is the target register value. For example,
in q2 and q8 of Figure 5a, we need r1 to hold the value 50. The input to the
respective incident coin transitions is 50, and the anterior value of r1 must have
been zero. Thus, r1 := r1 + i0 works as possible update, as shown in Figure 5b.

Accepts (lines 9-10). After inferring output and update functions for a transi-
tion group, we check to ensure that the new PTA still accepts the original traces
and produces the correct outputs. If not, we must reject our inferred functions
and default back to the literal outputs from the PTA for that particular group.



Reverse-Engineering EFSMs with Data Dependencies 9

q0

q1

q2 q3 q4

q5 q6

q7 q8 q9 q10

select
: 1[i0 = “tea”]

coin : 1[i0 = 50]/o0 := r1 + i0 coin : 1[i0 = 50]/o0 := r1 + i0 vend : 0/o0 := “tea”

coin : 1[i0 = 100]/o0 := r1 + i0 vend : 0/o0 := “tea”

select : 1[i0 = “coffee”]
coin : 1[i0 = 50]/o0 := r1 + i0 coin : 1[i0 = 50]/o0 := r1 + i0 vend : 0/o0 := “coffee”

{r1 = 0}

{r1 = 0}

{r1 = 50}

{r1 = 50}

(a) The PTA after inferring output functions for the coin transitions.

q0

q1

q2 q3 q4

q5 q6

q7 q8 q9 q10

select
: 1[i0 = “tea”]/

[r1 := 0]

coin : 1[i0 = 50]/

o0 := r1 + i0[r1 := r1 + i0]

coin : 1[i0 = 50]/
o0 := r1 + i0[r1 := r1 + i0] vend : 0/o0 := “tea”

coin : 1[i0 = 100]/
o0 := r1 + i0[r1 := r1 + i0] vend : 0/o0 := “tea”

select : 1[i0 = “coffee”]/[r1 := 0]

coin : 1[i0 = 50]/

o0 := r1 + i0[r1 := r1 + i0]

coin : 1[i0 = 50]/

o0 := r1 + i0[r1 := r1 + i0] vend : 0/o0 := “coffee”

(b) The PTA after inferring update functions for the coin transitions.

q0 q1 q2
q3

q4

q6

select : 1/
[r1 := 0, r2 := i0]

coin : 1/
o0 := i0 + r1[r1 := i0 + r1]

coin : 1/

o0 := i0 + r1[r1 := i0 + r1] vend : 0/o0 := r2

vend : 0/o0 := r2

(c) The PTA after inferring output and update functions for all transitions, dropping
guards, and resolving nondeterminism.

Fig. 5: Preprocessing the PTA in Figure 2.

Standardise (line 11) takes a PTA and attempts to “standardise” output and
update functions between transitions with the same structure that were grouped
separately due to their histories. For example, in our refund ing vending machine
from earlier, we want our two groups of coin transitions to have the same output
and update functions. The full details of this process can be found in [17].

Generalisation (lines 12-13). Currently, the model has symbolic output and
update functions, but each transition still has its literal input guards. We want
our final model to be more responsive, so we drop these guards at this stage. This
can introduce nondeterminism, which is undesirable in a PTA as trace prefixes no
longer necessarily share a common path. In fact, this nondeterminism is simply
an indication that the model contains duplicated behaviour and is easily resolved
by merging states and transitions [18]. This results in Figure 5c. This is smaller
than Figure 2 as the top and bottom branches are “zipped” together.

Having processed the PTA, we then perform the conventional state merging
process [18] to produce Figure 3. This perfectly models the drinks machine, cap-
turing data dependencies using internal registers. To the best of our knowledge,
this is the first technique to infer such relationships using only system traces.

4 Implementation

We built our implementation on two frameworks. For the GP component, we
significantly enhanced the GP implementation used for MINT [37]. For the un-
derlying PTA, we built upon our Isabelle/HOL state-merging framework [16,18].
This section provides details of these enhancements and adaptations.



10 M. Foster et al.

4.1 Genetic Programming

The original GP implementation [37] follows the basic steps outlined in Subsec-
tion 2.2. An initial population is first generated by randomly combining termi-
nals and non-terminals1 to form syntactically valid expressions. These are then
evolved through crossover and mutation, with only the best surviving to the next
generation. Our main addition was a fitness function to enable latent registers
to be introduced, as discussed in Section 3. In addition, several other changes
were necessary to improve the performance of the GP in this new context.

The mutation operator used in [37] simply replaces a random node with
a new random subtree, but we found that this failed to produce satisfactory
outcomes. We created a richer set of mutation operators inspired by a different
open-source GP implementation [1] which offers more scope for useful mutations
during evolution (details in [17]). To further enhance the impact of mutation
operators, we also took inspiration from Doerr et al. [15] and apply up to three
mutations in sequence as making occasional large changes to individuals has
been shown to help escape local optima and avoid premature convergence.

Another implementational issue we faced was bloat [23]. While [37] applies
some basic simplification to expressions, it still yielded more complex expressions
than were desirable, often including redundant operations like +0. To mitigate
this, we used Z3 [30] to simplify our expressions. This can reveal semantic du-
plicates in the population, which become identical when simplified. We replace
these duplicates with new random individuals to keep the population distinct
and diverse. To further manage bloat, we also use lexicographic parsimony pres-
sure [27] to break ties in fitness, favouring smaller expressions over larger ones.

4.2 PTA Preprocessing

Our technique is designed to work with the inference tool from [18], which is
implemented in Isabelle/HOL with executable Scala code exported using Is-
abelle’s code generator. To incorporate algorithm 1, we defined the functions in
Isabelle and then automatically generated the Scala code using the code gen-
erator. While [18] uses Isabelle to verify certain aspects of transition merging,
we here use Isabelle purely for compatibility reasons. Rather than formalising
our GP in Isabelle, we specified inferOutputFun and inferUpdateFun ab-
stractly and hooked their Scala counterparts into our Java implementation from
Subsection 4.1 using a thin wrapper function.

The implementation for this work comes to around 1000 lines of Java on top
of [37] to implement our GP (inferOutputFun and inferUpdateFun) and
an additional 551 lines of Isabelle code (translating to 2010 lines of automatically
generated Scala code) and 496 lines of manually written Scala code on top of
[18] to implement the rest of algorithm 1. All of this code is available at [16].

1 The inference tool we use here [18] currently supports only +, −, and × for integers,
and literal assignment for strings, although our GP has broader support [16,37].



Reverse-Engineering EFSMs with Data Dependencies 11

5 Evaluation

This section describes a small experiment where we compare our approach
against MINT [37] (the current state-of-the-art of passive EFSM inference). For
our technique to be successful, we want to infer models which can correctly pre-
dict system outputs for unseen traces. We also want our technique to be robust to
data values being absent from the traces. Our research questions are as follows.
RQ1 Does the processing of the PTA by our technique prior to state merging

lead to more accurate models than the current state-of-the-art?
RQ2 How robust is our technique to latent variables?

5.1 Methodology

Metrics. Both our RQs are concerned with model accuracy. To evaluate this, we
use one set of traces (the training set) to infer a model and then use another set
of traces (the test set) to compute various accuracy metrics. In this evaluation,
we use the following two metrics, in which the accepted prefix is the first part
of the trace, where the outputs produced by the model match those of the system.

Sensitivity = number of accepted positive traces
total number of positive traces

Accepted
prefix length

= length of accepted prefix
length of trace

Sensitivity is the proportion of positive traces in the test set accepted by a
model. This is often paired with specificity, which is the proportion of negative
traces rejected by the model. Here though, we are more concerned with whether
our models correctly calculate the output values in response to the given inputs
than whether it can correctly classify traces as positive or negative. Our models
produce outputs in response to inputs, so traces are only accepted if the correct
outputs are produced. Thus, there is much less risk of overgeneralisation here,
making specificity an inappropriate metric for this evaluation.
Subject systems. To illustrate the performance of our technique, we evaluate it
on the two published models summarised below. The first is a lift door controller
published in [32] and used in [17,37] to evaluate inference tools. The second
system [2] is a Java accompaniment to [28] based on the game Space Invaders.

System States Variables Transitions Traces/Events
liftDoors [17,37,32] 6 timer 10 348/9333
spaceInvaders [17] 4 x, aliens, shields 7 100/2580
Our work is motivated by the fact that existing EFSM inference approaches

do not consider the possibility of internal variables which do not appear explicitly
as transition inputs. Thus, we chose our subject systems for their use of these
variables, and the relationships between data values used by different transitions,
rather than for the complexity of any individual function. We also chose systems
which differ in terms of the number of state variables as this is identified in [37]
as being a factor which has a significant effect on the accuracy of MINT.

To an extent, the values above mask the complexity of the two systems. lift-
Doors has only one system variable, but this is shared between and modified
by every transition. Despite the heavy data dependencies of liftDoors, it is
spaceInvaders which is the more complex case study. There are three state



12 M. Foster et al.

variables here, and the system is much more reactive. All but one of the transi-
tions in this model emanate from the same state, giving a much greater variation
in the traces produced by this system. By contrast, liftDoors has only one or
two transitions from each state, so the traces are more constrained.

RQ1 (assessing accuracy). This RQ asks whether our preprocessing ap-
proach infers more accurate models than the postprocessing used by MINT. This
work focuses on latent variables which do not appear in traces, allowing us to
infer models from traces that only contain information observable from outside
the system without probing the internal program state. MINT, however, is not
applicable to this scenario. To compare it to our technique, we must work with
traces where the output of each transition depends only on its input.

To evaluate the accuracy of our models, we followed the standard procedure
of creating a training set and a test set, where the former is used to infer a
model and the latter is used to compare the predictions made by the model
to the ground truth. For liftDoors, we used the same traces [3] as [37]. For
spaceInvaders, we modified the code to log certain actions [17] and obtained
traces by manually playing the game. For each system, we then took random
samples of 60 traces and divided them in half to form the training and test sets,
each of 30 traces. These are available online alongside our implementation [16].

The accuracy of our inferred models depends on the selection of training
traces and the random seed passed to the GP. To control for these we ran the
inference tools with 30 seeds each for 30 sets of traces. Thus, we inferred a total
of 900 models for each technique. As well as the random seed, our GP technique
has a number of configurable parameters. These are the population size, µ, the
number of new individuals per generation, λ, and the number of generations.
Here, we use µ = 100, λ = 10, and 100 generations. MINT has a similar set of
configurable parameters, all of which we left at their default values.

We anticipate that both techniques will perform well here but that our tech-
nique will outperform MINT. Because we infer output and update functions prior
to merging, they play an active role in the inference process and help to shape the
structure of the final model. By contrast MINT infers functions after state merg-
ing, when this structure has already been determined. MINT also requires every
event to report the value of every variable, so can be led astray by superfluous
information. Our technique does not require this, so is more targetted.

RQ2 (assessing robustness to missing variables). This RQ investigates
how robust our technique is to variables being absent from the traces. Such vari-
ables indicate potential dependencies between the data values of different tran-
sitions. To investigate this, we took the training and test sets we used for RQ1
and elided one input at a time. For spaceInvaders, we also elided combinations
of two variables. Thus, we are no longer in the purely functional domain: the
output of certain events depends on values which are missing from the traces.
The main challenge here is inferring the correct use of internal registers as part
of the output functions, and then inferring suitable updates to facilitate this.

MINT has no notion of hidden variables, so is simply not applicable to sys-
tems where we cannot inspect the internal data state during execution. Thus,



Reverse-Engineering EFSMs with Data Dependencies 13

we must evaluate our technique in isolation. We anticipate that obfuscating vari-
ables will lead to a drop in the accuracy of the models produced by our technique
since the GP has less information to guide it and must use latent variables in
expressions, which gives it much more freedom to produce esoteric functions
which do not properly generalise. It must also infer update functions in addition
to output functions, which gives it extra opportunities to make mistakes.

5.2 Results and Discussion

The raw data from all of our experiments is available online [4]. The distributions
of accuracy values, in terms of sensitivity and accepted prefix-lengths, are shown
in Figure 6. We will proceed to answer both RQs in terms of these box-plots.

0.4

0.6

0.8

1.0

liftDoors Sensitivity

0.0

0.2

0.4

0.6

0.8

1.0

spaceInvaders Sensitivity

M
IN
T GP

ob
fu
sc
at
ed

tim
e
GP

0.4

0.6

0.8

1.0

liftDoors Accepted Prefix

M
IN
T GP

ob
fu
sc
at
ed

al
ien

s G
P

ob
fu
sc
at
ed

sh
iel
ds

GP

ob
fu
sc
at
ed

x
GP

ob
fu
sc
at
ed

al
ien

s x
GP

ob
fu
sc
at
ed

x
sh
iel
ds

GP

ob
fu
sc
at
ed

al
ien

s s
hi
eld

s G
P

0.0

0.2

0.4

0.6

0.8

1.0

spaceInvaders Accepted Prefix

Fig. 6: Accuracy metrics for the two systems.

RQ1 (assessing accuracy). This RQ concerns the GP and MINT plots.
Figure 6 shows that our technique (GP) achieves a perfectly accurate model in
all but a few outlying cases of spaceInvaders. MINT performs comparably for
liftDoors but only achieves a median sensitivity of 0.6 for spaceInvaders.

These results are not surprising. When we preprocess with GP, we generalise
concrete data values from the traces to symbolic functions. This is not a partic-
ularly difficult task in the purely functional scenario, and our GP is correct in
all but a few outlying cases of spaceInvaders. This then enables many states
to be merged, leading to a very accurate model. While MINT also uses GP to
infer functions, it does so after the structure of the model has been inferred. It



14 M. Foster et al.

also tries to infer transition guards during inference to aggregate the observed
data values (where our technique simply discards them). This is a particular
problem for systems like spaceInvaders with multiple variables as these often
cause MINT to infer spurious guards, leading to an inaccurate model structure.

RQ2 (assessing robustness to missing variables). This RQ concerns all
plots except MINT. Since MINT has no notion of latent variables, it is simply not
applicable here. Figure 6 shows that obfuscating the system timer for liftDoors

has a relatively small effect on the accuracy of the models inferred by our system,
but that the effect of obfuscation is much greater for spaceInvaders.

Again, this is not surprising. The two contributing factors here are the two
calls to GP detailed in Section 3. Here, we must use latent variables in the output
functions as the result depends on variables absent from the traces. This gives
the GP much more freedom when inferring functions, so it is more likely to be
incorrect. We also need to infer update functions for each latent variable. This
was not necessary in RQ1, so there is an extra opportunity to make mistakes.

For both subject systems, the main cause of inaccuracy is a failure to recog-
nise events rather than a failure to adequately calculate output from input. This
is because, if our GP makes a mistake or fails to come up with a function, the
dropping of transition guards in the generalisation step is detrimental to state
merging. More states must remain separate and share the underlying function-
ality between them. This leads to models that are both larger and less reactive.

For spaceInvaders, the variable we obfuscate has a huge effect on the ac-
curacy of the model. The aliens and shields variables do relatively well when
obfuscated, but the x variable leads to very poor models. There are two reasons
for this. Firstly, most events in the traces are movement events, which depend
on x, so any mistake with these is given much more opportunity to reveal it-
self. Secondly, because our technique introduces one register per transition group
and there are two movement events (left and right) which both mutate x, our
technique struggles to work out what is going on here.

Discussion. While Figure 6 shows that our technique infers more accurate
models than MINT, it does not show what these models actually look like.
Figure 7 shows a model of spaceInvaders inferred by our technique in the
purely functional setting of RQ1. This model concisely shows the behaviour of
the system. By contrast, most of the models inferred by MINT are too large to
effectively display here. The same is true for liftDoors. Where our technique
drops the guards on transitions before state merging, MINT tries to infer guards
to aggregate the observed data values. These are often overly specific, which leads
to cluttered and chaotic models, even if they are accurate in terms of traces.

q0 q1

q2

q3

start : 1/[r1 := 200, r2 := i0, r3 := 3]

moveWest : 1/o0 := i0 − 50[moveEast : 1/o0 := i0 + 50

shieldHit : 1/o0 := i0 − 1 alienHit : 1/o0 := i0 + 1

win : 0

lose : 0

Fig. 7: A model of spaceInvaders inferred by our technique.



Reverse-Engineering EFSMs with Data Dependencies 15

5.3 Threats to Validity

This evaluation cannot be used to (and does not aim to) draw general conclusions
about the accuracy or scalability of either our technique or MINT. Our main
aim here is illustrate each technique performs “out of the box”, its applicability,
and factors which affect model accuracy. There are, however, certain aspects of
the study that must be taken into account when reviewing the results.

Choice of systems. For this study we used two fully specified EFSMs.
Although these present us with valuable insights here, it will require a larger,
more diverse selection of systems to produce more generalisable results.

Selection of parameters. We did not spend time optimising the configura-
tion parameters used by either our technique or MINT. This avoids the threat of
overfitting values to these subject systems, biasing the results in favour of either
technique, but opens up the threat that there may be more suitable configura-
tions. A more specific selection of parameters may lead to more accurate results,
but parameter optimisation falls outside the intended scope of this investigation.

6 Conclusion

This paper presented a GP-based technique to infer functions that relate inputs,
outputs, and internal variables of EFSM models. We use this as part of prepro-
cessing step for the inference process to generalise the initial PTA before merging
states. To the best of our knowledge, this is the first technique to do this in a
truly black-box setting. Our results indicate that our technique leads to more
accurate models than those inferred by MINT [37], the current state-of-the-art.

A key aspect of our technique is the ability to infer output functions involving
variables which do not appear in the traces, and update functions to ensure these
variables hold the correct values when evaluated. While eliding variables from
the traces reduces the accuracy of the models we can infer, our technique still
improves upon MINT, which cannot be applied at all in this scenario.

There are many applications of GP [21], but [37] is the only work which
applies it to EFSM inference. Work in [9] applies similar techniques to learn
feature models, but these do not model control flow. Work in [10,18] considers
latent variables but relies on simple heuristics, which limits applicability. Active
techniques such as [6,13,35] build on the L∗ algorithm [8] to infer EFSMs with
data updates, but these techniques rely on submitting queries about the system
under inference. Our technique is entirely passive, using only on the traces pro-
vided. The field of process mining [36] has also produced various techniques to
infer models from traces. The main focus, though, is on control flow rather than
data usage. Research carried out in [29] considers the data perspective, but does
not attempt to infer models which can predict system behaviour for new traces.

One possible line of future work is to increase the set of operations for the
GP, including the ability to handle floating-point numbers. This would make our
technique applicable to a broader range of systems. Another line of work would
be a more comprehensive evaluation involving more systems, which would enable
us to draw more general conclusions about accuracy and scalability.



16 M. Foster et al.

References

1. https://github.com/lagodiuk/genetic-programming, accessed 2020-02-03
2. http://www.doc.ic.ac.uk/∼jnm/book/book applets/concurrency/invaders, ac-

cessed 2020-05-15
3. http://www.cs.le.ac.uk/people/nw91/Files/ICSMEData.zip, accessed 2020-04-15
4. https://doi.org/10.15131/shef.data.15172969
5. Aarts, F.: Tomte : Bridging the gap between active learning and real-world systems.

Ph.D. thesis, Radboud University Nijmegen (2014)
6. Aarts, F., Heidarian, F., Kuppens, H., Olsen, P., Vaandrager, F.: Automata learn-

ing through counterexample guided abstraction refinement. In: FM 2012: Formal
Methods. pp. 10–27. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

7. Androutsopoulos, K., Gold, N., Harman, M., Li, Z., Tratt, L.: A theoretical and
empirical study of efsm dependence. In: 2009 IEEE International Conference on
Software Maintenance. pp. 287–296 (2009)

8. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2), 87–106 (1987)

9. Arcaini, P., Gargantini, A., Radavelli, M.: Achieving change requirements of feature
models by an evolutionary approach. Journal of Systems and Software 150, 64–76
(2019)

10. Berg, T., Jonsson, B., Raffelt, H.: Regular inference for state machines using do-
mains with equality tests. In: Fundamental Approaches to Software Engineering.
vol. 4961 LNCS, pp. 317–331. Springer Berlin Heidelberg (2008)

11. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Transactions on Computers C-21(6), 592–597
(1972)

12. Buzhinsky, I., Vyatkin, V.: Automatic inference of finite-state plant models from
traces and temporal properties. IEEE Transactions on Industrial Informatics 13(4),
1521–1530 (2017)

13. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Learning extended finite state
machines. In: Software Engineering and Formal Methods, pp. 250–264. Springer,
Cham (2014)

14. Cheng, K.T., Krishnakumar, A.S.: Automatic functional test generation using the
extended finite state machine model. In: Proceedings of the 30th International
Design Automation Conference. pp. 86–91. ACM Press (1993)

15. Doerr, B., Le, H.P., Makhmara, R., Nguyen, T.D.: Fast genetic algorithms. In:
Proceedings of the Genetic and Evolutionary Computation Conference. p. 777–784.
Association for Computing Machinery (2017)

16. Foster, M.: EFSM inference (2020), https://github.com/jmafoster1/efsm-inference
17. Foster, M.: Reverse Engineering Systems to Identify Flaws and Understand Be-

haviour. Ph.D. thesis, The University Of Sheffield (2020)
18. Foster, M., Brucker, A.D., Taylor, R., North, S., Derrick, J.: Incorporating data

into EFSM inference. In: Software Engineering and Formal Methods. pp. 257–272.
Springer International Publishing (2019)

19. Foster, M., Brucker, A.D., Taylor, R.G., Derrick, J.: A formal model of extended
finite state machines. Archive of Formal Proofs (2020), https://isa-afp.org/entries/
Extended Finite State Machines.html, Formal proof development

20. Foster, M., Taylor, R., Brucker, A.D., Derrick, J.: Formalising extended finite state
machine transition merging. In: Formal Methods and Software Engineering. pp.
373–387. Springer International Publishing (2018)



Reverse-Engineering EFSMs with Data Dependencies 17

21. Koza, J.R.: Genetic programming: On the programming of computers by means of
natural selection. MIT Press (1992)

22. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA
learning competition and a new evidence-driven state merging algorithm. In: Gram-
matical Inference. pp. 1–12. Springer Berlin Heidelberg (1998)

23. Langdon, W.B.: Quadratic bloat in genetic programming. In: Proceedings of the
2nd Annual Conference on Genetic and Evolutionary Computation. p. 451–458.
GECCO’00, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2000)

24. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines-a
survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

25. Lorenzoli, D., Mariani, L., Pezzè, M.: Inferring state-based behavior models. In:
Proceedings of the 2006 international workshop on Dynamic systems analysis.
p. 25. ACM Press (2006)

26. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proceedings of the 13th international conference on Software engineer-
ing. p. 501. ACM Press (2008)

27. Luke, S., Panait, L.: Lexicographic parsimony pressure. In: Proceedings of the
4th Annual Conference on Genetic and Evolutionary Computation. pp. 829–836.
Morgan Kaufmann Publishers Inc. (2002)

28. Magee, J., Kramer, J.: State models and Java programs. Wiley Hoboken, 2nd edn.
(2006)

29. Mannhardt, F.: Multi-perspective process mining. Ph.D. thesis, TU Eindhoven
(2018)

30. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for
the Construction and Analysis of Systems, pp. 337–340. Springer Berlin Heidelberg
(2008)

31. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
http://www.gp-field-guide.org.uk (2008)

32. Strobl, F., Wisspeintner, A.: Specifcation of an elevator control system. Tech. rep.,
TUM (1999), https://wwwbroy.in.tum.de/publ/papers/elevator.pdf

33. Ulyantsev, V., Tsarev, F.: Extended finite-state machine induction using sat-solver.
In: 2011 10th International Conference on Machine Learning and Applications and
Workshops. vol. 2, pp. 346–349 (2011)

34. Ulyantsev, V., Buzhinsky, I., Shalyto, A.: Exact finite-state machine identification
from scenarios and temporal properties. Int J Softw Tools Technol Transfer 20(1),
35–55 (2016)

35. Vaandrager, F., Midya, A.: A Myhill-Nerode theorem for register automata and
symbolic trace languages. In: Theoretical Aspects of Computing. pp. 43–63.
Springer International Publishing (2020)

36. Van Der Aalst, W.: Process mining. Commun. ACM 55(8), 76–83 (2012)
37. Walkinshaw, N., Hall, M.: Inferring computational state machine models from pro-

gram executions. In: 2016 IEEE International Conference on Software Maintenance
and Evolution. pp. 122–132. IEEE (2016)

38. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA:
A competition to encourage the development and assessment of software model
inference techniques. Empirical Software Engineering 18(4), 791–824 (2013)

39. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine
models from software executions. Empirical Software Engineering 21(3), 811–853
(2016)


	Reverse-Engineering EFSMs with Data Dependencies

