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RESEARCH Open Access

Gut microbiota in experimental murine
model of Graves’ orbitopathy established in
different environments may modulate
clinical presentation of disease
Giulia Masetti1,2, Sajad Moshkelgosha3,4,5, Hedda-Luise Köhling6,7, Danila Covelli6,8, Jasvinder Paul Banga3,4,

Utta Berchner-Pfannschmidt3, Mareike Horstmann3, Salvador Diaz-Cano9, Gina-Eva Goertz3, Sue Plummer6,

Anja Eckstein3, Marian Ludgate1, Filippo Biscarini1,2,10, Julian Roberto Marchesi11,12* and the INDIGO consortium13

Abstract

Background: Variation in induced models of autoimmunity has been attributed to the housing environment and

its effect on the gut microbiota. In Graves’ disease (GD), autoantibodies to the thyrotropin receptor (TSHR) cause

autoimmune hyperthyroidism. Many GD patients develop Graves’ orbitopathy or ophthalmopathy (GO)

characterized by orbital tissue remodeling including adipogenesis. Murine models of GD/GO would help delineate

pathogenetic mechanisms, and although several have been reported, most lack reproducibility. A model

comprising immunization of female BALBc mice with a TSHR expression plasmid using in vivo electroporation was

reproduced in two independent laboratories. Similar orbital disease was induced in both centers, but differences

were apparent (e.g., hyperthyroidism in Center 1 but not Center 2). We hypothesized a role for the gut microbiota

influencing the outcome and reproducibility of induced GO.

Results: We combined metataxonomics (16S rRNA gene sequencing) and traditional microbial culture of the

intestinal contents from the GO murine model, to analyze the gut microbiota in the two centers. We observed

significant differences in alpha and beta diversity and in the taxonomic profiles, e.g., operational taxonomic units

(OTUs) from the genus Lactobacillus were more abundant in Center 2, and Bacteroides and Bifidobacterium counts

were more abundant in Center 1 where we also observed a negative correlation between the OTUs of the genus

Intestinimonas and TSHR autoantibodies. Traditional microbiology largely confirmed the metataxonomics data and

indicated significantly higher yeast counts in Center 1 TSHR-immunized mice. We also compared the gut

microbiota between immunization groups within Center 2, comprising the TSHR- or βgal control-immunized mice

and naïve untreated mice. We observed a shift of the TSHR-immunized mice bacterial communities described by

the beta diversity weighted Unifrac. Furthermore, we observed a significant positive correlation between the

presence of Firmicutes and orbital-adipogenesis specifically in TSHR-immunized mice.
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Conclusions: The significant differences observed in microbiota composition from BALBc mice undergoing the

same immunization protocol in comparable specific-pathogen-free (SPF) units in different centers support a role for

the gut microbiota in modulating the induced response. The gut microbiota might also contribute to the

heterogeneity of induced response since we report potential disease-associated microbial taxonomies and

correlation with ocular disease.

Keywords: Graves’ orbitopathy, Graves’ disease, Induced animal model, Gut microbiota, TSHR, Metataxonomics,

Orbital adipogenesis, Firmicutes

Background

The poor reproducibility of murine models of human
diseases has become a puzzling phenomenon in recent
decades. Apart from the genetic background of the
strains used, the type of animal housing, diet, and even
the vendor can influence disease phenotype [1, 2].
In Graves’ disease (GD) and Graves’ orbitopathy or

ophthalmopathy (GO), in vivo models could help to
unravel the pathogenetic mechanisms leading to auto-
immunity and identify new therapeutic targets [3]. The
lack of spontaneous models of GD and GO necessitates
induction of disease under laboratory conditions
(reviewed in [4]).
Graves’ disease is an organ-specific antibody-mediated

autoimmune disease, governed by both genetic
predisposition and environmental factors, in which
thyroid-stimulating antibodies (TSAb) mimic the func-
tion of thyroid-stimulating hormone (TSH) to activate
the thyrotropin receptor (TSHR). Moreover, the
presence of thyroid-stimulating blocking antibodies
(TSBAb), which inhibit the TSHR signaling cascade,
and neutral antibodies to TSHR have been described in
GD [5]. GD symptoms include hyperthyroidism, weight
loss, heat intolerance, and tremors; it affects about 2%
of the population in the UK, with a female predomin-
ance. About 20% of GD patients develop an eye disease,
GO, characterized by pro-inflammatory cells and tissue
remodeling (extraocular muscle inflammation, adipo-
genesis, overproduction of extra-cellular matrix) in the
orbit [6].
Several GD mouse models have been developed using

different immunization protocols with no signs of
concomitant eye disease as previously reviewed [4, 7, 8].
Ludgate and colleagues established a TSHR-induced GO
model by genetic immunization, i.e., injecting a TSHR ex-
pression plasmid [9]. Mice developed thyroiditis plus
some aspects of GO and disease could be transferred to
naive recipients using the TSHR-primed T cells from the
genetically immunized mice. However, the model could
not be reproduced in a different animal unit (neither was
specific-pathogen-free (SPF)), and the TSHR-induced
disease was quite distinct from that previously described,
which the authors postulated might be due to

microorganisms [10]. It has also been reported that
TSHR-immunized mice from a conventional environment
had higher and more persistent TSAb levels than mice in
SPF units [11].
Recently, Berchner-Pfannschmidt and colleagues re-

ported the induction of GO-like disease in two independ-
ent SPF units [12]. The immunization protocol utilized
genetic delivery of TSHR A-subunit plasmid by close field
electroporation, which leads to features of GD accompan-
ied by symptoms of eye disease, such as adipogenesis and
inflammatory infiltrates in the orbit [7, 13]. Controls re-
ceived a plasmid encoding the β-galactosidase (βgal) gene
delivered by the same procedure. Most aspects of the
model were reproduced successfully; however, there was
heterogeneity in induced disease and differences in thyroid
function in the animals undergoing experimental GO in
the two locations [12].
Over the years, the gut microbiota has been associated

with several diseases [14–17] and its confounding role in
establishing or reproducing disease phenotype in murine
models has also been proposed [18].
The murine model of multiple sclerosis, experimental

autoimmune encephalomyelitis (EAE), seems to be highly
influenced by the gut microbiota. Oral antibiotic
immunization and consequent depletion of the gut
bacteria, before disease induction, resulted in protection
from disease development, along with reduction in
pro-inflammatory mediators such as IL-17 and an in-
creased Th2-immune response [19]. On the contrary, the
intestinal monocolonization of germ-free mice (sterile)
with segmented filamentous bacteria (SFB) restored the
disease phenotype, along with an increased number of
Th17 cells in the CNS, suggesting a direct interplay of the
gut microbiota and the immune response in EAE develop-
ment [20].
Based on these observations, we hypothesized that the

gut microbiota itself might play a major role not only in
the establishment but also in the reproducibility of the
GO animal model described above. The presence or ab-
sence not only of pathogens but also of symbiotic and
commensal bacteria can favor an immune response
more prone to inflammation and conducive to auto-
immunity [21].
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We aimed to characterize, for the first time, the gut
microbiota of the GD/GO models via a combination of
metataxonomics (16S rRNA gene sequencing) and trad-
itional microbial culture approaches. We compared the
gut contents of TSHR-immunized mice from the two
centers to understand whether variation in gut compos-
ition could explain differences in the disease induced.
Within one center, we then characterized the gut micro-
biota between different immunizations (TSHR and βgal)
and compared them with untreated mice, to determine
whether the gut microbiota can influence the outcome
and correlate with disease features.

Methods

GO preclinical mouse model samples

Mouse samples used in the present work were obtained
from a recent study [12], conducted in parallel in two inde-
pendent animal housing units, under comparable SPF con-
ditions. Animal procedures in center 1 were reviewed and
approved by the Ethical Committee of King’s College
London and conducted with Personal and Project licenses
under United Kingdom Home Office regulations. Animal
procedures in center 2 were reviewed and approved by
North Rhine Westphalian State Agency for Nature, Envir-
onment and Consumer Protection (LANUV), Germany.
Samples from the animal unit of King’s College London
(UK) will be referred to as “Center 1” and included a total
of 5 TSHR-immunized mice (TSHR). Samples from the
University of Duisburg-Essen (Germany) will be referred to
as “Center 2”, including 10 TSHR-immunized (TSHR), 8
βgal plasmid controls (βgal), and 6 untreated mice (in-
cluded as a background control), as shown in Table 1.
The GO immunization protocol has been previously

described [13]. Briefly, 6–8-week-old BALB/cOlaHsd
female mice were immunized via intramuscular injec-
tion into each biceps femoris muscle [22] and elec-
troporation of either the eukaryotic expression

plasmid pTriEx1.1Neo-hTSHR (hTSHR289) (TSHR
group) or the control plasmid pTriEx1.1Neo-β-gal
(plasmid-control, βgal group). All animals, whether
TSHR or βgal controls, received a total of four plas-
mid injections at 3-week intervals of the experiment
(0, 3, 6, and 9 weeks).
Each mouse was anesthetized using isoflurane with

a properly calibrated vaporizer throughout the
immunization procedure (injection and electropor-
ation). After the immunization, mice were carefully
transferred to a recovery cage until fully recovered.
Mice in Center 1 were maintained conventionally in

open cages in one room and co-housed at a maximum of
three animals per cage. In Center 2, the mice were
co-housed according to their immunizations, two to four
animals per individually ventilated cage in one room. All
mice were provided by different outlets of the same sup-
plier (Harlan Ltd. or Harlan laboratories BV). In both cen-
ters, mice received autoclaved water and had been fed ad
libitum similar commercial chow from different suppliers
(Rat and Mouse no.1 Maintenance from Special Diet Ser-
vices, LBS Biotech UK for Center 1 and Rat/Mouse Main-
tenance V1534-300 from Ssniff Spezialadiaten GmbH,
Germany, for Center 2). Also the cage bedding was from
different suppliers.
All immunized and control mice in both locations

were sacrificed 9 weeks after the last immunization
(18 weeks) to permit the development of the chronic
phase of the disease in the TSHR group
(Additional file 1: Figure S1).
After sacrifice, murine intestines were snap-frozen and

stored in sterile containers at − 80 °C. For subsequent ana-
lysis, whole intestines were thawed and directly afterwards
placed on a sterile padding. The organs were dissected into
two or three parts and the content of all parts was scratched
out from oral to aboral end with a sterile inoculation loop
resulting in one sample per mouse, which was collected in a
sterile container and frozen at − 80 °C until needed. Within
Center 2 only, fecal pellets of βgal- and TSHR-immunized
mice were also collected before each injection (week 0, 3, 6,
and 9). Total DNA was extracted from fecal pellets as de-
scribed below.
Methods for (i) the evaluation of clinical symptoms, (ii)

the determination of the thyroid hormone thyroxine blood
levels (fT4) and TRAB (both stimulating TSAb and block-
ing TSBAb) antibodies, and (iii) the measurement of the
expansion of fat cells (adipogenesis) and muscular atrophy
in the orbit have been already described [12]. A full de-
scription of the mice involved and samples collected in
the present study is represented in Table 1.

Traditional microbial cultures of mouse gut contents

A total of 29 scraped intestinal samples (Table 1) derived
from Center 1 and Center 2 were analyzed. One gram of

Table 1 Description of the mouse groups involved in this study

No. of animals Immunization Centers Source Timepoint

5 TSHR 1 Intestinal scraping T4

10 TSHR 2 I.S./Feces T0–T4*

8 βgal 2 I.S./Feces T0–T4*

6 Untreated 2 I.S./Feces T4°

A total of 23 female BALB/cOlaHsd, 6–8-week-old mice were challenged either

with the pTriEx1.1Neo-hTSHR to induce disease (TSHR group) or with

pTriEx1.1Neo-β-gal as a plasmid control group (βgal group). Independent SPF

animal units were based in London (Center 1) and Essen (Center 2). An

untreated group of six mice has been included as a background control.

Samples collection comprised of intestine scraping (I.S.) from Center 1 and

both fecal pellets and I.S. within Center 2

*Fecal pellets of βgal and TSHR-immunized mice have been collected before

any immunization (T0) and during the time course of the immunization

protocol until the sacrifice (T4), as represented in Additional file 1: Figure S1

°Untreated mice were sampled at T4 before (fecal) and after the sacrifice

(intestinal scraping)
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feces per mouse was diluted in 9 mL pre-reduced max-
imum recovery diluent (CM0733, Oxoid, Basingstoke,
United Kingdom) with 20% v/v glycerol and the solution
was mixed by vortexing for 5 s. Afterwards, 10-fold ser-
ial dilutions were prepared, and 100 μl of each dilution
was plated onto different culture media under aerobic or
anaerobic conditions (Anaerobic Workstation,
AW400SG, Elektrotek, Keighley, West Yorkshire, UK).
Specific media, culture conditions, and dilution used to
isolate different bacteria are listed in Additional file 2.
Bacteria were identified by Gram staining, colony

morphology, the presence of spores, and catalase re-
action and partially by the API system (BioMerieux,
Marcy-l’Étoile, France). Viable bacterial cell counts
were enumerated and all counts were recorded as the
numbers of log 10 colony forming units per gram of
sample. Counts data were Box-Cox transformed be-
fore statistical analysis [23]. Mouse groups were com-
pared through the analysis of variance (one-way
ANOVA) and Tukey’s multiple comparisons test with
adjusted P values.

Extraction of total DNA from gut contents and feces and

16S rRNA gene sequencing

A total of 29 scraped intestinal samples and 96 fecal
pellets were individually placed in 2-mL tubes pre-
filled with 0.1 mm silica and zirconia bead mix
(Benchmark Scientific, Edison, USA), dissolved in
1 mL InhibitEX buffer (Qiagen Ltd., West Sussex,
UK) and vortexed until homogenized. A bead-beating
step (Beadbug microcentrifuge homogenizer, Bench-
mark Scientific, USA) was applied for 3 × 60 s at
5 m/s with 5 min rest in-between. The DNA extrac-
tion has been performed with QiAmp Fast DNA
Stool Mini kit (Qiagen Ltd., UK), following the man-
ufacturer’s instruction. Total genomic DNA was
eluted in sterile microcentrifuge tubes and quantified
by Qubit Fluorimetric Quantitation (ThermoFisher
Scientific Ltd., UK), following the manufacturer’s in-
structions. DNA aliquots were kept at − 20 °C until
used. Sequencing of the variable regions of the 16S
rRNA gene was performed at Research and Testing
Laboratory LLC (Lubbock, Texas, USA). Primers used
to amplify the V1–V2 regions of 16S rRNA gene
were 28F (5′-GAGTTTGATCNTGGCTCAG-3′) and
388R (5′-TGCTGCCTCCCGTAGGAGT-3′). Sequen-
cing was performed using an Illumina Miseq (Illu-
mina, San Diego, USA), with 10K paired-end
sequencing protocol.

Processing and statistical analysis of metataxonomic data

Processing of the sequences was performed using
Mothur v1.36, to reduce possible PCR effects and to
cluster sequences into operational taxonomic units

(OTUs) at the 97% identity cut-off and provide the
taxonomic annotations [24]. Paired-end reads (R1 and
R2) were joined for each sample using the Mothur
function “make.contigs” and trimmed at the 2.5%-tile
and 97.5%-tile on the distribution lengths of the
amplicons. Sequences with any ambiguities (i.e., Ns)
were removed by setting parameter N = 0. Filtered se-
quences were aligned against the SILVA 16S rRNA
gene reference database (http://www.arb-silva.de). Re-
moval of chimera sequences was done with the
Uchime tool [25]; singleton and non-bacterial se-
quences (e.g., Archaea, eukaryotic, chloroplast, and
mitochondria) have been removed from the analysis.
The taxonomic assignment from phylum to genus
level of the processed sequences was done using the
Ribosomal Database Project (RDP) Naïve Bayesian
Classifier, using Trainset 14 with a cut-off of 80%
[26]. FastTree (version 2.1.7) has been used to build a
phylogenetic tree, using an approximated maximum
likelihood solved by Jukes-Cantor evolutionary model
[27]. To reduce the effect of possible different sam-
pling methods and to obtain comparable sequencing
libraries, each sample library has been subsampled
based on the smallest library size. OTUs with less
than 10 counts have been excluded from the dataset
and grouped as “OTU_low”, and the analysis has been
performed collapsing OTUs at the phylum-genus
levels. Statistical analysis was performed in R (Version
3.2.2) and STAMP tool for metataxonomic data ana-
lysis [28].
Alpha diversity indices (observed OTUs, Chao1, ACE,

and Shannon) were calculated within samples from
Mothur and tested for association with covariates (e.g.,
locations and immunizations) using a linear model,
followed by Tukey’s honest significant difference (HSD)
post hoc analysis.
Beta diversity was estimated using the Unifrac

weighted distance to compare bacterial communities
among samples [29], and represented in a non-metric
dimensional scaling (NMDS) plot. The permutational
multivariate analysis of variance (PERMANOVA) was
calculated through the Adonis function [30] in R
Vegan package (using 999 permutations) and was
used to test the association between the microbiota
composition and the covariates (e.g., location of the
laboratories or immunizations).
The hierarchical clustering of genera was performed

using the Spearman distance and the Ward agglomer-
ation method. Statistical tests with P ≤ 0.05 were con-
sidered as significant.
Over multiple timepoints, the effects of time, immuni-

zations, and their interactions have been estimated on
the fecal microbiota composition, all by means of the
following linear model:
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yijk ¼ μþ Timei þ Immunization j

þ Time� Immunizationð Þij þ eijk

where y is the vector of either alpha diversity Chao or
Shannon indices, or of the Firmicutes/Bacteroidetes ratio
calculated from the relative abundances in each sample
at each timepoint; μ is the overall mean; time is the ef-
fect of timepoint in classes (T0, T1…T4); immunization
is the type of immunization (either the TSHR or βgal).
The factorial interaction between immunization and
time has also been included in the model; e is the vector
of residual effects. Comparison between βgal and TSHR
immunizations at each timepoint was made using the
pairwise T test with Benjamini-Hochberg correction for
false discovery rate (FDR).

To test differences in phylum and genus counts be-
tween immunizations and timepoints, the same
model was used in the generalized linear model
(GLM) implemented in the EdgeR package [31]. Pair-
wise comparisons of phylum and genus counts be-
tween timepoints and immunizations have been
assessed with Fisher’s exact test in EdgeR package.
Correlations of either the taxonomy counts

(phylum and genus relative abundances) or the mi-
crobial counts from the traditional culture approach
and disease features, such as anti-TSHR antibodies
and thyroid hormone thyroxine levels (fT4), orbital
adipogenesis, or muscular atrophy values, were esti-
mated using the Spearman correlation coefficient
(Rho) and represented in a correlation plot, using the
R Corrplot package. Additional statistical methods
are described in Additional file 2.

Results

Sequencing metrics

From 16S rRNA gene sequencing (V1–V2 regions), a
total of 5,333,798 reads were obtained which re-
duced to 4,047,186 reads after quality filtering. Fol-
lowing alignment, we obtained an average of 20,534
reads per sample, ranging from 3502 to 134,901.
Subsampling per library size resulted in a 96% aver-
age coverage per OTU definition at 3052 reads per
sample. The averaged coverage and subsampling was
sufficient to describe gut bacterial communities ac-
cording to sequence-based rarefaction curves (data
not shown).

We identified a total of 4281 OTUs: 1037 OTUs had
more than 10 counts across samples and were retained.

Comparative analysis of the gut microbiota of GO

preclinical mouse models in different centers

To assess whether the microbiota has an impact on the
GO mouse model in different laboratories, we compared

the gut microbial contents of 5 TSHR mice from Center
1 and 10 TSHR-immunized BALB/c female mice from
Center 2, after sacrifice (T4).
Comparison of the alpha diversity indices showed a

significant reduction in the richness (P = 0.01), but not
in the diversity of the Center 2 microbial community
(P > 0.05, Fig. 1a). The gut microbiota composition from
the two centers showed a good separation according to
the Spearman distance and Ward hierarchical clustering
(Fig. 1b), and a PERMANOVA test on the weighted Uni-
frac distances revealed a spatial difference between bac-
terial communities (P = 0.005 with 999 permutations,
Fig. 1c).
At a phylum level, Bacteroidetes and Firmicutes were

the most represented of the seven phyla identified, with
no differences between them in the two centers
(P = 0.99). Lactobacillaceae, Ruminococcaceae, and Por-

phyromonadaceae families were more abundant in Cen-
ter 2 than in Center 1 TSHR mice (P < 0.01, Fig. 1d). We
observed significant differences in the abundance of 18
genera between the two centers, as detailed in Table 2.
From the traditional microbial culture of the gut con-

tents, we observed differences in yeast (P = 0.03186), Bac-
teroides (P < 0.0005), and total anaerobe (P = 0.00081)
counts, which were found to be enriched in the Center 1
compared with the Center 2 TSHR mice (Table 3). Cultures
from mouse intestinal scraping of Center 2 did not contain
any total clostridia, Bacteroides, or yeasts, and we were able
to culture enterobacteria, E. coli, and coliforms from only
one mouse from this group. E.coli and coliforms were also
the least abundant in the Center 2 TSHR mice (Fig. 1e).
Furthermore, since Yersinia enterocolitica has been impli-
cated in GD pathogenesis [32], we used selective agar plates
for Yersinia sp. but no Yersinia colonies grew.

Gut microbiota differences in immunized and control

mice within Center 2

To observe the possible contribution of the gut micro-
biota in the disease, we compared the gut microbiota
composition between immunization groups in mice
within Center 2. No significant differences were ob-
served in alpha diversity indices among immunizations,
apart from the abundance-based coverage estimator
(ACE) index between untreated and TSHR groups
(Fig. 2a, P = 0.01). The ACE index relies on the presence
of rare OTUs [33], which were more abundant in the
untreated group compared to the plasmid-immunized
mice. The βgal group showed a slightly skewed distribu-
tion of the Shannon index when compared to the others;
however, the post hoc comparison was not significant.
The non-metric dimensional scaling (NMDS) of the

weighted Unifrac distance matrix showed a separation of
the three immunization groups, also confirmed by the
permutation test (P < 0.01, 999 permutations; Fig. 2b).
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βgal bacterial communities were closer to those of the
untreated mice, while we observed a spatial shift of the
TSHR-immunized bacterial communities.
OTUs from Bacteroidetes and Firmicutes phyla were

the most abundant among the phyla identified (Fig. 2c)

and showed a different distribution pattern among im-
munized groups. In particular, Firmicutes counts were
higher in TSHR-immunized mice (P = 0.05) and Bacter-

oidetes were found to be higher in the untreated group
(P = 0.012). At a genus level, eight genera were

A

C

B

D E

Fig. 1 Comparative analysis of the gut microbiota in independent animal units. a Box and whisker plot of the alpha diversity indices for richness

(Chao1 and observed OTUs indices) and evenness (Shannon index) of the bacterial communities in TSHR-immunized mice housed in Center 1

(blue) and Center 2 (red), respectively. Tukey’s HSD post hoc: Chao1, P = 0.01; observed OTUs, P < 0.001; Shannon, P = 0.08. b Annotated heatmap

based on Spearman distance and Ward hierarchical clustering of the top 30 genera shows how well the two locations cluster together. Taxonomy

explanation includes genera, family, and phylum, which are entered in order of abundance. Genus abundance is described by the change in the

intensity of the gray color, as annotated. c Multidimensional scaling plot (MDS) based on the weighted Unifrac distances between the two animal

units. PERMANOVA with 999 permutations P = 0.005. d Differentially abundant family from a pairwise comparison with Welch’s t test with 95%

confidence intervals (STAMP). e Box and whisker plot culture results from intestinal scraped samples derived from TSHR-immunized mice from Center

1 and Center 2. Results are expressed as a Log(x + 1) transformed colony-forming units/gram feces (cfu/g). P values: * P < 0.05; ** P < 0.001;

*** P < 0.005
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differentially abundant between TSHR and βgal groups,
three genera between TSHR and the untreated group,
and four genera between βgal and the untreated group
(Additional file 3: Table S1). We found an enrichment of
OTUs of Acetitomaculum genus in the βgal group com-
pared to both TSHR (P = 0.004) and the untreated group
(P = 0.003); an enrichment of Lactobacillus OTUs in the

TSHR compared to the untreated group (P = 0.018), and
a reduction of Bacteroides counts in TSHR when com-
pared to the βgal group (P = 0.047). However, no signifi-
cant differences were observed among immunized
groups and in pairwise comparisons generated by the
traditional bacterial culturing approach (Additional file 3:
Table S2).

Table 2 Genera differentially abundant between Center 1 (n = 5) and Center 2 (n = 10) TSHR-immunized mice intestinal scraped samples

Genera Center 1: mean freq. (%) Center 2: mean freq. (%) P values

Allobaculum 1.001 0.003 0.042

Alloprevotella 6.135 0.432 0.003

Bacteroides 9.370 1.525 0.017

Bifidobacterium 0.668 0.006 0.003

Clostridium XI 0.840 0.000 0.005

Coprobacter 1.835 4.226 0.033

Fusicatenibacter 0.989 3.295 0.032

Guggenheimella 0.006 0.169 0.011

Helicobacter 0.200 0.000 0.024

Intestinimonas 0.097 0.861 0.000

Lactobacillus 2.304 18.632 0.030

Lactonifactor 0.023 0.401 0.025

Meniscus 1.149 0.000 0.000

Oscillibacter 0.640 1.748 0.011

Parabacteroides 0.292 0.031 0.015

Pseudoflavonifractor 0.154 0.466 0.028

Rikenella 3.921 1.216 0.004

Turicibacter 3.629 0.000 0.002

ANOVA with Tukey’s HSD post hoc analysis (95% confidence interval), generated with STAMP. Mean freq: mean frequency (%)

Table 3 Traditional microbiology results from TSHR-immunized mouse intestinal scraping from Center 1 (n = 5) and Center 2 (n = 10)

Microbial target Center 1: mean counts Center 2: mean counts P values

Bacteroides 1.15E+05 b.d.l. 0.000

Bifidobacteria 6.41E+06 1.32E+06 0.057

Coliforms 3.27E+02 1.15E+03 0.453

E.coli b.d.l. 8.45E+02 0.499

Enterobacteria b.d.l. 6.82E+02 0.499

Enterococci 1.74E+05 6.10E+06 0.247

Lactobacilli 1.93E+06 4.68E+06 0.725

Staphylococci 1.31E+05 3.77E+05 0.175

Total aerobes 4.18E+05 9.90E+06 0.370

Total anaerobes 6.75E+06 7.39E+05 0.001

Total Clostridia 2.46E+04 b.d.l. 0.165

Yeast 8.72E+01 b.d.l. 0.031

b.d.l.: below detection limit. Detection limits are the following according to the agar used: 1000 CFU/g feces for Bacteroides, 100 CFU/g feces for E.coli and

coliforms as well as for enterobacteria, and 10 CFU/g feces for total clostridia and yeasts, respectively. Microbiological counts were Box-Cox transformed. P values

obtained by linear regression
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In the scraped intestinal samples, we did not observe a
cage effect on the composition of the large intestine
microbiota (PERMANOVA P > 0.05; Fig. 2d).

Dynamics of fecal microbiota during the immunization

protocol

To assess whether the immunization plasmids and the
duration of the protocol could have influenced the gut
microbiota composition, we sequenced the bacterial 16S
rRNA gene from the fecal pellets of the βgal and TSHR
group from the baseline (T0) for 18 weeks afterwards,
until the end of the experiment (T4).
We observed a significant increase of the richness

(Chao index, Fig. 3a; P = 0.02) and the diversity

(Shannon index, Fig. 3b) over time, which was less ap-
parent in the TSHR-immunized group. Significant differ-
ences regarding richness between TSHR and βgal have
been observed at T4 (P = 0.027, Table 4). The Shannon
index of diversity, on the contrary, was significantly
different between TSHR and βgal immunization at T1
(P = 0.023, Table 4).
The murine fecal microbiota comprised Bacteroidetes

and Firmicutes phyla predominantly (Fig. 4c); followed
by Tenericutes, Proteobacteria Deferribacteres, and Can-
didatus Saccharibacteria phyla. The Firmicutes/Bacteroi-
detes ratio has been used to describe the shift in the gut
microbiota associated with aging [34] and also in disease
conditions such as obesity [35]. The ratio showed

A B

C D

Fig. 2 Gut microbiota composition in TSHR-immunized mice and control mice in Center 2 at final timepoint. a Box and whisker plots describing

the measurement of alpha diversity (Chao, ACE, and Shannon indices). b Non-metric dimensional scaling (NMDS) plot of weighted Unifrac distances

showed a spatial separation of microbial communities according to the immunizations. PERMANOVA based on 999 permutations P = 0.001. c Boxplot

of the phylum counts according to immunizations. ANOVA on phylum counts BH adjusted P < 0.0001 and pairwise T test between Bacteroidetes-

Firmicutes counts adjusted P = 0.0003. d Non-Metric Dimensional Scaling (NMDS) plot based on weighted Unifrac distances shows spatial separation of

the microbial community according to the immunization and caging within Center 2. Mice were co-housed according to their immunization at a

maximum of four animals; cages are described by different shapes as in the legend. No significant difference in cage effect is observed. PERMANOVA

based on cage effect (999 permutations) for all comparisons P = 0.12. P values: * P≤ 0.05; ** P = 0.01
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differences among the timepoints of the experimen-
tal procedure (P < 0.01) and between TSHR and the
βgal group after 3 weeks from the first injection
(T1, P = 0.011; Fig. 3c).
We fitted a generalized linear model (GLM) to com-

pare the taxonomic counts at different timepoints within
each group independently (either TSHR or βgal).
Thirty-four genera have been identified as differentially
abundant among all timepoints in the TSHR-immunized
group (Additional file 4: Table S1), while 25 were found
in the βgal group (Additional file 4: Table S2). We ob-
served differences in the taxonomic profile between
TSHR and βgal groups at each timepoint using an exact

test (EdgeR). Once again, T1 was identified as the time-
point with the highest number of genera differentially
expressed, as illustrated by the diversity indices
(Additional file 4: Table S3).
In contrast to data obtained from the gut microbiota

(Fig. 2d), a cage effect was observed in the fecal micro-
biota, in particular, in interaction with time (P = 0.001)
and immunization (P = 0.002; Additional file 5: Figure
S1). The latter is probably due to the mice being caged
according to the type of plasmid injection they received,
but we also observed a significant difference within the
same immunization group (e.g., TSHR in cage 4 and
cage 5, P = 0.01).

:

A

B

C

Fig. 3 Time-course analysis of GO preclinical fecal microbiota during the immunization protocol. Box and whisker plots of alpha diversity such as

Chao (a) and Shannon (b) indices showed differences over time. c Phylum dynamics over time and between immunizations. Firmicutes and Bacteroidetes

were the most abundant phyla, showing differences with time and immunizations. Significant differences among timepoints have been observed at the

Firmicutes/Bacteroidetes ratio, in particular between the baseline T0 and the last timepoint T4, but not related to immunization. A significant difference in

the ratio was observed after 3 weeks from the first injection (T1) between βgal and TSHR. P values: * P≤ 0.05; ** P= 0.01

Table 4 Summary of the statistics from the time-course analysis of the fecal microbiota during the immunization protocol (T0–T4)

and between immunizations (βgal and TSHR)

Index ANOVA model TSHR vs. βgal group

Immunization Time Time × immunization T0 T1 T2 T3 T4

Chao 0.006 0.02 0.8 0.75 0.066 0.28 0.33 0.027

Shannon 0.054 0.28 0.47 0.44 0.023 0.35 0.35 0.29

Firm:Bact 0.406 0.0003 0.16 0.39 0.028 0.46 0.2 0.26

Firm:Bact, Firmicutes/Bacteroidetes ratio. ANOVA model as previously described. Pairwise comparison between βgal and TSHR in each time point has been made

with a pairwise T-test with Benjamini-Hochberg correction for FDR
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Correlating the gut microbiota composition with clinical

features and differences in GO development

We then investigated possible correlations between
disease features, such as anti-TSHR antibodies, thy-
roxine levels (fT4), orbital adipogenesis, and muscular
atrophy, and the gut microbiota composition to deter-
mine whether it contributes to the heterogeneity of
induced responses, summarized in Additional file 1:
Table S1.
Within the Center 1 TSHR-immunized group, we found

that OTUs from Firmicutes and Bacteroidetes negatively
correlated to each other (Rho = − 1, P < 0.0001). A positive
correlation between levels of TSAb and Deferribacteres

phylum, which include one-genus Mucispirillum, was
found (Rho = 0.92, P = 0.028; Fig. 4a).
From those genera differentially abundant between

TSHR-immunized mice from Center 1 and Center 2
(Table 2), identified via metataxonomics, we observed
a strong negative correlation of the Firmicutes genus
Intestinimonas and the levels of TSBAb in the Center
1 (Rho = − 0.89, P < 0.05) but not in the Center 2
counterpart (Fig. 4b). No significant correlation was
observed between OTUs from the genus Intestinimo-

nas and levels of TSAb or levels of free thyroxine
hormone (fT4; data not shown).
On the contrary, the Box-Cox transformed counts

from the traditional microbiology did not show any sig-
nificant correlation with the disease features described
(data not shown).
Within Center 2, Bacteroidetes and Firmicutes nega-

tively correlated to each other (Rho = − 0.99, P < 0.0001;

Fig. 5a). We also found a significant positive correlation
(Rho = 0.6, P = 0.009) between the OTUs from the
Firmicutes and the orbital adipogenesis value and a
negative correlation of this value with the phylum Bac-

teroidetes (Rho = − 0.57, P = 0.014). As expected, these
correlations were specific to the TSHR-immunized
mice (Fig. 5b). The correlation pattern we found (Firmi-

cutes positively correlated, Bacteroidetes negatively cor-
related) was also recapitulated at the genus level.
Among the genera of the Firmicutes, three within the
Clostridia family (Butyricicoccus, Parvimonas and Fusi-

bacter) and the genus Lactobacillus were correlated
positively with adipogenesis, while three Bacteroidetes

genera (Anaerophaga, Paraprevotella, and Tannerella)
correlated negatively with the orbital adipogenesis
values (Fig. 5c).
A strong positive correlation (Rho = 0.82, P = 0.007)

was observed between orbital adipogenesis and the
total anaerobes counts obtained from the traditional
microbial cultures of TSHR-immunized mice, but not
in the controls (Fig. 5d). Moreover, from the trad-
itional microbial cultures data, we observed correla-
tions with other disease features, specifically in the
TSHR group. We observed strong positive correla-
tions between the muscular atrophy values and the
cluster of lactobacilli (Rho = 0.74, P = 0.03), entero-
cocci (Rho = 0.8, P = 0.02), bifidobacteria (Rho = 0.76,
P = 0.03), and coliforms (Rho = 0.73, P = 0.04). Levels
of free thyroxine (fT4) were positively correlated with
lactobacilli (Rho = 0.64, P = 0.05) and staphylococci
(Rho = 0.77, P = 0.016).

A B

Fig. 4 Correlating the gut microbiota and disease features in Center 2 TSHR group. a Spearman correlation coefficient strength (Rho) of phylum

counts from TSHR mice in Center 2. Firmicutes and Bacteoridetes showed a strong negative correlation between each other. A positive correlation

between the one-genus phylum Deferribacteres and the level of thyroid-stimulating antibodies (TSAb) has been observed. Correlations with P <

0.05 are shown and strength of the Rho coefficient is represented by the change in the color intensity. fT4, free thyroid hormone thyroxine levels;

TSAb, thyroid stimulating antibodies; TSBAb, thyroid-stimulating blocking antibodies (as a percentage values). b Enriched Firmicutes genus

Intestinimonas between Center 1 (blue) and Center 2 (red) showed a strong negative correlation with the percentage of thyroid-stimulating

blocking antibodies (TSBAbs) at 95% confidence interval in Center 1 (Rho = − 0.8, P = 0.04), but not in Center 2
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Discussion

Animal models have been invaluable in dissecting the
mechanisms causing loss of immune tolerance leading
to autoimmune conditions such as GD. Thus, we aimed
to test the hypothesis that the gut microbiota may affect
both outcome and reproducibility of induced auto-
immune disease, such as reported in the recent research
article of Berchner-Pfannschmidt and co-workers [12].
We observed significant differences in the diversity and

spatial organization of the gut microbiota of female
TSHR-immunized BALBc mice in two independent SPF
units. We also demonstrated disease-associated microbial

taxonomies and correlation with ocular disease, suggesting
that the gut microbiota have contributed to the heterogen-
eity of induced response in the two locations, which fur-
ther supports our hypothesis.
Animals were maintained in similar conditions. We

are confident that there were no infections ongoing at
the moment of sampling, since animals in both centers
were routinely tested for the presence of viruses, myco-
plasma and parasites (see Additional file 1: Table S2);
moreover, housing facilities had comparable SPF condi-
tions. Animals were from the same supplier but in differ-
ent countries (Harlan Ltd. for Center 1 and Harlan Lab.

A B

C D

Fig. 5 Correlation of the gut microbiota composition with clinical features and differences in Center 2 mice. a Correlation plot of phyla and the

orbital adipogenesis value. Spearman correlation coefficient strength (Rho) as indicated by the colored bar. Firmicutes and Bacteoridetes showed a

strong negative correlation between each other. A positive correlation between Firmicutes and a negative correlation with Bacteroidetes OTUs and

the adipogenesis value (calculated in the orbit) has been observed. Adipogenesis clustered closer to the Firmicutes and Bacteroidetes value according

to the complete linkage method for hierarchical clustering. Only P < 0.05 are shown. b Positive strong correlation of the Firmicutes/Bacteroidetes ratio

with the adipogenesis value (calculated in the orbit) resulted significant in TSHR-immunized group but not in the βgal group. c Spearman correlation

coefficient (Rho) of genera among phyla Bacteroidetes and Firmicutes and the orbital adipogenesis values. The strength of the correlation coefficient is

represented on x-axis: bars on the left represent a negative correlation coefficient, while bars on the right represent a positive correlation coefficient.

Correlations with P < 0.05 are shown; order of entrance depends on their P values: * P < 0.05; ** P < 0.1; *** P < 0.005. d Spearman correlation

coefficient plot of the Box-Cox transformed microbiological counts and disease features in Center 2 TSHR-immunized mice. Feature clustering was

according to the complete linkage method for hierarchical clustering. Only correlations with P < 0.05 are shown and strength of the correlation

coefficient is represented by the change in the color intensity. fT4, free thyroid hormone thyroxine levels; TSAb, thyroid-stimulating antibodies; TSBAb,

thyroid-stimulating blocking antibodies (as a percentage values)

Masetti et al. Microbiome  (2018) 6:97 Page 11 of 15



BV for Center 2), had received autoclaved water, and
had been fed similar commercial chow, with the excep-
tion that food pellets provided in Center 2 contained
twice the amount of iodide compared to Center 1 food
(see Additional file 1: Table S3). Although iodide excess
can be associated with abnormal thyroid function, we do
not consider that this dietary variation is enough to ex-
plain the results (i.e., elevated thyroxine levels were ap-
parent in the Center 1 but not in the Center 2 mice).
The effect of iodine has been studied in the NOD mouse
which spontaneously develops autoimmune thyroiditis.
Vecchiatti and colleagues [36] reported that excess iod-
ine (0.2 mg/mouse/day) increased the incidence and se-
verity of disease; however, the BALB/c mice in our study
did not display thyroiditis. A transgenic NOD mouse ex-
pressing the human TSHR-A subunit is able to develop
antibodies to the human TSHR and this too is exacer-
bated by iodine excess [37] but at levels far greater than
in the chow used in Centers 1 and 2. We also considered
whether iodine could affect the gut microbiota, in view
of its use as an antiseptic, but all the studies we found
were in this context, rather than the effect of dietary iod-
ine on symbionts. The importance of SPF conditions is
indicated by a previous study which failed to reproduce
a GO animal model, despite using mice from the same
supplier and identical bedding, water, and chow [10].
However, even SPF may be inadequate since differences
were found in the gut microbiota of C57BL/6 colonies
bred in two different rooms of the same SPF facility [38],
fortunately mice in our study were all housed in the
same room.
Cage effects were apparent in the fecal microbiota results,

which highlight the importance of studying the gut micro-
biota instead when comparing autoantigen (TSHR)-immu-
nized and control mice, which are in the close proximity of
the intestinal mucosa and the immune system, enabling us
to explore its relationship with disease features.
We observed several disease-associated taxonomies; the

abundance of the newly described butyrate-producing
genus Intestinimonas [39] was reduced in the Center 1
group compared to Center 2 and correlated negatively
with TSBAb. The Intestinimonas species butyroproducens

has a unique ability to produce butyrate from lysine and is
involved in the detoxification of advanced glycosylation
end (AGE) products such as fructoselysin, which have
been linked to type 1 diabetes [40], although we are un-
aware of any link between butyrate-producing bacteria
and thyroid autoimmunity.
The TSHR-immunized group developed some signs

of GO and their gut microbiota had increased OTUs
of the phylum Firmicutes but decreased Bacteroidetes

compared with controls. This mirrors our prelimin-
ary data in human disease where we observed a dra-
matic reduction in the Bacteroides genus in GD

patients when they develop GO (INDIGO publish-
able summary1).
We also obtained a positive correlation between sev-

eral Firmicutes counts, such as Clostridia and Bacilli,
with orbital adipogenesis in Center 2 TSHR-immunized
mice. Million and co-workers have previously reported a
positive correlation between OTUs from the Firmicutes

and weight gain/obesity in both animal models and
humans [41]. Interestingly, the role of the genus Lacto-

bacillus and its products in either triggering or protect-
ing from adipogenesis has been debated and seems to be
species-specific.
In the present work, we could exclude a possible

gain-of-weight relationship with the adipogenesis value
calculated in the orbit since no changes in mouse
weights have been observed during the development of
the chronic phase of the disease (data not shown). Fur-
thermore, molecular mechanisms driving obesity and or-
bital adipogenesis may well be different, since the latter
is derived from the neural crest and the gut microbiota
may have varying effects on different fat depots [42].
Our time-course analysis revealed that time had a

dramatic role in shaping the fecal microbiota of the
female mice which were 6–8 weeks old at the outset
and 24–26 weeks at the end of the experiment, con-
firming the work of McCafferty and colleagues [43].
The richness and diversity of βgal control mice in-
creased with age but this was less apparent in
TSHR-immunized animals. Significant differences in
microbiota composition between control and TSHR
immunizations were most apparent 3 weeks after the
first immunization, at the initiation of the induced
immune response.
Our control group comprised mice immunized with

the βgal expression plasmid in which we observed a
slight skew in the microbiota richness and diversity
which may be caused by the systemic overexpression
of the β-galactosidase enzyme, whose natural role is
in glycan metabolism, e.g., the hydrolysis of the lac-
tose to galactose and glucose [44]. Kaneda and collab-
orators reported a βgal overexpression peak in the
muscle fibers following electroporation from 5 days to
2 weeks after the injection [45].
It may be that the increased OTUs of the Firmicutes

genus Acetitomaculum was specifically triggered by the
product of the βgal enzymatic reaction over time
(Additional file 4: Table S2). This effect merits further
investigation but we are confident that the βgal vector
plasmid provides the optimum control group since its
microbial communities were more closely related to
that of the naïve non-immunized group than to
TSHR-immunized mice. Of interest, TSHR-immunized
mice in Center 2 were more similar to
TSHR-immunized mice from Center 1 (P = 0.2) than

Masetti et al. Microbiome  (2018) 6:97 Page 12 of 15



βgal (P = 0.024), than untreated (P = 0.04) mice in
their own center (Additional file 6: Figure S1).
The results we obtained using 16S rRNA gene meta-

taxonomics and via the traditional microbial culture ap-
proach were largely similar, with relatively few
differences. Microbial cultures revealed significantly
higher yeast counts (P = 0.03186) in Center 2
TSHR-immunized mice—which obviously could not be
seen via the bacterial metataxonomics—and a nearly sig-
nificant difference in the Actinobacteria genus Bifidobac-
terium (P = 0.057), which was not detected in our
metataxonomics data. Primers based on the V1–V2 re-
gions of the 16S rRNA gene did not detect Bifidobacter-
ium OTUs. Consequently, we applied a new set of
primers (28F-combo) with which we observed a signifi-
cant enrichment of bifidobacteria counts in Center 2
(Additional file 7: Figure S1), in agreement with the mi-
crobial culture results.

Conclusions

In conclusion, our results indicate a role for the gut
microbiota in modulating the heterogeneity apparent in
the TSHR-induced model of GD and GO. In our next
study, we will report the effects on our induced model
of modifying the gut microbiota using antibiotics, pro-
biotics, and fecal material transfer.
Our future studies will investigate whether the pres-

ence, absence, or amounts of certain bacteria or yeast
have the ability to directly alter the immune balance be-
tween the Treg anti-inflammatory response and the
Th17-mediated pro-inflammatory response in the gut
mucosa as has been reported in models of other auto-
immune diseases [22, 46]. Results of these experiments
could then be confirmed by colonization studies in
gnotobiotic animals. Factors such as level of dietary iod-
ine intake and age of mice at immunization, which may
both alter the gut microbiota and/or immune respon-
siveness, are also warranted.

Endnotes
1INDIGO publishable summary: http://www.indigo-iap-

p.eu/publishable-summary/
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