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Abstract

We give a new take on the error analysis of approximations of stochastic differen-
tial equations (SDEs), utilizing and developing the stochastic sewing lemma of L&
(Electron J Probab 25:55, 2020. https://doi.org/10.1214/20-EJP442). This approach
allows one to exploit regularization by noise effects in obtaining convergence rates. In
our first application we show convergence (to our knowledge for the first time) of the
Euler—-Maruyama scheme for SDEs driven by fractional Brownian motions with non-
regular drift. When the Hurst parameter is H € (0, 1) and the drift is C*, @ € [0, 1]
anda > 1—1/(2H), we show the strong L, and almost sure rates of convergence to
be (1/2+aH)A1)—¢,forany ¢ > 0. Our conditions on the regularity of the drift are
optimal in the sense that they coincide with the conditions needed for the strong unique-
ness of solutions from Catellier and Gubinelli (Stoch Process Appl 126(8):2323-2366,
2016. https://doi.org/10.1016/j.spa.2016.02.002). In a second application we consider
the approximation of SDEs driven by multiplicative standard Brownian noise where
we derive the almost optimal rate of convergence 1/2 — ¢ of the Euler-Maruyama
scheme for C¥ drift, for any ¢, @ > 0.
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1 Introduction

Since the 1970s, it has been observed that the addition of a random forcing into an
ill-posed deterministic system could make it well-posed. Such phenomenon is called
regularization by noise. One of the prime examples concerns differential equations of
the form

dX, = b(X,)dt, (1.1)

where b is a bounded vector field. While Eq. (1.1) might have infinitely many solutions
when b fails to be Lipschitz continuous and might possess no solution when b fails to
be continuous, Zvonkin [39] and Veretennikov [38] (see also the paper of Davie [9])
showed that the stochastic differential equation (SDE)

dX, = b(X,)dt +dB, (1.2)

driven by a Brownian motion B, has a unique strong solution when b is merely bounded
measurable. This result was extended to the case of the fractional Brownian noise in
[4,8,27,32,33]. These papers study the equation

dX, =b(X,)dt + dB”, Xy=x0 (1.3)
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Approximation of SDEs: a stochastic sewing approach 977

where B is a d-dimensional fractional Brownian motion with Hurst parameter H €
(0, 1). It is known [8, Theorem 1.9] that this equation has a unique strong solution if b
belongs to the Holder—Besov space C* and « > 1—1/(2H). Thus, the presence of the
noise not only produces solutions in situations where there was none but also singles
out a unique physical solution in situations where there were multiple. However, to the
best of our knowledge, no construction of this solution through discrete approximations
has been known (unless H = 1/2). In this article, we develop a new approach which
allows to construct this solution and even obtain rate of convergence of the discrete
approximations. Before the formal setup of Sect. 2, let us informally overview the
results.

First, let us recall that in the standard Brownian case (H = 1/2) the seminal work
of Gyongy and Krylov [18] established the convergence in probability of the Euler—
Maruyama scheme

dX! =b(X" ) dt +dBI, XB=xl, t>0 (1.4)

fen (1)

to the solution of (1.3). Here b is a bounded measurable function and
kn(t) := |nt]/n, neN. (1.5)

In the present paper, we significantly extend these results by (a) establishing the
convergence of the Euler—Maruyama scheme for all H € (0, 1); (b) showing that the
convergence takes place in a stronger (L ,(£2) and almost sure) sense; (c) obtaining
the explicit rate of convergence. More precisely, in Theorem 2.1 we show that if b
is bounded and Holder-continuous with exponent @ > 1 — 1/(2H), then the Euler—
Maruyama scheme converges with rate ((1/2 + aH) A 1) — ¢ for any ¢ > 0. Thus,
the approximation results are obtained under the minimal assumption on the drift b
that is needed for strong uniqueness of solutions [8,32] and for the well-posedness of
scheme (1.4). Let us also point out that in particular, for H < 1/2, one does not need to
require any continuity from b to obtain a convergence rate 1/2—e&. Concerning approx-
imations of SDEs driven by fractional Brownian motions with regular coefficients, we
refer the reader to the recent works [15,22] and references therein. Concerning the
implementation of such schemes and in particular the simulation of increments of
fractional Brownian motions we refer to [37, Section 6] and its references.

Our second application is to study equations with multiplicative noise in the standard
Brownian case:

dX; =b(X;)dt + o (X;)dBy, Xo=x9, t>0 (1.6)

and their discretisations
dX! = b(X,’(’n(l))dt + O’(X,’(ln(t))dBt, Xg=x5, t=>0. .7
Here b, o are measurable functions, B is a d-dimensional Brownian motion, and «,,

is defined in (1.5). To ensure well-posedness, a nondegeneracy assumption on ¢ has
to be assumed. In the standard Brownian case the rate of convergence for irregular
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b has been recently actively studied, see among many others [2,28-30,36] and their
references. However, the obtained rate deteriorates as b becomes more irregular: in
the setting of (1.6)-(1.7), the best known rate is only proven to be (at least) /2 for
belC* a>0in[2].

It was first shown in [10] that, at least for additive noise, the strong rate does not
vanish as the regularity « approaches 0, and one in fact recovers the rate 1/2 — ¢
for arbitrary ¢ > 0, for all « > 0. In the present paper we establish the same for
multiplicative noise, in which case the rate 1/2 is well-known to be optimal. Our
proof offers several other improvements to earlier results: all moments of the error
can be treated in the same way, the scalar and multidimensional cases are also not
distinguished, and the main error bound (2.9) is uniform in time, showing that X. and
X" are close as paths. The topology (in time) where the error is measured is in fact
even stronger, see Remark 2.3.

To obtain these results we develop a new strategy which utilizes the stochastic
sewing lemma (SSL) of Lé [27] as well as some other specially developed tools. We
believe that these tools might be also of independent interest; let us briefly describe
them here.

First, we obtain a new stochastic sewing—type lemma, see Theorem 3.3. It provides
bounds on the L -norm of the increments of a process, with the correct depen-
dence on p. This improves the corresponding bounds from SSL of L& (although,
under more restrictive conditions). This improved bound is used for proving stretched
exponential moment bounds that play a key role in the convergence analysis of the
Euler—-Maruyama scheme for (1.3), see Sect. 4.3. In particular, using this new sewing-
type lemma, we are able to extend the key bound of Davie [9, Proposition 2.1] (this
bound was pivotal in his paper for establishing uniqueness of solutions to (1.2) when
the driving noise is the standard Brownian motion) to the case of the fractional Brow-
nian noise, see Lemma 4.3.

Second, in Sect. 5 we derive density estimates of (a drift-free version of) the solution
of (1.7) viaMalliavin calculus. Classical results in this direction include that of Gyongy
and Krylov [18], and of Bally and Talay [5,6]: the former gives sharp short time
asymptotics but no smoothness of the density, and the latter vice versa (see Remark
5.1 below). Since our approach requires both properties at the same time, we give a
self-contained proof of such an estimate (5.2).

Finally let us mention that, as in [10,11,34], efficient quadrature bounds play a
crucial role in the analysis. These are interesting approximation problems in their own
right, see, e.g., [25] and the references therein. Such questions in the non-Markovian
setting of fractional Brownian motion have only been addressed recently in [1]. How-
ever, there are a few key differences to our quadrature bounds from Lemma 4.1. First,
we derive bounds in L ,(£2) for all p, which by Proposition 2.9 also imply the cor-
responding almost sure rate (as opposed to L, (£2) rates only in [1]). Second, unlike
the standard fractional Brownian motions considered here, [1] requires starting them
at time O from a random variable with a density, which provides a strong smoothing
effect. Third, when approximating the functional of the form

t
I, :=/ f(BHyds,
0
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Approximation of SDEs: a stochastic sewing approach 979

also called ‘occupation time functional’, by the natural discretisation

t
rr =f0 fBE ) ds,

our results not only imply pointwise error estimates on |I'7 — ' |, but also on the error
of the whole path ||I". —T""|| -s measured in a H6lder norm CP with some B > 1/2. This
is an immediate consequence of the bounds (4.1) in combination with Kolmogorov’s
continuity theorem.

The rest of the article is structured as follows. Our main results are presented in
Sect. 2. In Sect. 3 we outline the main strategy and collect some necessary auxiliary
results, including the new sewing lemma-type bound Theorem 3.3. Section 4 is devoted
to the error analysis in the additive fractional noise case. In Sect. 5 we prove an auxiliary
bound on the probability distribution of the Euler—Maruyama approximation of certain
sufficiently nice SDEs. The proofs of the convergence in the multiplicative standard
Brownian noise case are given in Sect. 6.

2 Main results

We begin by introducing the basic notation. Consider a probability space (€2, F, P)
carrying a d-dimensional two-sided Brownian motion (W;),cr. Let F = (F;);cr be
the filtration generated by the increments of W. The conditional expectation given Fy
is denoted by E*. For H € (0, 1) we define the fractional Brownian motion with Hurst
parameter H by the Mandelbrot-van Ness representation [35, Proposition 5.1.2]

0 t
BH ;:/ (|t—s|H*1/2—|s|”*1/2)dws+/ It —s/H=12aw,.  (2.1)
—00 0

Recall that the components of B are independent and each component is a Gaussian
process with zero mean and covariance

Cls, 1) = %H(s”f +2H ) —sPH), 51> 0, 2.2)

where cpg is a certain positive constant, see [35, (5.1)].
For o € (0, 1]and a function f: Q — V, where Q C R¥ and (V, |-|) is a normed
space, we set
[Flesioy = sup =T
, x#yeQ lx — y|*

For a € (0, co) we denote by C*(Q, V) the space of all functions f: Q — V having
derivatives 8¢ f for all multi-indices ¢ € (Z.)* with |¢| < « such that

Ifllcecovy = Y sup |3 fI+ Y [0 Flee-tao,vy < 00

xeQ

|l <a a—1<|l|<a
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980 0. Butkovsky et al.

If ¢ = (0, ..., 0), then as usual, we use the convention 9t f = f.Inparticular, the C*
norm always includes the supremum of the function. We also set CO(Q, V) to be the
space of bounded measurable functions with the supremum norm. We emphasize that
in our notation elements of C” need not be continuous! If & < 0, then by C* (R4, R)
we denote the space of all distributions f € D’ (R%), such that

Ifllce == sup e *?||Ps fllcoa ) < 0O,
e€(0,1]

where P, f is the convolution of f with the d-dimensional Gaussian heat kernel at
time €.

In some cases we use shorthands: if Q = RY, orV =R or V = R4, they
are omitted from the notation. For instance, the reader understands that requiring
the diffusion coefficient o of (1.6) to be of class C* is to require it to have finite
I - llce(ra raxay norm. If V- = L (€2) for some p > 2, we write

1/ lzs.0 = Ifllceco.,@)- (2.3)
Convention on constants: throughout the paper N denotes a positive constant whose

value may change from line to line; its dependence is always specified in the corre-
sponding statement.

2.1 Additive fractional noise

Our first main result establishes the convergence of the numerical scheme (1.4) to the
solution of Eq. (1.3). Fix H € (0, 1). It is known ( [8, Theorem 1.9]) that if the drift
b € C* with « € [0, 1] satisfying @ > 1 — 1/(2H), then for any fixed xo € R¢, Eq.
(1.3) admits a unique strong solution, which we denote by X. For any n € N we take

Xy € R? and denote the solution of (1.4) by X".Foragiven« € [0, 1]Jand H € (0, 1),
we set

y =y H):=1/2+aH) Al (2.4)

Now we are ready to present our first main result. Its proof is placed in Sect. 4, a brief
outline of it is provided in Sect. 3.1.

Theorem 2.1 Let o € [0, 1] satisfy
a>1—-1/Q2H). 2.5)

Supposeb € C*, lete, § > 0and p > 2. Then there exists aconstantt = t(«, H, €) >
1/2 such that for all n € N the following bound holds

I1X = X"llce o112, @) < Nn’lxo — x§| + Nn =V e+ (2.6)

with some constant N = N(p,d,a, H, &, 8, ||bl|ce).
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Remark 2.2 An interesting question left open is whether one can reach « = 0 in the
H = 1/2case. Indimension 1, this is positively answered [ 10] using PDE methods, but
the sewing approach at the moment does not seem to handle such endpoint situations.
For H # 1/2 even weak existence or uniqueness is not known for the endpoint
a=1-1/2H).

Remark 2.3 From (2.6), Kolmogorov’s continuity theorem, and Jensen’s inequality,
one gets the bound

J1X = X" lee o110 |, @y = Nl — x5 + Nn 774542, 2.7)

for any &’ > 0 (with N also depending on ¢’). In the literature it is more common to
derive error estimates in supremum norm, which of course follows:

|| sup |X; — Xf|||L @ = Nn®|xg — xol + Nn~vHetd
tel0,1] P

but (2.7) is quite a bit stronger.

Remark 2.4 A trivial lower bound on the rate of convergence of the solutions is the
rate of convergence of the initial conditions. In (1.4) we lose 6 compared to this rate,
but § > 0 can be chosen arbitrarily small. This becomes even less of an issue if one
simply chooses x; = xo.

Remark 2.5 The fact that the error is well-controlled even between the gridpoints
is related to the choice of how we extend X" to continuous time from the points
X 6’, X '1' e For other type of extensions and their limitations we refer the reader to
[31].

Corollary 2.6 Assume a € [0, 1] satisfies (2.5) and suppose b € C*. Take xo = x;; for
all n € N. Then for a sufficiently small 8 > 0 and any ¢ > 0 there exists an almost
surely finite random variable n such that for all n € N, w € Q the following bound
holds

sup |Xt — X;l| < ||X — Xn||c|/2+6([0,1]’Rd) < 771/1_)/+8,
tel0,1]

where y was defined in (2.4).

Proof An immediate consequence of (2.7), Proposition 2.9 below, and the fact that
T>1/2. O

2.2 Multiplicative Brownian noise
In the multiplicative case we work under the ellipticity and regularity conditions

o€ Cz, ool > M, (2.8)
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982 0. Butkovsky et al.

in the sense of positive definite matrices, with some A > 0. This, together with b € co,
guarantees the strong well-posedness of equations (1.6) and (1.7) [38, Theorem 1],
whose solutions we denote by X and X", respectively. The second main result then
reads as follows, its proof is the content of Sect. 6.

Theorem 2.7 Let a € (0, 1]. Suppose b € C%, lete > 0, T € [0,1/2), and p > 2.
Suppose o satisfies (2.8). Then for all n € N the following bound holds

IX = X"llcxqo,11,2,@) < Nlxo — xg| + Nn~'/2+¢ (2.9)

with some N = N(p,d,a, &, T, A, ||b|lce, ||o]lc2).

Corollary 2.8 Let a € (0, 1], assume xo = x; for all n € N, suppose b € C%, and
suppose o satisfies (2.8). Let ¢ > 0, t € [0, 1/2). Then there exists an almost surely
finite random variable 1 such that for alln € N, w € Q the following bound holds

sup |Xt — X;ll < ||X — XHHCT([O,I],R"’) < nn_1/2+8.
t€[0,1]

Proof An immediate consequence of (2.9), Kolmogorov’s continuity theorem, and
Proposition 2.9 below. O

Let us conclude by invoking a simple fact used in the proof of Corollaries 2.6 and
2.8, which goes back to at least [20, proof of Theorem 2.3] (see also [13, Lemma 2]).

Proposition 2.9 Let p > 0 and let (Z,)neN be a sequence of random variables such
that for all p > 0 and all n € N one has the bound

1ZnllL, @) < Nn™"

forsome N = N(p). Then for all ¢ > O there exists an almost surely random variable
n such that foralln e N, w € Q

|Z,| < qn=P7Fe.

Proof Notice that for any ¢ > 0

- E|Z,|? -
D BUZul > 070 <), s < ) N

neN neN neN

Choosing g = 2/¢, the above sum is finite, so by the Borel-Cantelli lemma there exists
an almost surely finite N-valued random variable n¢ such that |Z,| < n=?7¢ for all
n > ng. This yields the claim by setting

n:= 1V max(|Z,|n""%).
n<ngo
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Approximation of SDEs: a stochastic sewing approach 983

3 Preliminaries
3.1 The outline of the strategy

The purpose of this section is to outline the main steps in a simple example. Hopefully
this gives a clear picture of the strategy to the reader, which otherwise may be blurred
by the some complications arising in the proofs of Theorems 2.1 and 2.7.

The ‘simple example’ will be the setting of (1.3) and (1.4) with H = 1/2 and
f € C? for some o > 0. We furthermore assume xo = x;; and that the time horizon
is given by [0, Tp] instead of [0, 1], with some small 1 > Ty > 0 to be chosen later.
Finally, we will only aim to prove (2.6) with T = 1/2.

Step 1 (“Quadrature bounds”). Our first goal is to bound the quantity

To
Ar, :=/(; b(B;) — b(By, ) dr. (3.1

From the Holder continuity of b, one would have the trivial bound of order n~%2 in
any L ,(£2) norm, but in fact one can do much better, as follows. Fix ¢ € (0, 1/2) and
define (recall that by E* we denote the conditional expectation given Fy)

t
Aoy = E"(A — Ay) = E° / b(By) — b(Be,) dr-

N

The stochastic sewing lemma, Proposition 3.2 below, allows one to bound A through
bounds on A. Given the preceding field Ay ;, provided that the conditions (3.8) and
(3.9) are satisfied, it is easy to check that the unique adapted process A constructed in
Proposition 3.2 coincides with the one in (3.1). Indeed, the process in (3.1) satisfies
(3.10) and (3.11) with &1 = €, &2 = 1, K1 = |bllco and K» = 0. Therefore it
remains to find C; and C». In fact, it is immediate that one can choose C, = 0, since
ES(SAS,L[,I‘ = ES(AS,I - As,u - Au,t) = 0.

We now claim that one can take C; = Nn~!/27%/2+¢ in (3.8). Since 1b(B,) —
b(By,ir)lL, @) =< Ibllcen=®/2, if |t —s| < 2n~", then one easily gets by the condi-
tional Jensen’s inequality

IAsillL, @ < Nls —tln~%? < N|s — t|}/2Hep=1/2a/24e (3.2)
’ p( )

If |t —s| > 2n~ !, let s’ = k,(s) + 2n~! be the second gridpoint to the right of s.
In particular, r > s” implies «, (r) > s. Let us furthermore notice that for any u > v
and any bounded measurable function f, one has EY f(B,) = P,y f (By), where P
is the standard heat kernel (see (3.22) below for a precise definition). One can then
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984 0. Butkovsky et al.

write

’

s t
1AsillL, @ < / 16(B,) — b(Beye) iy dr + | / E'b(B,) — E'b(Br)dr, o)
K s’

A

IA

t
Nn~1-al? 4 / 1(Prs — Peyrys)bllco dr
S/

IA

t
Nn—l—ot/Z —|—N/ r _s/)—1/2+an—1/2—oz/2+s dr
s’

Nt _s|1/2+8n71/270t/2+5 (33)

IA

where in the third line we used a well-known estimate for heat kernels, see Proposition
3.7 (ii) with exponents 8 = 0,6 = 1/2 4+ «/2 — ¢, and time points k, (r) — s in place
of s, r — s in place of t. We also used that for » > s’, one has «,,(r) —s > r —s’. By
(3.2) and (3.3) we indeed get (3.8) with C; = Nn~!/27%/2+¢ Applying the stochastic
sewing lemma, (3.12) yields

t
14 = Al = | / b(By) = b(Be, i) dr, o) < Nt —s|'/2ten=1/2me/24e
N

forall 0 <s <t < Ty. Here the constant N depends on p, ¢, «, d, ||b||ce, but not on
To.

Step 1.5 (Girsanov transform). An easy application of Girsanov’s theorem yields

t
||/ b(X") — b(X" ))dr||Lp(Q) < Nt — s|//?Fep=1/2—a/24e (3.4)
N

kn (r -

In general (for example, for fractional Brownian motions) the Girsanov transformation
can become involved, but for our present example this is completely straightforward.
Step 2 (“regularization bound” ). Next, we estimate the quantity

To
Ag = / b(B, + Vi) — b(B, + ¢, d1
0

for some adapted processes 1, ¢ whose Lipschitz norm is bounded by some constant
K. As suggested by the above notation, we use the stochastic sewing lemma again,
with Ay ; defined as

t
Ay = E° / b(B, + s) — b(By + y) dr.
S

We do not give the details of the calculations at this point. It is an instructive exercise

to the interested reader to verify that (3.8) and (3.9) are satisfied with &1 = «/2,

Ci = N[y — ‘P"‘@”g,[o,To] and ¢ = /2, Cy = NIy — (pl]%ﬂl/z [0.70]" Here N depends
p LY

on p,«,d, K, ||b|ce, but not on Ty. The bound (3.10) is straightforward, with K1 =
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Approximation of SDEs: a stochastic sewing approach 985

1]l co. Concerning (3.11), one can write

t
ES (A, — Ay — A )| < ]E/ b(B, + 1)
—b(By + ¥)| + |b(By + @) — b(By + )| dr,

and so Ko = 2K ||b||c« does the job. Therefore, by (3.12), we get

t
e = Al = | / b(B, + ) — b(Br + o dr, o
S
< Nit = s>y — llgo 0.1

_ a2y
+N|r —s| 0¥ — ly12 0.7

We will only apply the following simple corollary of this bound: if ¥y = ¢y, then

t
1/2+a/2
|| / b(Br + ) = b(Br + @) dr|| g = NIt = s/ P0y — gl g 10
(3.5)

Step 3 (“Buckling”) Let ¥ and " be the drift component of X and X", respectively:

t t
v =xo+/ b(Xp)dr, =xo+f bXE ) dr.
0 0
We apply (3.4) and (3.5) with ¢ = ", to get

I — ™) — (@ — ¥l @ < Nn~ /27024 — g|t/24e
_ o1/24a/2 _
+N|t —s| Iy -y "%,1/2’[0’7%)]-

1/2

Dividing by |t — s|'/< and take supremum over 0 < s < t < Tj, one gets

o —1/2—a/2+4¢ o/2 o
W =971 0.7y = N7 HNT I =V g1 1o 7y

Since so far N does not depend on Ty, one can choose Ty sufficiently small so that

NT’? < 1/2. This yields the desired bound

_yn _ _n —1/2—a/2+¢
|]X X [Icf,}/z,[(),To] = ﬂlﬁ W ﬂ(gpl/z’[()’]"o] < Nn .

O

Letus point out that the rate of convergence is determined by only the first step. Also,

the second step is similar in spirit to the ‘averaging bounds’ appearing in sewing-based
uniqueness proofs for SDEs (see e.g. [8,27]).
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986 0. Butkovsky et al.

In the proof of Theorem 2.1, the more difficult part will be the regularization bound.
Applying only the stochastic sewing lemma of L& apparently does not lead to an opti-
mal result for H > 1/2. Therefore at some point one has to move from almost sure
bounds (which are similar to [8]) to L, bounds. This requires an extension of the
Davie’s moment bound [9, Proposition 2.1] to the case of the fractional Brownian
motion. This is done in Lemma 4.3 using the new stochastic sewing lemma (Theo-
rem 3.3).

In contrast, for Theorem 2.7 establishing the quadrature bound will be more difficult.
In the above arguments, the heat kernel bounds have to be replaced by estimates on
the transition densities of the Euler-Maruyama scheme. These bounds are established
via Malliavin calculus, this is the content of Sect. 5.

3.2 Sewing lemmas

As mentioned above, the proof strategy relies on the sewing and stochastic sewing
lemmas. For the convenience of the reader, we recall them here. The first two lemmas
are well-known, the third one is new.

We define for0 < § <T <1theset[S, T]<:={(s,1): S<s <t <T}LIfA..
is a function [S, T]< — R, thenfors < u <t weput §Ag ., := Ay, — Ay — Aus.
The first statement is the sewing lemma of Gubinelli.

Proposition 3.1 [14, Lemma 2.1], [19, Proposition 1] Let0 < § < T < 1 and let
A.. be a continuous function from [S, T]< to RZ. Suppose that for some ¢ > 0 and
C > 0 the bound

18As.u1] < Clt —s|'+e (3.6)

holdsforall S < s < u <t < T. Then there exists a unique function A : [S, T] — R?
such that Ag = 0 and the following bound holds for some constant K > 0:

A = Ag = Agal < Kl = 1™, (s,0) €[5, T 3.7
Moreover, there exists a constant Ky depending only on g, d such that A in fact satisfies
the above bound with K < KC.

The next statement is the stochastic extension of the above result obtained by L&.
Recall that for any s > 0 we are using the convention E*[...] := E[...|Fs].

Proposition 3.2 [27, Theorem 2.4]. Let p > 2,0 < S < T < l andlet A.. be a
Sunction [S, Tl< — L, (L2, Rd) such that for any (s, t) € [S, T l< the random vector
Ag ¢ is Fy-measurable. Suppose that for some €1, &2 > 0 and C1, Ca the bounds

A llL, @ < Cilt —s|'/>e1, (3.8)
IESS AguillL, @ < Calt —s|' 2 3.9)

hold for all S < s < u <t < T. Then there exists a unique (up to modification)
F-adapted process A : [S,T] — L,(%, R?) such that As = 0 and the following
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bounds hold for some constants K1, K, > 0:

A4 — Ay — Ag il @ < Kilt — s|'/2750 4+ Kol — 5|2, (s,1) €[S, T]<,
(3.10)

IES (A — Ay — As )l < Kalt — 51", (s,1) €[S, T (3.11)

Moreover, there exists a constant K depending only on €1, &2, d such that A satisfies
the bound

1A — Asllz,@ < KpCilt = s|'/2751 + KpCylt — s|'T%2, (s,1) €[S, T1.
(3.12)

The final statement of this section is new. It provides bounds on | As — A/|lL, )
with the correct dependence on p: namely these bounds are of order ,/p, rather than
p as in (3.12). This will be crucial for the proof of Theorem 2.1; in particular, this
would allow to extend the corresponding Davie bound [9, Proposition 2.1] to the case
of fractional Brownian motion. The price to pay though is that the assumptions of
this theorem are more restrictive than the corresponding assumptions of [27, Theorem
2.4].

Theorem3.3 Fix 0 < S < T < 1. Let (As)ies. ] be an F-adapted process with
values in RY. For (s, 1) € [S, T1< we will write As s := A; — As. Let p > 2. Suppose
that for somem > 2, e1 > 0, &2 > 0, e3 > 0, and Cy1, Cp, C3 > 0 the bounds

I As 1L pm) < Cilt —s]'/2He (3.13)
IES Ay s — B Au sl @) < Cilu — s|M/mter (3.14)
IE As iz, @ < Calt — 5| (3.15)
| BT Aus = E*Au)®1] () < Calu = sllt = 51 (3.16)

hold for all S < s < u <t < T. Then there exist a universal constant K =
K (d, €2, e3) > 0 which does not depend on p, Cj, such that

1A — AllL,@ < CaKlr — 52 + K /p Cy 2| — s V/2F52 (3.17)

Remark 3.4 Note that the right-hand side of bound (3.17) does not depend on Cj.

Remark 3.5 Let us recall that the proof of stochastic sewing lemma in [27] requires
to apply the BDG inequality infinitely many times but each time to a discrete-time
martingale, thus yielding a constant p in the right-hand side of bound (3.12). In our
proof we apply the BDG inequality only once, but to a continuous time martingale.
This allows to get a better constant (namely ,/p instead of p), since the constant in
the BDG inequality for the continuous-time martingales is better than in the BDG
inequality for general martingales.
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Proof of Theorem 3.3 This proof is inspired by the ideas of [3, proof of Proposition
3.2] and [8, proof of Theorem 4.3]. For the sake of brevity, in this proof we will
wrjte L, fpr L,().Fixs,t € [S,T]<and fori € {1, ..., d} consider a martingale
= (M})rels.i), Where
M =FE[AL] relst].
We will frequently use the following inequality. For s < u < v <t one has

My = Myl < |4, |+ [EYA, |+ [E'AL, — EVAL . (3.18)

We begin by observing that

d
AL, @ < Z 1AL Nl = Y IM] L@
i=1 i=1

IA
&

1ML, + Z 1M] — M|,
i=1

d
Z (3.19)

I
M& )

1

The first term in (3.19) is easy to bound. By assumption (3.15) we have
I = |E A L@ < Calt — s (3.20)

To estimate Ié we first observe that for each i = 1,...,d the martingale M is
continuous. Indeed, for any s < u < v <t we have using (3.18), (3.13), and (3.14)

IM, — M}, <201A% Iz, + IE“ AL, — EY AL .
<3Ci|u — v|'/mtern,

m

Therefore, the Kolmogorov continuity theorem implies that the martingale M’ is con-
tinuous. Hence, its quadratic variation [M'] equals its predictable quadratic variation
(M) [24, Theorem 1.4.52]. Thus, applying a version of the Burkholder—Davis—Gundy
inequality with a precise bound on the constant [7, Proposition 4.2], we get that there
exists a universal constant N > 0 such that

1/2

A (3.21)

1M} — M|, < NJ/pIIM

Forn e N, j € {l1,...,n} put t’? = 5 + (¢ — s)j/n. Then, it follows from [23,
Theorem 2] that Z" (I)Et/ [(M; ’,1 -M ’l," )21 convergesto (M'), in L(2). Inparticular,

a subsequence indexed over nk converges almost surely. Therefore, applying Fatou’s

@ Springer



Approximation of SDEs: a stochastic sewing approach 989

lemma, Minkowski’s inequality, (3.18) and using the assumptions of the theorem, we
deduce

ng—1

‘ o )
M = H lim B (M, — M, )?
1< >t“L”/2 k—00 Z ( ’jf—l [./'A)

Lpp

ng—1

. 0 i 2
=t I oy M0

ml . ne g oo
<3 lim Z 2.A" 2 +|EY (EY Al — Rl A 2
<3 Jim O( 1A g 120 + B (B Ay o)
j= :
ni—1
< lim 6CIT'* %10, % 43 lim Cs|t —s|' %30, ' D =
k— 00 k— 00 P—
iz

< NGC3|t — s+,

Substituting this into (3.21) and combining this with (3.19) and (3.20), we obtain
3.17). O

3.3 Some useful estimates

In this section we establish a number of useful technical bounds related to Gaussian
kernels. Their proofs are mostly standard, however we were not able to find them in
the literature. Therefore for the sake of completeness, we provide the proofs of these
results in the “Appendix A”.

Fix an arbitrary H € (0, 1). Define

c(s,t):=vCH) 1t —s/f, 0<s<r<l.

Let p;, t > 0, be the density of a d-dimensional vector with independent Gaussian
components each of mean zero and variance ¢:

1 X d
pi(x) = W exp(—j), x € R%. (3.22)

For a measurable function f: R? — R we write P; f := p; % f, and occasionally we
denote by pg the Dirac delta function.

Our first statement provides a number of technical bounds related to the fractional
Brownian motion. Its proof is placed in the “Appendix A”.

Proposition 3.6 Let p > 1. The process BY has the following properties:

() 1B — B, = NIt — s\, forall0 <s <t <1, with N = N(p,d, H);
(i) forall0 <s <u <t <1,i =1,...,d, the random variable IE“BtH’l — IE”BIH’I
is independent of F*; furthermore, this random variable is Gaussian with mean Q
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and variance

E(E B —B“BF) = (s, 1) — 2 (u, 1) = v(s, u, 1); (3.23)
(i) B f(B) = P f(ESBH), forall0 <s <1 <1;

1v) |c2(s,t) — c2(s,u)| < Nt —ullt — s>~ forall 0 < s < u < t such that
[t —u| <|u—s|, with N =N(H),

) ||ESBtH - ESB,f’HLP(Q) < Nt —ullt —s|"=1 forall 0 < s < u <t such that
|t —u| <lu—s|,withN =N(p,d, H);

The next statement gives the heat kernel bounds which are necessary for the proofs
of the main results. Its proof is also placed in the “Appendix A”. Recall the definition
of the function v in (3.23).

Proposition 3.7 Let f € C% o < 1 and B € [0, 1]. The following hold:
(1) There exists N = N(d, a, B) such that

@=p)n0
IP: fllesay < Nt ™2 | fll oo ey

forallt € (0, 1].
(i1) Forall 5 € (0, 1] with § > % — g there exists N = N(d, a, B, §) such that
a_B_
IPLf = Psfllergay < NI llgoays 35700 = s,

forall0 <s <t <1.

(iii) Forall H € (0, 1), there exists N = N(d, o, B, H) such that

1 _p-1

1Py f = Perguny fllcs ey < NILf llcaqray@ — $)2 (¢ — u) HE@F=220,
forall0 <s <u <t<1.

(iv) Forall H € (0, 1), p > 2, there exists N = N(d, a, H, p) such that

1 _1
P2 f ) = P f & + Ol @ < Nl flice w — )2t — u)H*= 20,

forall x € RY0<s <u<t<1andall random vectors & whose components
are independent, N'(0, v(s, u, t)) random variables.

Our next statement relates to the properties of Holder norms. Its proof can be found
in “Appendix A”.

Proposition3.8 Ler o € R, f € C*(RY, RK), § € [0, 1]. Then there exists N =
N(a, 8, d, k) such that for any x € R¢

Ifx+2) = fOllga-s < NIx|*[l flica.

Finally, we will also need the following integral bounds. They follow immediately
from a direct calculation.
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Proposition3.9 (i) Leta,b > —1,t > 0. Then for some N = N (a, b) one has
t
/ (t — 1)t dr = Nt (3.24)
0
(i) Leta > —2,b < 1,t > 0. Then for some N = N(a, b) one has

t
)/ (t — 1)@t = 1ydr| = N1, (3.25)
0

3.4 Girsanov theorem for fractional Brownian motion

One of the tools which are important for the proof of Theorem 2.1 is the Girsanov
theorem for fractional Brownian motion [12, Theorem 4.9], [32, Theorem 2]. We will
frequently use the following technical corollary of this theorem. For the convenience
of the reader we put its proof into “Appendix B”.

Proposition 3.10 Ler u: Q x [0, 1] — R¥ be an F—adapted process such that with a
constant M > 0 we have

lull Lo,y < M, (3.26)

almost surely. Further, assume that one of the following holds:
(i) H<1/2;

or

(i) H > 1/2 and there exists a random variable & such that

1 t H—-1/2, _
/ ( (/)" =2 uy — us ds)2 dr <& (3.27)
0 0

(t — S)H+1/2

and E exp(A§) < oo for any A > 0.

Then there exists a probability measure P which is equivalent to P such that the process
BH .= BH 4 fo us ds is a fractional Brownain motion with Hurst parameter H under
P. Furthermore for any A > 0 we have
dP\* AN M? if H e (0,1/2
E(_N) _ Jexp( . 2) if ! € (0,1/2] . (3.28)
dP exp(A"NM")E[exp(ANE)] ifH € (1/2,1)

where N = N(H).
In order to simplify the calculation of the integral in (3.27), we provide the following

technical but useful lemma. Since the proof is purely technical, we put its proof in the
“Appendix B”.
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Lemma3.11 Let H € (1/2,1) andlet p € (H — 1/2, 1]. Then there exists a constant
N = N(H, p), such that for any function f € C*([0, 11, R?) and any n € N one has

Lot @/ 2 e = fawl )2 )
/0 (/0 (1 —s)H+1/2 ds) dr < N[fl¢s- (3.29)
1 t H—1/2| ¢ _
(t/s) lfi = fsl \2 ,
/0 (./0 (t — s)HT1/2 ‘“) dt < NIf1co- (3.30)

4 Additive fractional noise

In this section we provide the proof of Theorem 2.1. We follow the strategy outlined on
Sect. 3.1: In Sects. 4.1 and 4.2 we prove the quadrature bound and the regularization
bound, respectively. Based on these bounds, the proof of the theorem is placed in
Sect. 4.3.

4.1 Quadrature estimates

The goal of this subsection is to prove the quadrature bound (4.7). The proof consists of

two steps. First, in Lemma 4.1 we prove this bound for the case of fractional Brownian

motion; then we extend this result to the process X by applying the Girsanov theorem.
Recall the definition of functions «;, in (1.5) and y in (2.4).

Lemmad4.1 Let H € (0,1), « € [0, 1], p > 0, and take ¢ € (0, 1/2]. Then for all
felC*0<s<t=<1,neN, onehasthe bound

with some N = N(p,d,a, e, H).

t
/ (F(BH) - f(Bg(,)))drHL o = M leon™ @2y 2
N 4

Proof 1Tt suffices to prove the bound for p > 2. Define for0 <s <t <1

t
Asq =B / (f B = fBE )dr.
N
Then, clearly, forany 0 <s <u <t <1
(SAs,u,t L= As,t - As,u - Au,t

; 1
_ / (fBHy — fBH ) dr — E" / (B = f (B dr.

Let us check that all the conditions of the stochastic sewing lemma (Proposition 3.2)
are satisfied. Note that
E*8Aq ., =0,
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and so condition (3.9) trivially holds, with C, = 0. Toestablish (3.8),lets € [k/n, (k+
1)/n) for some k € {0, ..., n — 1}. Suppose first that ¢ € [(k + 4)/n, 1]. We write

(k+4)/n '
Al = ( / 4 /( VI (fBI) = FBE))ldr = I+ L. (42)

k+4)/n

The bound for I is straightforward: by conditional Jensen’s inequality, the defini-
tion of C* norm, and Proposition 3.6 (i) we have

(k+4)/n B B
I, @ = / £ (B,") = f(By, ;) L, dr
N
S NI flleen™ 7" < N fllean™*e)r — s|1/272, (4.3)

where the last inequality follows from the fact that n=! < |r — s|.
Now let us estimate I5. Using Proposition 3.6 (iii), we derive

t
b 5/ Pz £ B BT) = Pezs o, f (B B dr
(k+4)/n

t
* / 1Py sonn S BB = Py ooy S EBE )1 dr
(k4)/n

=:p1 + In. “4.4)
To bound 1,1, we apply Proposition 3.7 (ii) with § = 0, § = 1 and Proposition 3.6
@iv). We get
' 2 2 2
121z, < NIIfIIca/ (s, 7) = (5, 4en (1)) (s, ke () dr
(k+4)/n

t
=Nl [l = s ey
(k+4)/n

t
SNIIfIICun_lf Ir — s~ H gy
N

< N|flican™ |t — 5|, (4.5)

To deal with 155, we use Proposition 3.7 (i) with 8 = 1 and Proposition 3.6 (v). We
deduce

t
12l @ = NS lles /k 4 IE"B;" IEJng(r)||Lp<9)c""1(s, Kkn(r)) dr
(k+4)/n
t
= N||f||ca/ ol — s|H-1)p — g7 HA=0) g,
(k+4)/n
< N|flican™ |t — s|*H, 46)
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where in the second inequality we have also used that k,, (r) —s > (r—s)/2. Combining
(4.5) and (4.6), and taking again into account that n~!' < |r — 5|, we get

120z, @) < NIflleen™ ¢t — s+,
Recalling (4.3), we finally conclude
sl @) < NI fllcen™ e — 5| 1/2FE.

It remains to show the same bound for ¢t € (s, (k + 4)/n]. However this is almost
straightforward. We write

t
lAsillz, @ = / If(B) — f(B;Z(r))”L,,(Q) dr
s
< N[ fllcan "1t —s] < N|| fllan™ |t — 5|/>F2,
where the last inequality uses that in this case |t — s| < 4n~'. Thus, (3.8) holds, with

Ci:= N| fllecan™ VT8, &1 :=¢.
Thus all the conditions of the stochastic sewing lemma are satisfied. The process

t
dvi= [0 = B ar
0
is also F-adapted, satisfies (3.11) trivially (the left-hand side is 0), and
1A — Ay — Agillz,@ < I fllcolt = s] < Njt —s]'/2+,

which shows that it also satisfies (3.10). Therefore by uniqueness A; = A[. The bound
(3.12) then yields precisely (4.1). O

Lemma4.2 LetH € (0, 1), € [0, 1]suchthata > 1—1/2H), p > 0,& € (0, 1/2].
Let b € C* and X" be the solution of (1.4). Then forall f € C*,0 <s <1t <1,
n € N, one has the bound

with some N = N(||b||¢c«, p,d,a, e, H).

t
/ (FXM) — f(X';n(r)))drHL o = NS leslt =517 @)

Proof Without loss of generality, we assume o < 1. Let

t
Y (t) = /O b(X" ) dt.

Let us apply the Girsanov theorem (Theorem 3.10) to the function u(t) = b(X I’(‘n (t)).
First let us check that all the conditions of this theorem hold.
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First, we obviously have |u(z)| < ||b||co, and thus (3.26) holds with M = ||b]|co.

Second, let us check condition (3.27) in the case H > 1/2. Fix A > 0 and small
6 > O such that o(H — §) > H — 1/2; such § exists thanks to the assumption o >
1—1/(2H). We apply Lemma 3.11 for the function f := b(X") and p := «(H — ).
We have

/1</t (I/S)H_l/2|b(x,r<ln(,)) b(Xn (s))| )zdt
ds
0 0

(t — s)H+1/2

< NIBX") -

= NIbl1Z.[X"1%s

< NIIbIG (16125 + [B712 ) = &

Therefore,
Ee* < N(||bll¢e, o, 8, H, L) < 00, (4.8)

where we used the fact that the Holder constant [ B len-s satisfies E exp(A[B H2 - s)
< N for any A > 0. Thus, condition (3.27) is satisfied. Hence all the condltlons of
Theorem 3.10 hold. Thus, there exists a probability measure I’ equivalent to P’ such
glat the process BH .= BH 4 Y™ is a fractional H-Brownian motion on [0, 1] under
P.

Now we can derive the desired bound (4.7). We have

; (ra = rx ) drl’

_ P pd]P’]

[ (rom = o) arl %
< (EF / (raxm = rxa ) dr\zp)l/z(Eﬁ[%T)l/z
(

:(Eﬁ»/ f(BH+x0)_f(BK (r)+x0)> ‘ )1/2<EJP’%)1/2

2”)1/2(1@%)1/2. 4.9)

1

- (EP / (f(B,H +xp)— fBY —|—x6’)) dr

Taking into account (4.8), we deduce by Theorem 3.10 that
dpP
E¥—~ < N(Ibllce, @, 8, H, 1).
i (Iblie )

Hence, using (4.1), we can continue (4.9) in the following way:

t
p
(f(Xf) — f(xg(,))) dr\ < N fllgon™PT@FE | — P24,
s
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which implies the statement of the theorem. O

4.2 Aregularization lemma

The goal of this subsection is to establish the regularization bound (4.26). Its proof
consists of a number of steps. First, in Lemma 4.3 we derive an extension of the
corresponding bound of Davie [9, Proposition 2.1] for the fractional Brownian motion
case. It is important that the right-hand side of this bound depends on p as ,/p (rather
than p); this will be crucial later in the proof of Lemma 4.6 and Theorem 2.1. Then in
Lemma 4.6 we obtain the pathwise version of this lemma and extend it to a wider class
of processes (fractional Brownian motion with drift instead of a fractional Brownian
motion). Finally, in Lemma 4.7 we obtain the desired regularization bound.

Lemma4d.3 Let H € (0,1), « € (—1/(2H),0]. Let f € C. Then there exists a
constant N = N(d, a, H) such that for any p > 2, s,t € [0, 1] we have

t
[ rmihar|, <Nl - e, (4.10)

Remark 4.4 Note that the right—hand side of bound (4.10) depends only on the norm
of f in C* and does not depend on the norm of f in other Holder spaces.

Proof of Lemma 4.3 Fix p > 2. We will apply Theorem 3.3 to the process

t
A :=/ f(BMydr, teo,1].
0

As usual, we write A, := A; — A;. Let us check that all the conditions of that
theorem hold with m = 4
It is very easy to see that

IAs. L s = I fllcolt — sl

Thus (3.13) holds. By Proposition 3.6 (iii) and Proposition 3.7 (i) we have for some
N1 = Ni1(d, a, H) (recall that by assumptions o < 0)

t
|ES Ay | < / [Py f (BB dr < Nyl fllee(t — )P @.11)
N
Hence

1B Ag il @) < Nill fllee(t — s)P*!

and condition (3.15) is met. We want to stress here that the constant N here does not
depend on p (this happens thanks to the a.s. bound (4.11); it will be crucial later in
the proof)
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Thus, it remains to check conditions (3.14) and (3.16). Fix0 < s <u <t < 1.
Using Proposition 3.6 (iii), we get

t
EsAu,t - I['Eu~'4u,t = / (Pcz(s,r)f(EsB;{_I) - Pcz(u,r)f(EuBrH)) dr
u

t
u

=f (Poagpy f (BB = Po, ) f(B“B)) dr

t
+/ (Pogspy f(E“BH) — Pog, ,y f(E“BI)) dr

u

=1+ L. (4.12)

Note that by Proposition 3.6 (ii), the random vector E* B/ — ES B! is independent
of F*. Taking this into account and applying the conditional Minkowski inequality,
we get

1 t 1
1 N
(Esulr‘)“ 5/ (]ES[PCz(s,,)f(IESBrH) — Pon f(EBM)] )“dr
u
t
§f ¢ (E*BMydr, (4.13)
u

where forx € RY, r € [u, t] we denoted
8r(x) := [P ) f(X) = P f(x + E“Bff — E*BM)|| 1,0

By Proposition 3.6 (ii), the random vector E“BH — E* B is Gaussian and consists
of d independent components with each component of mean 0 and variance v(s, u, t)
(recall its definition in (3.23)). Hence Proposition 3.7 (iv) yields now for some Ny =
No(d,o, H)and all x € R?, r € [u, t]

¢ (X) < Nall fllce u — 5)2 (r — )3

Substituting this into (4.13), we finally get

1

1 o ]
(Ex|l1|4)4 S1\72||f||ca(u—s)7/ r —uw)He=% gr
u

< N3ll flle(u — )3 (¢ — w)He+2, @.14)

for some N3 = N3(d, o, H) where we used that, by assumptions, Hoe — 1/2 > —1.

Similarly, using Proposition 3.7 (iii) with § = 0, we get for some Ny =
N4(d, a, H)

t
L] < N\ fllge (u — sﬁ/ (r — )2 dr < Ny|| fllce (u — $)2 (1 — w)H*+2,
u

(4.15)
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where again we used that, by assumptions, Ho — 1/2 > —1. We stress that both N3,
N4 do not depend on p.
Now to verify (3.14), we note that by (4.12), (4.14),(4.15), we have
I1E Ay — E" AuslliLge) < MilliLge + 120y
1
< (EIE*IL1M)* + I BllLye
1
< (N3 + Ny flice (u —5)2. (4.16)
Thus, condition (3.14) holds.
In a similar manner we check (3.16). We have
E[|E Ay, — BY A, 2] < 2E° |1 2 4 2B° | L2 < 2(B* |1 %)/ + 2E5 | 2
< 2(N3 + NI f NG e — s)(t — u)> et

Thus,

| E U Aus = E" AP, ) < 20NF + NI G (e — )t — )t

and the constant 2(N32 + N, Z) does not depend on p. Therefore condition (3.16) holds.
Thus all the conditions of Theorem 3.3 hold. The statement of the theorem follows
now from (3.17). O

To establish the regularization bound we need the following simple corollary of the
above lemma.

Corollary4.5 Let H € (0,1),8 € (0,1, « — 8 € (—=1/(2H),0]. Let f € C*. Then
there exists a constant N = N(d, a, H, §) such that for any p > 2, s,t € [0, 1],
x,y € RY we have

t
[ B v = B ynar], < NI lee - MOy,
s p
4.17)

Proof Fix x,y € RY. Consider a function g(z) := f(z +x) — f(z + y), z € R<.
Then, by Lemma 4.3

t
- (BH)dr‘
Ly () H/S 845 Ly(Q)

< NJpligligest — )"+

t
[ o~ gt v arl

The corollary follows now immediately from Proposition 3.8. O

The next lemma provides a pathwise version of bound (4.17). It also allows to
replace fractional Brownian motion by fractional Brownian motion with a drift.
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Approximation of SDEs: a stochastic sewing approach 999

Lemma4.6 Let H € (0,1), « > 1 —1/2H), a € [0,1], f € C*. Let ¥: Q X
[0, 1] = R? be an F-adapted process such that \y is deterministic and for some
R>0

¥ llergo,rey < R, a.s. (4.18)
Suppose that for some p > H + 1/2 we have for any . > 0
Eexp (MY 113, (0.1 pe)) = GR) < o0. (4.19)

Then for any M > 0, ¢ > 0, &1 > 0 there exists a constant N =
Nd,a,H, ¢, e1,G, R, M) and a random variable & finite almost everywhere such
that for any s, t € [0, 1], x,y € R, |x]|, |y] < M we have

t
/ (FBH 4y, +x) — FBY + v + y))dr

<E|fllga(t — )@ DHI=E | —y (4.20)
and
Eexp(£2°1) < N < oo. 4.21)

Proof First we consider the case ¢ = 0. Fix ¢, ¢; > 0. By the fundamental theorem
of calculus we observe that for any x, y € RL,O<s<t<1

t
/ (FBH +x) = f(BT +y)dr
S ' ,
= (x—y)-/ / V(B! 4+60x + (1 —0)y)drdo. (4.22)
0 Js
Consider the process
t
F(t,z2) ::/ V(B! +2)dr.
0

Take § > O such thatee — 1 — & > 1/(2H). By Lemma 4.3 and Corollary 4.5, there
exists N = Ni(«,d, H, ) such that forany p > 2, 5,1 € [0, 1], x,y € R4 we have

IF @, x) = F(s, )L, < I1F@x) — F(s, %)L, + 1F(s,x) = F(s, L,
< Ni/PIV fllgat ((t — s)H@DF 4 jx —y)%).

We stress that N1 does not depend on p. Taking into account that the process F is
continuous (because f € C*), we derive from the above bound and the Kolmogorov
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continuity theorem ( [26, Theorem 1.4.1]) that for any p large enough one has

|F(t,x) — F(s,y)|
Iy (t _ S)H(ozfl)Jrlfs + |x _

sup

x,yeR? |x|,|y|<
s5,t€[0,1]

E =:&||fllce <00 a.s., (4.23)

and ||§||Lp(g2) < NN/p, where N = N(a,d, H,§, e, M). Since N and N; do not
depend on p, we see that by the Stirling formula

%-n(Z £1) NN])n(Z Sl)nn(l £1/2)

Z <00 (4.24)

Eexp(£*~°') = Z

n=0

Therefore we obtain from (4.22) that for any x, y € RY, |x|, |y| < M we have

t
[0 - gt +marl

1
<|x—yl / [(F(t,0x + (1 — 0)y) — F(s,0x + (1 — 0)y))| d6
0
<&l fllea(t — s)A@DFI=E x _y). (4.25)

Now we consider the general case. Assume that the function i satisfies (4.19).
Then by Proposition 3.10, bound (3.30) and assumption (4.19) the process

By = B + Y — o
is a fractional Brownian motion with Hurst parameter H under some probability

measure P equivalent to P. This yields from (4.25) (we apply this bound with M + ||
in place of M)

B + 4, +x) — fBE + ¢, +y)dr

Hotx+90) = fBE + v+ yo) dr|

= nllflicelx =yl

where 7 is a random variable with EP exp(7>~¢1) < oo. Note that we have used here
our assumption that v is non-random. The latter implies that for any & > ¢

. dP
EF exp(n>~2 :Ep[ex =& —~]
p(n° ™) PO o
- 1/2 dP\1/2
< (EFexpn®™) " (75%)
= (E” exp2n®™) =
~ _ 1/2
< (EP exp(21° 82)) e"KET exp(N IV ligo 10,1 0))
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Approximation of SDEs: a stochastic sewing approach 1001

where the last inequality follows from (3.28) and (3.30). This concludes the proof of
the theorem. O

Now we are ready to present the main result of this subsection, the regularization
lemma.

Lemma4.7 LetH € (0,1),0 >1—1/Q2H),x €[0,1], p>2, f €C% &,&1 > 0.
Lett € (H(1—a), 1). Let, ¥ : 2 x [0, 1] = R be F—adapted processes satisfying
condition (4.18). Assume that  satisfies additionally (4.19) for some p > H 4+ 1/2,
p € [0, 1]. Suppose that o and @o are deterministic.

Then there exists a constant N = N(H, «, p,d, t, G, R, €, &1) such that for any
L > 0, and any s, t € [0, 1] we have

t
/ (FBH + o) — FBH + ) dr

Ly(S2)
< NLIIf et = )T @D (log — yisli @) + 1o — ¥ler @ lL, @) — 9)7)
+ Nl flicolt — slexp(—L27¢1). (4.26)

Proof We begin with assuming further that f € COO(IRd, Rd). Fix S, T € [0, 1]<,
€1 > 0. Choose any ¢ > 0 small enough such that

Ha—-1)—e¢+17>0. (4.27)

Let us apply the deterministic sewing lemma (Proposition 3.1) to the process

t
Agt :=f (FBE vy + o5 —v5) — FBE vy dr, .1 €[S, T)<.

Let us check that all the conditions of the above lemma are satisfied.

First, the process A is clearly continuous, since f is bounded. Then, using
Lemma 4.6 with M := 4R, we derive that for any S < s < u < T there exists a ran-
dom variable & with Eexp(éz_gl) <N =N,a, H,¢&¢1,G,|pol, |Yol, R) < 00
such that

|5As,u,t| =

t
/ (B + 4y, +ou — ) — FBE + v, + o5 — ¥y dr

<ENflleel (W — @) — (s — @) (2 — s) @ DFI=e
<&l fllcalt — @ler sy (¢ — s)f @ DH1=etT,

Since, by (4.27), H(a — 1) + 1 — e + © > 1, we see that condition (3.6) is satisfied
with C = &|| fllce[¥ — @ler(qs,77)- Thus, all the conditions of Proposition 3.1 hold.
By setting now

- t
A, = / (FBY + ) — FBY 4y, dr,
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we see thatfor S <s <t <T

A, — A — Agsl =

t
[ B 00— 5B o - |

= ||f||cl[‘ﬁ - go]CT([S,T])“ — S|1+f
<|Ifllei ¥ — plerqs.rplt — s @ DH1—edr,

Thus, the process A satisfies (3.7) and therefore coincides with A. Proposition 3.1
implies now that forany S <s <t <T

t
f (FBH + ) — f(BY +y,))dr

< |Ags| + NE| flice [ — @ler syt — )@ DFI=etT
< N&| flice(t — S)H(a71)+175(|w - ¢|C°([S,T]) + [ —elerqs, )t — S)t)’

where the bound on |Ay ;| follows again from Lemma 4.6. By putting in the above
bound s = S and ¢+ = T and using that [ — ¢lcoqs. ) < |¥s — ¢s| + [¥ —
(P]CT([S,T])(T — S)r, we obtain for S, T e [O, 1]5

[ Gt o - s v vnar
< NE| flica (T — )PV (jyrg — 5] + [ — @ler s, (T — 8)7).
On the other hand, we have the following trivial bound.
T
\/S (FBI +90) = fBE +4)dr| <20 flleoIT = S1.

Therefore,

T
|[ G o0 = raf v vonar

Lp(S2)

T
< [test [ 8! w00 - £ v

Ly(Q)

T
H H
s [ @I o - vvnar,

S LN| fllee (T — HHDH (jlyrg — g5l + 1Y — leras. i@ (T — $)Y)
+2(PE = )1 £lleolT — S|

By Chebyshev inequality and (4.21), we finally get (4.26) for the case of smooth f.

Now we are ready to remove the extra assumption on the smoothness of f. Let us
set f, = P1/nf € C*. By applying the statement of the lemma to f,, and using that
I fulles < I1fllcs for B = a, 0 we get
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Approximation of SDEs: a stochastic sewing approach 1003

| f(fnwﬁ +0r) = fa (B + ) dr Hmm

< NL| fliga(t = )7 @D (g — Yl @) + 1o = Wer sapllL, @ — )7
+ NIl fligolt — sl exp(—L2~¢). (4.28)

If > 0, then f,(x) — f(x) forall x € R and the claim follows by Fatou’s lemma.
So we only have to consider the case o = 0. Clearly, it suffices to show that for each
r > 0, almost surely

(fu(B + ) — fu(BI +4)) — (FBI + ) — F(BE +v,)),

as n — oo. Notice that almost surely f, (BrH )= f (BrH ) as n — 00, since the law
of BrH is absolutely continuous (for r > 0). Moreover, since « = 0, we have by
assumption that H < 1/2. By Proposition 3.10 (recall that ¢ satisfies (4.18), therefore
is Lipschitz) there exists a neasure equivalent to I’ under which B 4 ¢ is a fractional
brownian motion. Consequently, for all » > 0, almost surely

fuBE +9.) — f(BI +¢,),

as n — oo. With the same reasoning we obtain that almost surely f, (B + v,) —
f(BH + 4,). The lemma is now proved. i

4.3 Proof of Theorem 2.1

Proof Without loss of generality we assume o # 1. Let us denote

t t
Yy = xo —I—/ b(X,)dr, Y :=x{ —i—/ b(X,’zn(r))dr, t €0, 1].
0 0
Fix ¢ > 0 such that
1
e < E—I—H(a—l). (4.29)

By assumption (2.5) such ¢ exists. Fix now large enough p > 2 such that

d/p < ¢e/2. (4.30)
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Fix 0 < S < T < 1. Then, taking into account (4.7), forany S <s <t < T we
have

(Y — ) — (W =¥ L,
t
/ (b(X,) = bXS ) dr |

Ly()

=

t
[ woe ~boxar]

+ Nt — s|V/?Tep7rte, (4.31)
L, ($2)

Let M > 1 be a parameter to be fixed later. We wish to apply Lemma 4.7 with "
in place of ¢, % + H(ax — 1) — ¢ in place of ¢, and 7 := 1/2 + ¢/2. Let us check
that all the conditions of this lemma are satisfied. First, we note that by (4.29) we
have % + H(a — 1) — ¢ > 0, which is required by the assumptions of the lemma.
Second, we note that 1/2 + ¢/2 > H (1 — «) thanks to (2.5), thus this choice of 7 is
allowed. Next, it is clear that 9 and ¥ are deterministic. Further, since the function
b is bounded, we see ¥ and ¢" satisfy (4.18). Finally, let us verify that ¢ satisfies
(4.19). If H < 1/2, this condition holds automatically thanks to the boundedness of
b.If H > 1/2 then pick H' € (0, H) such that

1
aH > H — 3 (4.32)
Note that such H’ exists thanks to assumption (2.5). Then, by definition of v, we
clearly have

[Wlerranr < Ix0l + [1Dllco 4+ [6(X)]canr < Ix0l + 1Dllco + 1b1Igo + [BH]ZH/-

Therefore for any A > 0 we have

Ay 2 ,
Wlersan' < N(Ixol. 1bllco) E exp([B712%,) < oc.

Ee CH/

By taking p := 1 + o H' and recalling (4.32), we see that p > H + 1/2 and thus
condition (4.19) holds. Therefore all conditions of Lemma 4.7 are met. Applying this
lemma, we get

t
[ @ - boxar

Ly(€2)

1
| [ et v0 - b5l vy

L,(2)
< MNIt = s*llys — W2l @

+ MN|t — s|'32|| [y — v levarengsplL,@ + N exp(—M>~0)|r — s
< MNIt = 5" llys — W2z, @

+MNI =P =y e )+ N exp(=M>)]t — ],

[s
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where the last inequality follows from the Kolmogorov continuity theorem and (4.30).
Using thisin (4.31), dividing by |¢ —s|'/?%# and taking supremumover § <s <t < T,
we get for some N1 > 1 independent of M, n
n
Iy — ﬂ%}/m)[sﬂ
< MNyIIYs = VS, @ + MNT = SIVZE2 0y — e |
+ Nin 77 4 Njexp(—M?90). (4.33)

S,T]

Fix now m to be the smallest integer so that Ny Mm~'/27¢/2 < 1/2 (we stress that m
does not depend on n). One gets from (4.33)

IV = ¥ 02 15 541y = 2NV = Y5z, @

+2N1n 7t £ 2N| exp(—M?7%0), (4.34)
and thus
I¥s+1/m = Vst /mlL @ < 2MN1l1Ys — ¥l @
+2N1n"V T £ 2N exp(—M>~%).
Starting from S = 0 and applying the above bound k times, k = 1, ..., m, one can
conclude

1Wkjm = V2 = CHND (10 = ¥
+ 2NV 2Ny exp(— M2 )
= @MNY" (1x0 = 3|

LN £ 2N, exp(—MZ_SO)).
Substituting back into (4.34), we get

_ n _ n
W=V gy eegoy =m S0P WV =V g m ey

< @NIMY"™ (1x0 = xf1 + Nin ™7+ Ny exp(=M270)).
(4.35)

It follows from the definition of m that m < 2N 12M 2=¢_ At this point we choose
&0 = ¢/2 and note that for some universal constant N, one has

22— 1 2—¢/2
QN M)Y"™5 = g9 10g@NIM) — (ONFM = +5)log@NiM) < py) o3 M i
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Thus, we can continue (4.35) as follows.

N3M% ¢ log M
0y — W"ﬂ%/m(m’m <e™ o8

1
(|x0 — Xl + Nln—V“) + NiNa exp(—3 M), (4.36)
Fix now § > 0 and choose N4 = N4(§) such that for all M > 0 one has
exp(%M2_8/2) > N465—1N3M2—8 logM

It remains to notice that by choosing M > 1 such that

2—¢
eN3M logM _ nB’

one has

_1pp2-¢/2 _
e M < Nn I

Substituting back to (4.36) and since X — X" = ¢ — ¢", we arrive to the required
bound (2.6). O

5 Malliavin calculus for the Euler-Maruyama scheme

In the multiplicative standard Brownian case, we first consider Euler-Maruyama
schemes without drift: for any y € R? define the process X" (y) by

dX}(y) =0 (X} () dB:, Xj=y. (.1)

This process will play a similar role as B! in the previous section. Similarly to the
proof of Lemma 4.1, we need sharp bounds on the conditional distribution of X 7
given F;, which can be obtained from bounds of the density of X #. A trivial induction
argument yields that for 7 > 0, X 7 indeed admits a density, but to our knowledge such
inductive argument can not be used to obtain useful quantitative information.

Remark 5.1 While the densities of Euler—-Maruyama approximations have been studied
in the literature, see e.g. [5,6,18], none of the available estimates suited well for our
purposes. In [18], under less regularity assumption on o, L, bounds of the density
(but not its derivatives) are derived. In [5,6], smoothness of the density is obtained
even in a hypoelliptic setting, but without sharp control on the short time behaviour
of the norms.

Theorem 5.2 Let o satisfy (2.8), X" be the solution of (5.1), and let G € C'. Then for
allt =1/n,2/n,...,1andk =1, ...,d one has the bound

IEkG(X)| < N|[Gllcot "/ + N||Gllcre™" (5.2)
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with some constant N = N(d, A, ||o||¢2) and ¢ = c¢(d, |lo||c2) > 0.

We will prove Theorem 5.2 via Malliavin calculus. In our discrete situation, of
course this could be translated to finite dimensional standard calculus, but we find it
more instructive to follow the basic terminology of [35], which we base on the lecture
notes [21].

5.1 Definitions

Define H = {h = (hj)i=1...n : h; € R?}, with the norm

.....

n

Rl = liw = lzfm’wz
H_l’l i _I’l il
i=1

i=1 k=1

One can obtain a scalar product from || - || g, which we denote by (-, -) . Let us also

denote Z = {1, ...,n} x {1, ..., d}. One can of course view H as a copy of]RI, with

a rescaled version of the usual £, norm. We denote by e(; i) the element of H whose

elements are zero apart from the i-th one, which is the k-th unit vector of RY. Set

AW iy = Wik/n — W(ki_l) In° Then for any R-valued random variable X of the form
X = F(AW(,',]() :(i,k) e,

where F is a differentiable function, with at most polynomially growing derivative,
the Malliavin derivative of X is defined as the H-valued random variable

9X = Y (I Xeiny = Y dinFAWj e : (.0 € Degp).
(i,k)eZ (i,k)eZ

For multidimensional random variables we define & coordinatewise. In the sequel
we also use the matrix norm on R?*? defined in the usual way M| :=
SUP,cRrd |x|=1 |Mx|. Recall that if M is positive semidefinite, then one has [|M| =
SUPyeRd, |x|=1 x*Mx. It follows that || - || is monotone increasing with respect to the
usual order < on the positive semidefinite matrices.

The following few properties are true in far larger generality, for the proofs we
refer to [21]. One easily sees that the derivative & satisfies the chain rule: namely, for
any differentiable G : R? — R, one has 2G(X) = VG(X) - ZX. The operator 7
is closable, and its closure will also be denoted by &, whose domain we denote by
W C Ly(R2). The adjoint of Z is denoted by §. One then has that the domain of § is
included in W(H) and the following identity holds:

1
Elsul® = Elullyy +E— 0 (ZfuNP]u). (5.3)
(i,k),(j,meT

@ Springer



1008 0. Butkovsky et al.

5.2 Stochastic difference equations

First let us remark that the Eq. (5.1) does not define an invertible stochastic flow:
indeed, forany t > 0, y — X 7 (y) may not even be one-to-one. Therefore in order to
invoke arguments from the Malliavin calculus for diffusion processes, we consider a
modified process equation that does define an invertible flow. Unfortunately, this new
process will not have a density, but its singular part (as well as its difference from the
original process) is exponentially small.

Take a smooth function ¢ : R — Rsuchthat|o(r)| < |r|forallr € R, o(r) = r for
7] < @llollcrd® ™", o(r) = 0for |r| > Q|lo|c1d®)~", and that satisfies |8¥o| < N
fork =0,...,3 withsome N = N(d, ||o||¢1). Define the recursion, for x € R? and
j=1L...,nk=1,...,d

d

X)) =X 0+ ) oM (X m)e(AWe). Ao =x.  (54)
=1

By our definition of o, for any j, (5.4) defines a diffeomorphism from R? to
RY by x — Xj(x). It is easy to see that its Jacobian J;(x) = (Jlr."’k(x)) =

d d
IR = 1@+ 3 T Y 00 (X )e(aW ] o) = id.
g=1 (=1

It is also clear that /" X’ Jk =0 for j < i, while for j > i we have the recursion

d d
7P} ) = ZPX 0+ 3 AXL ) 3 0™ (X )a@W |
q=1 =1
PP Xf = oM (Xi-1(0) 0 (AWim)-

From now on we will usually suppress the dependence on x in the notation. Save for
the initial conditions, the two recursions coincide for the matrix-valued processes J.
and Z; X.. Since the recursion is furthermore linear, j +— J j*] 2,;X; is constant in
time for j > i > 1. In particular,

I 25 = 37N (0" (Xm0 (AWam)) g et

or, with the notation J; ; = J; Jl._l,
DiXj = Jij (Ukm(Xifl)Q,(AW(i,m)))k)mzl """ d
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Let us now define the event Q@ C by
Q= {|AWip| = @loled®) ™" Vi k) e T)
as well as the (matrix-valued) random variables D; ; by
D;j=Ji,jo(Xi-1). (G

Clearly, on <2 one has D; i,j = Z;X;. Note that for fixed j, m one may view D
as an element of H, while for fixed i, j one may view D; ; as a d x d matrix. One
furthermore has the following exponential bound on Q.

Proposition 5.3 There exist N and ¢ > 0 depending only on d and || |1, one has
P(R2) >1— Ne .

Proof For each (i, k) € Z, since AW; x) is zero mean Gaussian with variance n1,
one has

P(o(AW(i4) # AW n) < P(IAWG 0] = @lollcid®)™") < N'e™"

with some N’ and ¢/ > 0 depending only ond and ||o || -1, by the standard properties of
the Gaussian distribution. Therefore, by the elementary inequality (1 —x)* > 1 —ax,
valid for all x € [0, 1] and « > 1, one has

PQ) > (1= (N'e™ " A1) = 1 = N'nde ™" > 1 — Ne~ /2",

m}

We now fix (j,k) € Z, G € C', and we aim to bound |EdxG(X;)| in terms of
t := j/n and ||G||o, and some additional exponentially small error term. To this end,
we define the Malliavin matrix .# € R¢*4

_ v.may.q
M™M= (D" D Z D}"'D},
(t v)eZl
with m,q = 1,...,d. As we will momentarily see (see (5.21)), .# is invertible.
Define
d
=) @ " e H
m=1

One then has by the chain rule that on Q, hG (X)) = (ZG(X)), Y)q. Therefore,

EdG (X)) = E(ZG(X)), Y i + EG(X)1g — E(ZG(X)),Y)ulg,
E(G(X),8Y) + EqG(X)1g — E(ZG(X)), V) nlg
= E(G(X;),8Y) + I + L. (5.6)
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Recalling (5.3), one has

1
ESYP <EIYIL +E— 3. (Z/v"@y). (5.7)
(i,q),(r,m)el

Theorem 5.2 will then follow easily once we have the appropriate moment bounds of
the objects above. Recall the notation t = j /n.

Lemma 5.4 Assume the above notations and let o satisfy (2.8). Then for any p > 0,
one has the bounds

E sup [[Ji;0)II” +E sup 1] @I” <N, (5.8)
i=1,...j 1<i<j
E sup [D;;(x)|” <N, (5.9)
i=1,...,j
Ell.# (x)|IP < Nt™P, (5.10)
up E sup [|Z;Y,(0)|P < Nt P, (5.11)

i=l1,..., Jj r=1,....j

for all x € R4, with some N = N(p, d, ., llolle2).

Proof As before, we omit the dependence on x € R? in order to ease the notation. We
first bound the moments of sup ; 11l Recall that we have the recursion

Ji=Ji1+Tjm), (5.12)
where the matrix I'; = (FI)Z t—1 18 given by
d
k
TP =" 0,0 (X, )W) = WE ), (5.13)
=1

By 1t6’s formula it follows that

t 1 t
o(Wf — an(t)) = f o (Wt — anm)dwf + E/ 0" (Wt — an(,))ds.
Kkn(t) fen (1)

Consequently, for j = 0,...,n we have that J; = Z;/,, where the matrix-valued
process Z; satisfies

d d
dZt - Z ZKn(l‘)At dt + Z ZKn([)BtedWZa ZO = Iv (514)
q=1 =1
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,,,,,,,,,,

K
A

d
1
5 2 940" Ko)WY = W ()
=1
l,q.k
By™" = 0,0 (X, )0 (W = W[ ().

Notice that there exists a constant N = N(|lo [|c1, lloll¢2) such that almost surely, for
all (, x) € [0, 1] x R4

d
1A+ 1B < N. (5.15)
=1

This bound combined with the fact that Z; satisfies (5.14) imply the bounds

Esup [|Z|” =N

<1
for all p > 0. Hence,

E sup [[J;II” <Esup|Z|” < N. (5.16)

j=l,..,n t<l
We now bound the moments of sup; || J;l II. By (5.12) we get
-1 —1 -1
Jj =U+Tjn) Jj_1 (5.17)

Recall that fort € [(j — 1)/n, j/n]

d

t t
r, =/ Asds+Z/ BLaw!,
G=)/n = JG-vym

and that by the definition of ¢ and (5.13), for all + € [0, T'], the matrix I + I'; is
invertible. Hence, by Itd’s formula, we have for ¢ € [(j — 1)/n, j/n]

d

13 1
(I+1)"! =1+/ A ds—i—Z/ Btaw!, (5.18)
(j—1)/n =1 JG=D/n
with
_ d
Ay =) A +T) ' BIU+T) ' Bl +T)™ = (I + T AU +T) 7,
=1
Bf =—(I+T)™'BiI+Ty)~".
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Moreover, by definition or g, almost surely, for all (¢, x) € [0, T'] x R4 one has

d
1A+ 1B < N. (5.19)
=1

By (5.17) and (5.18), for j = 1, ..., n we have that Jj_1 = Zj/n, where the matrix
valued process Z; is defined by

d
dZ; :A[ZKn(t) dl—i—ZBtzzkn(t)dWse, Z() =1.
=1

By this and the bounds (5.19) we have the bounds

Esup | Z||P <N
1<l

for all p > 0. Consequently,

E s 7707 < Bsup | Zi]1 < N, (5.20)
= n 1<

Finally, from (5.16) and (5.20) we obtain (5.8).

The bound (5.9) then immediately follows from (5.8), the definition (5.5), and the
boundedness of o.

Next, we show (5.10). On the set of positive definite matrices we have that on one
hand, matrix inversion is a convex mapping, and on the other hand, the function || - ||”
is a convex increasing mapping for p > 1. Itis also an elementary fact thatif B > A1,
then ||(ABA*)™ || < A7 1|[(AA™)~"||. One then writes

.

||=///“||f’=(—)pH(§Z 5 joGion][aje@n]) |

i=1

\.»—

J
—Z [i.jo (X 0)][Jijo(Xin]") 1P

ISR
<27l p}ZIIJi,}uzP
i=1

< APi7P sup ||J ||21’ (5.21)

Therefore (5.10) follows from (5.8)
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We now move to the proof of (5.11). First of all, notice that the above argument
yields

up E sup [[Z:&;)IP <N. (5.22)

i=1,..n j=l,..,n

for all p > 0. Indeed, the proof of this is identical to the proof of (5.16) since
(Z;X})j>; has the same dynamics as (J;);j>o and initial condition @ik/l’im =
okm (Xi—1)0' (AW ) which is bounded. Recall that

d
Yo=Y (@)
m=1

By Leibniz’s rule, foreachi, r € {0, ..,n}, Z;Y" isa R4 @ RY-valued random variable
given by

d d
DYy =Y (DDA Y D@ g (5.23)

m=1 m=1

We start with a bound for sup, [|Z; D, ;. By definition of D; ; we have that

DDy j = (2 I)I o (X)) + 732307 o (Xem1) + T30 (Do (X-1)),
(5.24)

where for A € (R9)®2, B € (R%)®3, the product AB or BA is an element of (R?)®3
that arises by considering B as a d x d matrix whose entries are elements of R?. We
estimate the term Z; J;. As before, we have that ; J; = 9; Zj;,, where Z is given by
(5.14). We have that &; Z, = 0 for ¢ < i /n while for ¢ > i/n the process %; Z, =: ;'
satisfies

d

Q’;i = (an(t)fl[ + Z,(”(;)@iA,> dr + Z (Qj(in(t)gf + ZK,,(Z)-@iBf> thg
=1
‘ d
Ll =Zipm Yy B, (5.25)
=1

By the chain rule and (5.22) it follows that for p > 0 there exists N =
N(llolic2, llelics. d, p) such that

d
sup E (sup 12 AP+ sup ||@,-Bf||”) <N (5.26)
i=1 n <1

..... =1 =1
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This combined with (5.16) shows that for the ‘free terms’ of (5.25) we have

i=l1,..., n

d
upE(wwam%AW+§}wW%m%@W)§N
<1

e=11=1
This, along with (5.15) and (5.16), implies that

sup E sup [|Z;JjlI” < sup E sup ||Zi||P§N. (5.27)
i=1 n =1,.

i noi/n<t<l

Next, by the chain rule we have
1752 37 Do (XD < 151177 1212 I lllo (K- D
By (5.16), (5.20), (5.27), and the boundedness of o, we see that

up E sup |J;(ZiJ Ho(X_)IP <N
=1 n

i=l1,..., n r=lI,..,

Finally, from (5.16), (5.20), the boundedness of Vo, and (5.22) we get

sup E sup |J;J7 (Zio(X—)|P < N.

i=l1,..., n  r=I,..n
Recalling (5.24), we obtain

up E sup 2D ;I7 <N, (5.28)
n

S
i=1

,,,,,

which combined with (5.10) gives

d
sup E sup | Z(@,-D;’j?)(%”)mk |” < Nit~P. (5.29)
i=l1,..., n  r=I,..n m=1 >
We proceed by obtaining a similar bound for the second term at the right hand side of
(5.23). First, let us derive a bound for %;.# . For each entry .#"™4 of the matrix .#

we have

n d
V.9 gy V.M v,m g V.4
(DM 7Dy + Dy @,Dg’j).

=1 v=1

@i///m’q =

1
n
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Then, notice that on fz, for £ > j we have Dy ; = 2y X; = 0. Hence, by taking into
account (5.9) and (5.28) we get

sup (E”_@i%mﬂ“P)I/P < N(%—FH(P(S’-\ZL))UP) < N(ﬁ +ne—cn/P) < N% = Nt.
i=l1,..., n
Summation over m, g gives
sup (E|Z.417)"" < N1 (5.30)
i=1,...,n

Therefore, we get

d
1D @ it~y | < NID, jlllat~ 12121

m=1

which by virtue of (5.9), (5.10), and (5.30) gives
d
El Y D ® Zi(a ™)™ P < NP
m=1

This combined with (5.29), by virtue of (5.23), proves (5.11). This finishes the proof.
O

5.3 Proof of Theorem 5.2
Proof Recalling that ¥; = 0 fori > j, we can write, using (5.9) and (5.10),
2 1 132 2 1
Y5 < B ( sup Dy jll-#~"I)* < N(j/mi™ < Ne™l,
o7 =l

One also has

1
E— Y. (Y'Y <*E sup | %Y |7 < N.

(i,9),(r.m)eT ir=1,..j

Therefore, by (5.7), we have the following bound on the main (first) term on the
right-hand side of (5.6)

IE(G (X)), 8Y)| < |Glleo(EI8Y[)'? < Ni™V2||Gl|co.
As for the other two terms, Proposition 5.3 immediately yields

il < NIIGllgre™",
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while for I, we can write

Ne_C”[]E<% i(@iG(Xj), Yi))z]l/z

|| <
i=1
J
1 1/6 1/6 1/6
<N ;Z _swp 1%,6(X)[%) (& swp1D3,1°) O 1LY
i=1,...j i=1,...j
< NIGlcre™".

Therefore, by (5.6), we obtain
IE8:G (X)) < N[ Gllgot™/? + N||Gllgre ",

and since on Q one has X; = )_(;?/n = )_(f, the bound (5.2) follows. O

6 Multiplicative Brownian noise
6.1 Quadrature estimates
Lemma6.1 Lery € RY, ¢ € (0,1/2), a € (0,1), p > 0. Suppose that o satisfies

(2.8) and that X" := X"(y) is the solution of (5.1). Then forall f € C*,0<s <t <
1, n € N, one has the bound

[ f (fED = FXL e dr], o) < NI fllean™ 2520 — 12401 (6.1)

with some N = N(a, p,d, &1, X, |lo]lc2).

Proof 1t clearly suffices to prove the bound for p > 2, and, as in [10], for f € C*°.
WeputforO<s <tr<T

t
=B [ (&N - PR ) dr.
S
Then, clearly, forany 0 <s <u <t <T
8As,u,t L= Avt - Av u — Au,t

= E / (fXD) = fXD ) dr — B / (f XM = X2 ) dr.

Let us check that all the conditions (3.8)-(3.9) of the stochastic sewing lemma are
satisfied. Note that
E*§A; ., =0,
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and so condition (3.9) trivially holds, with C, = 0. As for (3.8),lets € [k/n, (k+1)/n)
for some k € Ny. Suppose first that r € [(k 4+ 4)/n, 1]. We write

(k+4)/n t B _
|Asil =l + Ll = \(f +/( )Es(ﬂX’:) — [(XE,))dr

k+4)/n

For I, we write,

t
L =FE° /(.k+4)/ E&+D/n (EKn(r)f(X:l) — f(XZn(r))) dr.
n

Next, denote by py the density of a Gaussian vector in R¢ with covariance matrix
and let Py f = py * f (recall that for & > 0, we denote pg := pgs, where [ is the
d x d identity matrix). With this notation, we have

ky v v _ _ v
B f (in(m + 0 (X, ) (Wr = WkN))) = Poor®g. ) o—ka) S Xigy):

so with
glx) = g;l(x) = f(x) — PO'O'T(X)(V—K"(F))f(x)
we have
t —_—
I = ES/ EkFD/ngn xn ) dr (6.2)
(k+4)/n "

Moreover, notice that by (2.8) we have for a constant N = (||o[|¢c1, @)

lgllcarr = NIl fllce- (6.3)

Let us use the shorthand 8 = r — k,,(r) < n~L. We can then write

Peg(x) = Jga [ Pe(@ Pootx—0s W (f(x —2) — f(x —y —2))dydz
= Jud fwa Pe@ Poore—0s (V) fiy ¥ide f(x — 2 — 0y) dOdy dz
= ot Jpa 82 (Pe (@ Poote—0s ) fy ¥i f(x — 2 — 0y) dOdy dz. (6.4)

with summation over i implied. It is well known that
|0, pe ()] < Nlzle ™" pe(2). (6.5)
Furthermore, with the notation X (z) := oo T(x — z), we have

0z OTE ' @y) 09z, det X (2)
28 2det X(z2)

< NGy + Dps@s (), (6.6)

[0z P s (V)] = P8 (Y)
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where for the last inequality we have used (2.8). Therefore, by (6.4), (6.5), and (6.6)

we see that

IPeglico = NIFlleo fra Jir (571120 + 8711512 4 1) (I91Pe(@) oot ie—01s () ) dy iz

< N|flleo(e="/28'2 + 812y < N|| fllcoe™"/?n=1/2.

One also has the trivial estimate || P gllco < 2| f |0, and combining these two bounds

yields

lgllcs < NIflgonP’?.

6.7)

forall 8 € [—1, 0). Note that the restriction of )_(f (-) tothe gridpointst =0, 1/n, ..., 1

is a Markov process with state space R. Therefore we can write

x=X

IE("“)/”g(??Z,,(n(y))l = |Eg()_(/’cln(r)7(k+l)/n(x))| n

Ukt 1y/a )
= SUPycRd |Eg(XZ,1(r)7(k+l)/n ().

Since g € C*/? we have that (I + A)u = g where u € C**t@/? and

lullgz+@ = Nllglicarz,  lullgi+2e < Nllglic—142, -

Hence, by combining (6.8), (5.2), (6.9), (6.7), and (6.3), we get

[ECED Mg (X2 D) < sup (B + Aw) (X ) sty )]

xeR4

< Nlulleikn(r) — (k + 1)/n|™2 + Nullcze™"

(6.8)

(6.9)

< Nllullgrs2e 1k (r) — (k + 1) /|72 4 Nu|cre™"
< Ngllg-142¢; lkn (r) — (k + 1)/n| "% 4 Ngllcape™"

< Nl flicen ™ 2F iy (r) — (ke 4 1) /|12

Putting this back into (6.2) one obtains

t
IL2llz,@ < NI fllcon™ /21 / ke (r) = (k + 1) /n| "' dr
(k+4)/n

1/2.—1/2
< Nl fligelt — s|"/2n~ /2t
1/2 —1/242
< Nl fligelt — s|"/¥Terp= 12426

where we have used that n=! < |t — s|. The bound for I; is straightforward:

(k+4)/n _ _
1@ < / 1) = o)L dr
S

—1 —1/2 1/2
< Nl flieon™" < Nl fllon™/2Fer|e — g|1/2Fe1,

@ Springer



Approximation of SDEs: a stochastic sewing approach 1019

Therefore,
1A Nz, < NI fllcen™ /220 | — s H/2Fe1,

It remains to show the same bound for ¢ € (s, (k + 4)/n]. Similarly to the above we
write

t
1Asel, @ < / 1 (R) = F Ryl @ dr
S
< Nl fligolt —s| < Nl fllcon ' /2Ter|r — g|1/2+e1,
using that |t — s| < 4n~! and ¢ < 1/2. Thus, (3.8) holds with C; =

N| fllcen™'/?*2¢1 From here we conclude the bound (6.1) exactly as is Lemma
4.1. O

Lemma 6.2 Leta € [0, 1], take &1 € (0, 1/2). Let b € Y & satisfy (2.8), and X" be
the solution of (1.7). Then forall f € C*,0<s <t <1,n €N, and p > 0, one has
the bound

t
[ / (fXD = FXL e dr], o) < Nl fllcen™ 2420 — s]V2441(6.10)
N

with some N = N(||b||co, p,d, o, &1, A, ||o]|c2).

Proof Let us set
1 | 1 1 | 5
0 = exp (-/0 (07 'b) (X} () dB, — 5/0 l(o~ b)(xﬁn(r))| dr>

and define the measure P by dP = pdP. By Girsanov’s theorem, X" solves (5.1)
with a P-Wiener process B in place of B. Since Lemma 6.1 only depends on the
distribution of X", we can apply it to X”, to bound the desired moments with respect
to the measure P. Going back to the measure P can then be done precisely as in [10]:
the only property needed is that p has finite moments of any order, which follows
easily from the boundedness of b and (2.8). O

6.2 Aregularization lemma

The replacement for the heat kernel bounds from Proposition 3.7 is the following
estimate on the transition kernel P of (1.6). Similarly to before, we denote P; flx) =
E f(X;(x)), where X,(x) is the solution of (1.6) with initial condition Xy(x) = x.
The following bound then follows from [16, Theorem 9/4/2].

Proposition 6.3 Assume b € C* o > O and [ € c”, o € [0,1]. Then for all
O0<t<lx,ye RY one has the bounds

P f () = P fO)] < NIl fllgur b — yle~ 17072 (6.11)
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with some N = N(d, o, A, ||blice, llolct).

Lemma 6.4 Leta € (0, 1] and T € (0, 1] satisfy
T+a/2-1/2>0. (6.12)

Letb € C%, o satisfy (2.8), and X be the solution of (1.6). Let ¢ be an adapted process.
Then for all sufficiently small 3,4 > 0, forall f €e C*,0 <s <t <1,and p > 0,
one has the bound

t
1+
[ / FX) = [ +ondr|, o < Nt = s el 5.

NI = 5|24 gl (. (6.13)
with some N = N(p,d,a, T, A, [o]lc1)-
Proof Set,fors <s' <t <1,
/ t/
AS/,[/ = Es / f(Xr) - f(Xr —I— @S/)dr‘
S/

Let us check the conditions of the stochastic sewing lemma. We have
Lot I
S =B [ (100 = 1O+ dr ~B* [ (106 = £OG + g dr,
u u

/ /A .
so K 6Ay = ES§Ay ¢, with

t/
§Ay s = E”/ (f(Xp) = FXr + o) = (FX) + f(Xr + 1)) dr

= / B f X+ 0) = Prosf X + @) .
Invoking (6.11), we can write
BAv il < N [} 1oy = gullr — u|=0-0 ar.
Hence, using also Jensen’s inequality,
1B 8 Ay iy < 184y il @ < Nigley ot — |70/
The condition (6.12) implies that for some €3 > 0, one has
1B 8 Ay iy < NIE =110l .-
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Therefore (3.9) is satisfied with Cp = N[](pl]c,g];,[wj. Next, to bound [|Ay /|1, (%), We
write

IE* (X)) — E* F(Xy + 9)| = |Prey f(Xy) — Prey f(Xy + ¢5)
< Nlgyllr —s'|70772,

So after integration with respect to r and by Jensen’s inequality, we get the bound, for
any sufficiently small g4 > 0,

1/2
1Ay Nz, @ < NIt =12 ol (s

Therefore (3.8) is satisfied with C; = N ﬂ‘p"%’,ﬁ’,[s,t]’ and we can conclude the bound
(6.1) as usual. O

6.3 Proof of Theorem 2.7

First let us recall the following simple fact: if g is a predictable process, then by the
Burkholder-Gundy-Davis and Holder inequalities one has

t 1
E| / grdB,|" < NIE/ \gr|P dr|t — s|P=P/
s N
with N = N(p). This in particular implies
D8ly1r- 5 ) = NIgIL, @xEs.1D)- (6.14)

whenever p > 1/¢.

Proof Without the loss of generality we will assume that p is sufficiently large and t
is sufficiently close to 1/2. Let us rewrite the equation for X" as

dX} =b(X} ) dt +[o(X;) + (0(X]) —o(X) + R dB:,

where R} = o (X ,’jn o) —oX 1) is an adapted process such that one has
IR @) < Nn~'/2
forall ¢+ € [0, 1]. Let us denote
t t
—¢] =x0 — x5 +/0 b(X,)dr —/0 b(Xe, i) dr
t
Q;l = /0 G(X;l) - U(Xr)dBra
t
R} =/0 R} dB,.
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Take some 0 < S < T < 1. Choose &1 € (0,&/2) so that (1/2 —2&1) > 1/2 —&.
Then, taking into account (6.10), forany S <s <t < T, we have

t
16 = el = | [ G =KL ) drl
N
t
< ||/ (B(Xp) = bXD)dr| o + Nt —s|!/ZFen= e,
S
(6.15)

We wish to apply Lemma 6.4, with ¢ = ¢" + Q" + R". It is clear that for sufficiently
small &2 > 0, T = 1/2 — &3 satisfies (6.12). Therefore,

t t
||/S bX) =bXDdr|, o = ||/S bX) =bXr + e dr|, o

< NJt —S|1/2+84A(1/2+83)(ﬂﬁonl]%]},[s,t] + ﬂQ"ﬂ(gﬁ,[x,l] + HRHHCKIE,[S,Z])

By (6.14), for sufficiently large p, we have

19" 0% 15,01 = NIX — X"z, @x10.7)-
HRHH%E,[&Z] < Nn_l/2.

Putting these in the above expression, and using T < 1/2 repeatedly, one gets

t

< Nit = sI"IT = SI%(l¢" gz 5,71+ 1X = X" L, @xi0.m) + 1 7?)

with some &5 > 0. Combining with (6.15), dividing by |f — s|* and taking supremum
overs <t €[S, T], we get

e ez s = Nl @ + 1T — SI=0¢" bz 15,71
+N[X — X"||L,@x(0.1)) + Nn =12+, (6.16)

Fixanm € N (notdepending on ) such that Nm = < 1/2. Whenever |S—T| < m™!,

the second term on the right-hand side of (6.16) can be therefore discarded, and so
one in particular gets

l¢" s 15,71 = Nl9slL,@ + NIX = X", @xio.r)) + Nn~'2Fe 0 (6.17)
and thus also
—1/2+¢

lerllL, @ < Nlesle,@ + NIX = X" L,@x0.7)) + Nn

@ Springer



Approximation of SDEs: a stochastic sewing approach 1023

Iterating this inequality at most m times, one therefore gets
o1, @ < Nleflle,@ + NIX — X"l @xo.r + Nn~ /20 (6.18)

We can then write, invoking again the usual estimates for the stochastic integrals Q",
Rn
p nlpP
sup [ Xi = X[7 g =N sup [}
1€[0,T] Lp& 1€[0,T] Lp

+N su

P r
S| e 0 50 o

T
< Nllso()‘llip(m + N/O X, — X;’||1L’p(m dt + Nn—p(/2-e),

Gronwall’s lemma then yields

JSup [ Xe = Xl @) = Nlefley@ + Nno2, (6.19)

Putting (6.17)-(6.18)—(6.19) together, we obtain
ﬂw"l]%;,[o,l] < NllggliL,@ + Nn~l/2+e, (6.20)

Therefore, recalling (6.14) again,

01X = X"lgz 011 = 0" 5,107 + 19" 17 10,11 + IR [ 10,11
< NlggllL,@ + Nn~ 2 + sup | X, — X7, @
1€[0,1] P
n —1/2+e
< NlggllL,@ + Nn )
as desired. O

Acknowledgements OB has received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation program (Grant Agreement No. 683164) and from the
DFG Research Unit FOR 2402. MG was supported by the Austrian Science Fund (FWF) Lise Meitner
programme M2250-N32. Part of the work on the project has been done during the visits of the authors to
IST Austria, Technical University Berlin, and Hausdorff Research Institute for Mathematics (HIM). We
thank them all for providing excellent working conditions, support and hospitality. Finally, we thank the
referee for the careful reading of our paper and several useful comments.

Funding Open access funding provided by TU Wien (TUW).

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer


http://creativecommons.org/licenses/by/4.0/

1024 0. Butkovsky et al.

Appendices
A: Proofs of the auxiliary bounds from Section 3.3
Proof of Proposition 3.6 (i). Fix 0 < s <t < 1. It follows from the definition of B H

that B — BH is a Gaussian vector consisting of d independent components, each of
them having zero mean and variance

C(t, 1) —2C(s, 1) + C(s,s) = cp(t — $)*7,

where the function C was defined in (2.2). This implies the statement of the proposition.
(i1). We have
. . u .
E“B/ — BB/ = / (t —nI=12aw!.
N

Therefore, [E° B[H’i — E* B,H’i is a Gaussian random variable independent of Fy. It is
of mean 0 and variance ¢2(s, ) — ¢2(u, ). This implies the statement of the lemma.

(iii). It suffices to notice that the random vector B — ESBH is Gaussian, inde-
pendent of Fy, consists of d independent components, and each of its components has
zero mean and variance

t
E(/ 0 — 12 aw,)? = (s, 1),
N
(iv). One can simply write by the Newton-Leibniz formula
t
(s, 1) — (s, u) < N/ lr—s?2=Var < Nt —uljt — s?771,
u

since by our assumptionon s, u, t,forall» € [u,t]onehasr —s <t —s < 2(r —s).
(v). It follows from (2.1) that

N
ESBH — ESBH = / (It = r|7V2 —ju — 112y aw,.
—00
Therefore, by the Burkholder—Davis—Gundy inequality one has

s
; ) — - 2
IE* B —E° B} (o) < N/ (It = rP=12 — = | H=12) ar
—00

s t 2
§N/ (/ |v—r|H_3/2dv) dr
—0Q u
N
< N/ It —ul®lu —r?" 3 ar
—00

<N —u)u—9)*""2 < N@t —w?( —s)*172,
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Approximation of SDEs: a stochastic sewing approach 1025

where the last inequality follows from the fact that by the assumptionu —s > (r —s) /2.
O

Proof of Proposition 3.7 (i). Case B < «: There is nothing to prove since

||Ptf||cﬁ(Rd) = ||Ptf||cot(Rd) = N||f||cm(Rd)~

Case B = 0, « < 0: The bound follows immediately from the definition of the
norm.
Case a =0, B € (0, 1]: By differentiating the Gaussian density we have

VP, flico < Nt™V2 £l o
Consequently,
_ _ B 1-p)
P f(x) = Prf WD < [P f @) = Pef DIPIf o
< Nt P21x — 3P| flico,
which implies that

[P: fles < Nt 7P| £l co.

This, combined with the trivial estimate [|P; f|lco < || f L., give the desired esti-
mate.

Case 0 < o < 8 < 1: We refer the reader to [17, Lemma A.7] where the estimate
is proved in the Besov scale. The desired estimate then follows from the equivalence
BY oo ~ CY fory € (0, 1).

Case @ € (0, 1), B = 1: We have

VPl = s | [ Vpite = a]
xeRd ' JRY
= sup / Vpix = y)(f() — f(x) dy‘
xeRd ' JRE
=

Niler [ 19yl dy
< N[ fleat @72,
which again combined with || P; fllco < || fllco proves the claim.

Casea < 0,8 € [0, 1]:

1P flles = 1Py s Fllcs < Nt P21 P flieo < Nt sup e[ P, fllo
e€(0,1]

= Nt P2|| fl|ca.
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(ii). Fix § € (0, 1] such that § > § — — . Then we have

t
IPef = P fles sf 75|

CA (R4 )

o/

§N/r_
s

t
a_ B
S N||f||Ca(Rd)/ }’777781‘7]"»8 dr

CB (R4 )

dr
CO"Z(R‘])

“

B_
2 a(t - s)lSv

IR

< NI fllcerays

where the last inequality follows from the facts that » > s and r > r — s, and that both
of the exponents in the penultimate inequality are nonpositive thanks to the conditions
on §. This yields the statement of (ii).

(iii). First let us deal with the case H < 1/2. Then the bound follows easily by
applying part (ii) of the proposition with § = 1/2. Indeed, forany 0 <s < u <t we
have

1
”Pcz(s,l)f - Pcz(u,l)f”Cﬁ E N”f“cwca_ﬂ_l(u’ [)(cz(s’ t) _ CZ(M’ t))f
< Nl fllce(t — )" @ B=D @ — )3t — uyH=2

=Nl flice(u — S)%(t — u)H(“_/f‘)—%’

where we also used the fact that
(s, 1) — A, 1) < Nu — )t —u)*1, (A.1)

This establishes the desired bound.
Now let us consider the case H > 1/2 (in this case 2H — 1 > 0 and thus bound
(A.1) does not hold). Putfor0 <s <u <t

k(s,u,t) = cz(u, 1)+ (u— s)B,cz(u, 1)
= CH) 't —uw)? + u—95)¢ — w1, (A.2)

Note that by convexity of the function z — z>/ one has forany 0 < z; < z»
1 2H(zo - 11)22H V<20 < 220 L oH (7 — z1)z1 "4 (@ — 2.
Hence for 0 < s < u <t we have

Au,t) <k(s,u,t) <c>(s, 1) < k(s,u,t)+ (s, u) (A.3)
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Now we are ready to obtain the desired bound. We have

||PC2(s,;)f - Pc2(u,t)f||cﬂ = ||Pc2(s,t)f - Pk(s,u,t)f”cﬁ + ”Pk(s,u,t)f - Pc2(u,;)f||cﬁ
<Ii+ I (A4)

We bound /; and I, using part (ii) of the proposition but with different §. First, we
apply part (ii) with § = ﬁ V (/2 — B/2). Recalling (A.3), we deduce

a_p
I < N||fllcek(s. 1, )37 7732 (s, u) < N fllce(u — )2 (¢ — u)HE@H=210,
(A.S5)

Applying now part (ii) with § = 1/2, we obtain

1

b < N||fllcac®™ P, ) —5)2 (t =)= < N| fllceu—s)2(t—u)H@ P2,

This, combined with (A.4) and (A.5) implies the desired bound for the case H > 1/2.
(iv). We begin with the case H < 1/2. Then, applying part (i) of the theorem with
B =1, wededuceforO <s <u <t <1

1Py f ) = Py f(x + 6] < NI fllcat — )@ V)&

Hence for any p > 2 we have

1P 2y ) = Py f &+, < Nl fllcet =) VgL,

< N”f”CO‘(M — s)%(t _ M)Ho[—%’

where the last inequality follows from the bound (A.1) and the definition of the random
variable &. This completes the proof for the case H < 1/2.

Now let us deal with the case H € (1/2,1).Fix0 <s <u <t < 1. Letn and
p be independent Gaussian random vectors consisting of d independent identically
distributed components each. Suppose that for any i = 1,...,d we have En| =
Ep' = 0and

Var(n') = (u — s)(t —u)*# =15 Var(o') = v(s, u, 1) — (u — s)(r —u)* 1.
It is clear that

1P, f ) = Paunf&+EL,@
=P f X)) = Pewnf&+n+ oI,
< WP f @) = Pagnf@+mlL,@
H I P2wnf+m —=Pounf&+n+plL,@
=1+ Db. (A.6)
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Applying part (i) of the theorem with 8 = 1, we get

_ 1 _1
I < N\ flicoc® 1(”J)||’7||L,,($2)§N||f||C“(M—S)2(l‘—M)aH LA

Similarly, using part (i) of the theorem with 8 = 57 V « and recalling (A.3), we
deduce

_ 1 1 1 _1
L < N flleac® 200, 1) || 1p128Y || L) < NI f llge (w—9)2 (t =) @H =20,

Combined with (A.6) and (A.7), this yields the required bound. m]

Proof of Proposition 3.8 Obviously it suffices to show it for k = 1.
1. Case o — § = 0: The statement follows directly by definition of the C* norm.
2. Case a — § € (0, 1]: First, let us consider @ € (0, 1]. For all 8 € [0, 1] we have

lf+x)— fFO) = flz+x) — fF@ < QlxI°[flea)P Qly — z*[ flea) 1A

which upon dividing by |y —z|*~?, choosing 8 = 8/« and taking suprema over y # z
gives

[fC+x) — f()eas < 4lx°[flca.

Similarly, we have

8/a

IFC+x) = FOlleo < 1x1PLf1da QI Flleo) = < 20x | fllce.

which combined with the inequality above gives

1fC+2) = FOllga-s < 6lx°[| flica.

Now let us consider the case o € (1, 2]. By the fundamental theorem of calculus we
have for any 8 € [0, 1]

IfO+x0) - fO) - flz+x) = f@)I

ly —z|*—?

|y_Z|a 5‘/ xi (05 f (y 4+ 0x) — Oy, f(z + 6x)) d@‘

(1-8)
x / (yi—Zi)(ax,.f<z+x+e(y—z>)—ax,.f<z+e<y—z)>)d9\
v IV Flgaily — 21~ Dy = zI[V fleet|x|*~ DA
ly —z[*—8
< N|x|PTEDA=B)| flcaly — 7| @~ DEFI=A-ats

which upon choosing 8 = (§ + 1 — «) /2« and taking suprema over y # z gives
[f (49 = fOlews < NIx | fllce.
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In addition, we have

IfC+x)— fFOlleo < X1 f1es < NixlP I fllce,

which combined with the above proves the claim.

3. Case « — § € (k,k + 1] for k € N: The statement follows by proceeding as
above, considering also derivatives of f up to sufficiently high order.

4. Case o — 8§ < 0: We first consider the case o € [0, 1), for which we have by
virtue of Proposition 3.7 (i)

1f G+ ) — F()llgams = sz)p”e“%" 1Pef(x + ) — PefOlico

S—a S
sup & 2 |x|°[|Pg flles
e€(0,1]

S—a =3
N sup &2 |xI°%°7 || fllce = NixI’|| fllce.
e€(0,1]

IA

IA

We move to the case @ < 0. We have
S—a
fx+) = fOllge—s = sup & 2 [[Pef(x +-) —Pef()lco
£€(0,1]

d—a by
sup & 2 [x[°|IPe f s
e€(0,1]

IA

S—a
= 8
= sup &7 x| Psis flles
e€(0,1]

d—a 5 =0 S
=N sup &2 |x|°e2 ||Ps flico = NIx|°[| flice-
£€(0,1]

The proposition is proved. O

B: Proofs of the results from Section 3.4 related to the Girsanov theo-
rem

Proof of Proposition 3.10 If H = 1/2, then there is nothing to prove; the statement
of the proposition follows from the standrad Girsanov theorem for Brownian motion.
Otherwise, if H # 1/2, let us verify that all the conditions of the Girsanov theorem in
the form of [32, Theorem 2] are satisfied. Note that even though this theorem is stated
in [32] in the one—dimensional setting, its extension to the multidimensional setup is
immediate.

First, let us check condition (i) of [32, Theorem 2]. If H < 1/2, then fol uf,ds <
M? < oo and thus this condition is satisfied by the statement given at [32, last
paragraph of Section 3.1]. If H > 1/2, then

t _
[DE24) () = Nugt #4124 N(H — 1/2)/ a e — s
vy

) HF1/2 ds,
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where Dg . denotes the left-sided Riemann-Liouville derivative of of order 8 at 0,
B € (0,1), see [32, formula (4)]. Therefore, taking into account that H < 1 and
assumption 3.27,

|us — us|
/‘ pH- 1/2 (t)‘ t<NM2+N/ /(t—s)—HH/st) dt < oo as..

Thus, DH 12

fied.
Now let us verify condition (ii) of [32, Theorem 2]. Consider the following kernel:

u € Ly([0, 1]) a.s. and hence condition (i) of [32, Theorem 2] is satis-

Ky(t,s) = @—)"V2F(H—=1/2,1)2—H, H+1/2,1—t/s), 0<s<t<1,

where F' is the Gauss hypergeometric function, see [12, equation (2)]. It follows from
[12, Corgllary 3.1], that there exists a constant kg > 0 and d—dimensional Brownian
motion W such that

t
BH(t)zkH/ Ky, s)dW,, 0<t<1.
0

Consider a random variable

p::exp( /vdeg— /|vs 2ds

where the vector v is defined in the following way. If H < 1/2, then
3 t
- sin(zw (H + 1/2))tH_1/2/ (- s)_H_l/zsl/z_Hus ds. (B.1)
wky 0
and if H > 1/2, then
tH 1/241/2—

_sinGr(H —1/2) (10 /
= rkp(H —1/2) ( i+ (H—1/2) S)H+1/2 ds)'

(B.2)

Taking into account [32, formulas (11) and (13)], we see that condition (ii) of [32,
Theorem 2] is equivalent to the following one: Ep = 1. We claim that actually

1
Eexp(A/ lvg|2dt) < R(A) < 00 (B.3)
0

where

R(\) = exp(AN(H)M?) if H < 1/2;
R\ = exp(AN(H)M®E exp(O.N (H)E) if H € (1/2, 1).

@ Springer



Approximation of SDEs: a stochastic sewing approach 1031

By the Novikov theorem this, of course, implies that Ep = 1.
Now let us verify (B.3). If H < 1/2, then it follows from (B.1) and (3.24) that

lue| < N(H)Mt=H+1/2]

which immediately yields (B.3).
If H > 1/2, then we make use of (B.2) and (3.25) to deduce

|I/lt|(l‘H 1/2 1/2—H 1)

_ A2 ds

lv;| <N(H)Mt'/*H +N(H)/

ly — uy|tH—1/21/2- H
+N(H)/ —oHTI2 ds

|Mt_u |tH=1/21/2-H

1/2-H
<N(H)Mt +N(H)/ R ds.

Taking into account assumption (3.27), we obtain (B.3). Thus, by above, condition
(i1) of [32, Theorem 2] is satisfied.

Therefore all the conditions of [32, Theorem 2] are satisfied. Hence the~process BH
is indeed a fractional Brownian motion with Hurst parameter H under I’ defined by
dP/dP = p.

Finally, to show (3.28), we fix A > 0. Then, applying the Cauchy—Schwarz inequal-
ity, we get

1 - A 1
Ep* =1Eexp(—/\f0 vsd Wy — 5/0 lvslzdS>

1 1 1

:Eexp(_,\/o vsd W _x2/0 |vs 12ds + (A2 —,\/2)/0 |vs|2ds)
1 1 172 1 1/2
5[Eexp<—2k[0 vsd Wy — 222 A |v5|2ds):| [Eexp((Zkz—k)/(; |vS|2ds)]
1 1/2
=[IE exp((ZA2 — A)/ |Us|2ds)]
0

<RAHV? < o,

where the last inequality follows from (B.3). This completes the proof of the propo-
sition. O

Proof of Lemma 3.11 We begin with establishing bound (3.29). Fix n € N and let us
split the inner integral in (3.29) into two parts: the integral over [0, «, (1) — 2n)~ 1
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and [k, (1) — (2n)~!, t]. For the first part we have

—@2n)~! _
L) = 0= T2 foi) = S ds
B (t — 5)H+1/2

H=1/2 n (=2 12—H H=1/2
< [fleet™Y / sV ey (1) — ke (1P (2 — 5) "2 ds
0
Kn () —(2n) 7!
S N[f]CptH_l/zf Sl/z_H|t _S|p—H—l/2 dS
0
t
S N[f]CptH_l/z/ s1/2—H|t _S|p_H_1/2dS
0
< N[fleotP~H+1/2, (B.4)

where we used bound (3.24), the assumption p — H — 1/2 > —1, and the fact that
for s € [0, k, (1) — (2n) '] one has

Kn(t) —kn(s) <t —s+1/n <3( —s).

Now let us move on and estimate the second part of the inner integral in (3.29). If
t > 1/n, then we have

[2(t) — /t (I/S)H_l/2|flcn(l) - fKn(S)| ds
" =@y (t —s)H+1/2
H-1/2 @) 1/2—H H-1/2
=tT12 f0 ) = Feno—1/ml s12H (G — 5y~ H=12 g
kn(1)—(2n)~1
(H-1/2 Kn(0) e
< N[flcon™" f (t — )~ H=172 g
(kn (1) — 2n)~HH=12 | o —m)—
< NIfleon™ "t — kn(0))” 12, (B.5)

where in the last inequality we used that for + > 1/n one has

S n0) < () — > = 4{ea(t) — o)
= fon n = n 2n/’

Now, using (B.5) and (B.5), we can bound the left-hand side of (3.29). We deduce

Lt H1/2 _ 5
/ ( (t/s) | fien () flcn(s)lds> di
0 0

(t — S)H-H/Z

1 1
< N/ Il(t)zdt+N/ L(t)? dt
0 0

n—1 i+l

SN[f]ép‘}‘N[f]%pnisz‘[ ! |t_Kn(t)|172Hd[

i=1%n
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n—1
< NIf1gy + NLf1gon ™0 Y 0= G720

i=1

< N[f1%, + N[ f15n* 7172 < N[ f1%,,

where the very last inequality follows from the assumption p > H — 1/2. This
establishes (3.29).

Not let us prove (3.30). Using the assumption p > H — 1/2 and identity (3.24),

we deduce

Lot =125, — Lo
f ([t ds)2 dr <1113, / ( / s_H+1/2(t—s)p_H_l/zds>2dt
o \Jo 0 ™o

(r — S)H+l/2
< N[f1%.

This proves (3.30). O
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