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a b s t r a c t

With new sensor systems that capture sky survey at high quality level, analyzing the resulting data

within a limited time frame appears to be the next challenge. Specific to the GOTO project, this task

proves to be crucial to discover new transients from a pool of large candidates. Initial works based on

the feature-based approach design this detection as imbalance classification, where a data-level method

can be used to resolve the difference in cardinality between classes. This paper presents a context gen-

eration framework to complement the previously proposed model. In particular, samples are clustered

to form data contexts to which different learning strategies may be applied. To ensure the quality of data

clustering, a noise-induced cluster ensemble technique that has been recently introduced in the literature

is employed here. The results with simulated data and algorithms of NB, C4.5 and KNN have shown that

the proposed framework can filter out some negative samples quickly, while making classification of the

rest more effective. In particular, it enhances predictive performance of basic classifiers by lifting F1

scores from less than 0.1 to around 0.3–0.5. Besides, parameter analysis is also given as a guideline for

its application.

� 2021 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Sensor systems have been a major factor to various break-

throughs in science and engineering, especially in the present era

of distributed system and big data. Likewise, for the field of astron-

omy or space science, the development of detectors as well as opti-

cal technology provides an integral contribution that leads to the

discovery of major incidents. As such, acquiring data from the deep

space is no longer an intricate problem. This makes the study of

astronomy more interesting since the detection of transient astro-

nomical events, simply termed ‘‘transients” by astronomers (de

Buisson et al., 2015; Soraisam et al., 2018), can be managed timely.

The phenomenon led to the interdisciplinary collaboration among

related area of study to help astronomers investigate and evaluate

the massive amount of digital information received from sky sur-

veys, most recent, from the advanced Laser Interferometer

Gravitational-wave Observatory (aLIGO, Meisner et al., 2017). The

discovery of transient events is crucial, for it eventually leads to

the study of rare classes of extreme events, such as, neutron stars

and black holes, the tidal disruption of stars by dormant super

massive black holes, or megaflares on normal main sequence stars

(Wette, 2021).

The Gravitational-wave Optical Transient Observer (GOTO)1 is

among the new class of telescopes dedicated to detecting such phe-

nomenon. Its main role in the collaborative study is to provide a

visual counterpart of the detected transient events (Dyer et al.,

2018). It is devoted to deliver graphic information of any event in

space as noticed by gravitational observatories. GOTO is an interna-

tional collaboration led by University of Warwick of UK and Monash

University of Australia, with its facility housed at Roque de Los

Muchachos observatory on La Palma, Canary Island. The observatory

consists of an array of four state-of-the-art 0.5 m- aperture, wide-

field optical telescopes which can respond to alerts coming from

gravitational wave detectors, i.e., LIGO and VIRGO (Abbott et al.,

2020). Basically, transient event is short-lived and may diminish in
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hours or a day. This speedy transitory necessitates a rapid response

in order to track down optical images. This is what GOTO has been

designed for; to detect these optical signatures as quickly as possible

so as to provide astronomers with as much information about these

sources before they ultimately fade. Specific to GOTO observation

and common to several other wide-area sky surveys, a considerable

amount of images (currently around 400 of them) is collected

nightly. Each of the images has approximately 20,000 astronomical

sources, which results in the total number of sources just under 8

millions. These observed sources are subtracted from a so-called

”reference” images, in which known sources are well studied and

documented. As a result, the difference images contain a collection

of roughly 40,000 to 50,000 new sources, in which a few correspond

to transient events. They are then processed along the pipeline that

aims to deliver readable data for further investigation. One challenge

encountered by the GOTO team is to figure out a data management

system efficient for the big volume of data. The other is a race with

time, where an automated decision-support tool is required to iden-

tify a set of transients from those in the difference images. After that,

manual observations by GOTO and collaborations can be conducted

to confirm the events. This demands an interdisciplinary research

where machine learning has an integral role in translating raw data

into meaningful knowledge.

To initiate such a study, recent works by Tabacolde et al. (2018,)

have designed the task of transient detection as a binary classifica-

tion of candidate sources. In particular to the former, an oversam-

pling technique is employed to handle the imbalance problem

between the two classes (real and bogus). It is noteworthy that

the proportion of minority class is less than 0.5%, much lower than

those datasets investigated in both astronomy (Cabrera-Vives

et al., 2017; Wright et al., 2017) and machine learning literature

(Tang and He, 2017; Ofek et al., 2017). Despite the reported

improvement, this data-level method has been known to promote

overfitting (Lin et al., 2018). Hence, Tabacolde et al. (2018) intro-

duce undersampling as an alternative to the previous, where the

proposed clustering based model performs better than the conven-

tional technique of RUS (Random UnderSampling, Bagui and Li,

2021; Seiffert et al., 2010). Given the findings, this paper aims to

complement the previous attempts to solve the imbalance problem

by producing distinct contexts for classification model develop-

ment, instead of consider the whole data as one indivisible set.

To achieve this goal, the recently published study of noise induced

cluster ensemble (Panwong et al., 2018) is exploited to generate

high-quality data clusters, which exhibit different contexts for

supervised learning. In fact, the deployment of the resulting classi-

fiers may be efficient as some clusters dedicates solely to one class,

i.e., a complex classifier can be replaced by a simple rule.

Problem and Scope. The research reported within this paper

aims to improve the accuracy of a classification model built to cat-

egorize object candidates as either a real source to investigate fur-

ther or a bogus to simply ignore. In particular, these candidates are

determined by the image differencing process in which a nightly

image is subtracted from a reference, i.e., a co-added image. As

such, new groups of bright pixels that have not been recorded thus

far can be identified. In fact, their thumbnail images of size 21� 21

pixels are extracted to form a pool of candidate images. Note that

the above mentioned process is executed within the data process-

ing pipeline of GOTO, which has been modified from that of the

LSST (Large Synoptic Survey Telescope) project (Mullaney et al.,

2020). Prior developing a binary classification model to differenti-

ate between true source and bogus, an expert-driven set of features

are extracted to deliver the target dataset. As an initial study before

deploying within the GOTO pipeline stack, datasets are simulated

to provide a realistic testbed for the proposed method against

existing ones. This provides a chance to inject a rich collection of

transients into actual sky images, where this is hardly obtained

from any single observation. Provided this setting, it is assumed

that the resulting model can be robust to various types and appear-

ances of transient events, thus becoming sufficient to deploy in an

actual pipeline in the next phase.

Contributions. The contributions made by the work presented

in this paper can be summarized as follows.

� This paper presents a new framework to handle an imbalance

classification problem through generation of contexts for learn-

ing model development. It makes use of noise-induced cluster

ensemble to determine a clustering reference from which those

contexts can be formulated. This organic combination has not

been witnessed in the literature thus far, especially for astro-

nomical data analysis.

� It reports an original set of experimental results on simulated

datasets, which have been created based on the system config-

uration of GOTO project and generalized to other sky survey

platforms. Hence, the paper provides useful findings to a wide

community of astronomers and data scientists working on clas-

sification problem as a means to detect transient events. Param-

eter analysis is also included as guideline for the future

application of this new framework.

The rest of this paper is organized as follows. Section 2 presents

background and materials employed in this study including details

of investigated data, feature extraction and data preparation. The

proposed method is described in Section 3, in which the develop-

ment of both cluster ensemble and classification contexts are

emphasized. After that, Section 4 provides the results of this inves-

tigation and related discussions. The paper is concluded in Section 5

with possible future works.

2. Background and materials

This section presents background and details of the investigated

data sets, which have been simulated to reflect the core character-

istics of sources captured by the GOTO system. It provides a good

testbed from which initial classification models can be derived

and later refined with real data.

2.1. Background and investigated data

There are software packages with a capability to synthesize

astronomical images, including approximations for commonly

encountered complications, e.g., background noise and the point

spread functions (PSF) of sources. Specific to the current research,

SkyMaker (Kauffmann et al., 2020) is employed to create the sim-

ulated images. It accepts a list of sources (i.e., stars, galaxies) con-

taining the position (i.e., right ascension, RA, and declination, Dec)

and brightness of each source. These three pieces of information is

all that is required for stars (i.e, point sources). Galaxies in Sky-

Maker are represented by two cospatial ellipses (one for the bulge,

the other for the disk), which are described by an additional seven

parameters (the ratio of bulge-to-total light, bulge radius, bulge

aspect ratio, bulge orientation on sky, disk radius, disk inclination

and disk orientation on sky). For the simulations, a source lists is

produced by querying two separate databases. For stars brighter

than 17th magnitude, the USNO CCD Astrograph Catalog (UCAC)

database is exploited, whereas for stars and galaxies fainter than

17th magnitude, the Sloan Digital Sky Survey (SDSS) is employed

instead. This approach of combining two separate catalogues to

generate our input lists was used to increase the dynamic range

of our simulated images since bright stars saturate the SDSS detec-

tor and are thus under-represented in this catalogue, while UCAC

does not go sufficiently deep for our purposes.
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These databases are queried for all sources that would be cov-

ered by a single observation by one of the GOTO telescopes of a

given patch of sky (given by its central coordinates). Each source’s

position (RA, Dec) was converted into a pixel coordinate (x, y) by

referring to the on-sky position of the central pixel and the pixel

scale (i.e., the on-sky angular size of each pixel, which is a constant

1.24 arcseconds per pixel). For the UCAC sources, the V-band mag-

nitude was used, whereas G-band magnitudes were used for SDSS

sources. At this stage, galaxies are simulated as a simple disk (i.e.,

not a bulge + disk combination), and thus only provide the three

additional parameters that SkyMaker uses to simulate galaxy disks.

With the primary goal of detecting transient sources, it is not

expected that only simulating disks will have any significant

impact on this study. In addition to the source list, SkyMaker also

requires an input configuration file. This provides the software

with information such as the type of simulation that is required

(e.g., include background noise or not) and the characteristics of

the telescope. For the latter, the most important of these are the

saturation level of the pixels (set to 65,535), the zeropoint of the

telescope (i.e., the magnitude of a star that would result in one

count per second; 23.5), PSF size (see below), pixel size (1.24 arcsec

per pixel), CCD size in pixels (8176� 6132). To increase the realism

of the simulations, the PSF size (i.e., full-width half maximum, or

FWHM) is allowed to vary randomly between observations, rang-

ing from 0.8 to 3 arcseconds.

To simulate transient sources, two observations for each patch

of sky are synthesized. In the second observation, new sources

are injected, randomly distributed across simulated image with

brightnesses chosen randomly from a uniform distribution ranging

from magnitude 14 to 19. Each simulated image is then processed

using the LSST software stack (Juric, 2015; Mullaney et al., 2020),

adapted to handle simulated images. Then, the output from the

image differencing component of the stack is delivered as input

to the data collection phase, prior data transformation and model

development. Fig. 1 illustrates examples of detected sources that

can be categorized as bogus (Class0) and real (Class1). These are

presented as greyscale images of size 21 � 21 pixels.

2.2. Data preparation

Based on the common astronomical measurements made to

each bright source, a data set X ¼ fx1; . . . ; xNg of N samples is char-

acterized by 23 different attributes, F ¼ ff 1; . . . ; f 23g. Note that

some initial features (i.e., id, parent_id, RA, DEC, SdssCentroid_x,

SdssCentroid_y) are excluded at first as they are not informative.

Each instance can be defined as xi ¼ fxi;1; . . . ; xi;23; xi;cg, where xi;j

is the value of attribute f j 2 F and xi;c 2 f1;0g denotes the class

label. Table 1 summarizes these features in terms of their notations

and descriptions. Given the data X, correlations between a feature

and the two classes are investigated, together with the initial

exploitation with simple classifiers. It turns out to be the case that

several of these features are not informative such that the resulting

classification performance tends to be inadequate. As such, the

additional stage of data transformation has been designed in order

to compile the existing set of features to a more discriminative one.

This process is guided by domain experts that leads to the prepro-

cessed data with the final set of 15 features, each of which is

explained next. Also, see Fig. 2 for the graphical summarization.

In the experiment set forth for this study, two datasets are gener-

ated, each of which goes through the sequence of data collection

and preparation previously specified. See details in Section 4.

(1) PSF_Flux_Sig:

PSF flux

PSF flux Sigma
ð1Þ

(2) PSF_Dipole_Flux_Pos_Diff:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
x þ D2

y

q

; ð2Þ

where Dx and Dy denote PSF Dipole Flux Pos x� PSF

Dipole Flux Neg x and PSF Dipole Flux Pos y� PSF Dipole Flux Neg y.

(3) PSF_Dipole_Flux_Pos_Sig:

PSF Dipole Flux Pos

PSF Dipole Flux Pos Sigma
ð3Þ

(4) PSF_Dipole_Flux_Diff:

PSF Dipole Flux Pos� PSF Dipole Flux Neg ð4Þ

(5) PSF_Dipole_Flux_Rel:

PSF Dipole Flux Diff

PSF flux
ð5Þ

(6) PSF_Dipole_Flux_Neg_Sig:

PSF Dipole Flux Neg

PSF Dipole Flux Sigma
ð6Þ

(7) PSF_Dipole_Flux_x: remains unchanged from the original

attribute set.

(8) PSF_Dipole_Flux_y: remains unchanged from the original

attribute set.

(9) DipoleFit_Flux_Pos_Diff:

Fig. 1. Image examples of bogus and real sources, taken from Tabacolde et al. (2018).
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2
x þ C2

y

q

; ð7Þ

provided that Cx and Cy are DipoleFit Flux Pos x� DipoleFit Flux

Neg x and DipoleFit Flux Pos y� DipoleFit Flux Neg y, respectively.

(10) DipoleFit_Flux_Pos_Sig:

DipoleFit Flux Pos

DipoleFit Flux Pos Sigma
ð8Þ

(11) DipoleFit_Flux_Diff:

DipoleFit Flux Pos� DipoleFit Flux Neg ð9Þ

(12) DipoleFit_Flux_Rel:

DipoleFit Flux Diff

DipoleFit Flux
ð10Þ

Table 1

Details of the original set of features: notation and description.

Notation Description

PSF_flux Measure of brightness of source within Point Spread Function (PSF)

PSF_flux_Sigma Measure of uncertainty associated with PSF_flux

PSF_Dipole_Flux_Pos_x Position in X-dimension of positive part of dipole

PSF_Dipole_Flux_Pos_y Position in Y-dimension of positive part of dipole

PSF_Dipole_Flux_Pos Brightness of positive part of dipole

PSF_Dipole_Flux_Pos_Sigma Uncertainty associated with measurement of PSF_Dipole_Flux_Pos

PSF_Dipole_Flux_Neg_x Position in X-dimension of negative part of dipole

PSF_Dipole_Flux_Neg_y Position in Y-dimension of negative part of dipole

PSF_Dipole_Flux_Neg Brightness of negative part of dipole

PSF_Dipole_Flux_Neg_Sigma Uncertainty associated with measurement of PSF_Dipole_Flux_Neg

PSF_Dipole_Flux_x Average X-dimension position of dipole (i.e., average of negative

and positive positions)

PSF_Dipole_Flux_y Average Y-dimension position of dipole (i.e., average of negative

and positive positions)

DipoleFit_Flux_Pos_x Position in X-dimension of positive part of dipole fit

DipoleFit_Flux_Pos_y Position in Y-dimension of positive part of dipole fit

DipoleFit_Flux_Pos Brightness of positive part of dipole fit

DipoleFit_Flux_Pos_Sigma Uncertainty associated with measurement of DipoleFit_Flux_Pos

DipoleFit_Flux_Neg_x Position in X-dimension of negative part of dipole fit

DipoleFit_Flux_Neg_y Position in Y-dimension of negative part of dipole fit

DipoleFit_Flux_Neg Brightness of negative part of dipole fit

DipoleFit_Flux_Neg_Sigma Uncertainty associated with measurement of DipoleFit_Flux_Neg

DipoleFit_Flux_x Average X-dimension position of dipole fit (i.e., average of negative

and positive positions)

DipoleFit_Flux_y Average Y-dimension position of dipole fit (i.e., average of negative

and positive positions)

DipoleFit_Flux Measure of overall brightness in dipole fit - magnitude (i.e., ignoring

whether it is positive or negative) of entire dipole

Fig. 2. Details of data transformation, taken from Tabacolde et al. (2018).
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(13) DipoleFit_Flux_Neg_Sig:

DipoleFit Flux Neg

DipoleFit Flux Neg Sigma
ð11Þ

(14) DipoleFit_Flux_x: remains unchanged from the original

attribute set.

(15) DipoleFit_Flux_y: remains unchanged from the original

attribute set.

3. Proposed method

Based on the recent study of Tabacolde et al. (2018) with GOTO

data classification, the problem of class imbalance can be handled

more effectively using the cluster-based undersampling as com-

pared to the RUS technique and oversampling counterpart. How-

ever, this methodology is still applied to the dataset as a whole

without realizing that there may be different learning contexts

within a given data. In general, a single classification model is

rarely accurate across data subsets, thus requiring a unique classi-

fier built for each of the possible contexts. To allow context-based

learning, the proposed framework first makes use of a trustworthy

clustering algorithm to generate clusters (i.e., data contexts) from

the data X 2 RN�D, where N and D denote the size of samples and

features, respectively. For this research, the concept of noise-

induced cluster ensemble (i.e., ensemble clustering) is exploited

to deliver these cluster based contexts. Then, context-specific clas-

sification schemes can be formulated to categorize new instances.

These stages are elaborated in the following sections.

3.1. Context generation using cluster ensemble

The noise-induced cluster ensemble (Panwong et al., 2020; Iam-

On, 2020; Panwong et al., 2018) that has proven more accurate

than other ensemble models is specifically exploited for this pur-

pose. Given a dataset X and a desired ratio of noise a%
2 f1;2; . . . ;100g, the clustering process can be described below.

Step1. To start with, generate a set of A variations of the original

dataset X 2 RN�D, i.e., (X01;X
0
2; . . . ;X

0
A), in such a way that each of

these X0j; j ¼ 1 . . .A contains randomly selected a� positions of

noise. Note that the localization of noise is determined using the

salt-and-pepper method. In addition, the number of these locations

a� 2 f1; . . . ;Ng is subjected to numbers of samples, features and a.
Formally, a� can be estimated as follows.

a� ¼ NDa
100

� �

ð12Þ

where D is the number of features, i.e., D ¼ 15 for the current

research.

Step2. For each of the variation X 0j 2 fX
0
1; . . . ;X

0
Ag, the identified

positions are filled with noise that is a random value within the

feature domain. Before moving to the actual step of noise injection,

domains of all D features are standardized. For a feature

f p; p ¼ 1 . . .D, the normalized value xi;p 2 ½0;1�; i ¼ 1 . . .N is esti-

mated from the initial value x�i;p by the following equation.

xi;p ¼
x�i;p �minp

maxp �minp

ð13Þ

provided that minp and maxp correspond to the minimum and max-

imum values occurring in the dataset X for the feature f p. For a data

variations X0j; j ¼ 1 . . .A, each selected position specific to attribute

f p is filled in with a noise value. In particular, it is randomly selected

as a continuous value within the normalized interval of ½0;1�. This

can be regarded as a special case of normal distribution, which pro-

vides better performance than conventional ensemble methods

(Panwong et al., 2018).

Step3. After filling in noise values, those perturbed data varia-

tions or matrices will be exploited to produce base clusterings

using the classical k-means technique and the Random-k strategy

(Boongoen and Iam-On, 2018). To be more precise, the number

of clusters (k) is randomly selected from the range f2;3; . . . ;
ffiffiffiffi

N
p
g.

This is constrained to f2;3; . . . ;50g if
ffiffiffiffi

N
p

> 50. With the data

matrix X 0j; j ¼ 1 . . .A, k-means is applied for Y trials to create a set

of solutions fp1ðX 0jÞ;p2ðX 0jÞ; . . . ;pYðX0jÞg.
Step4. Having completed the previous step for all the perturbed

data matrices, the resulting partitions have to be aggregated and

represented in a meaningful format. To this end, the pairwise-

similarity matrix of Fred and Jain (2005) is used to combine those

base clusterings. Each entry huv 2 ½0;1�;u; v 2 f1; . . . ;Ng in the sim-

ilarity matrix H denotes the similarity between instances

xu; xv 2 X. Based on a base clustering peðX 0jÞ where

j ¼ 1 . . .A; e ¼ 1 . . .Y , the similarity huv ðpeðX0jÞÞ between xu and xv

is 1 if they are assigned to the same cluster, 0 otherwise. Given

all the Y base clusterings generated from the perturbed data matrix

X0j; j ¼ 1 . . .A, the similarity can be concluded as follows.

huvðX0jÞ ¼
P

e¼1...YhuvðpeðX0jÞÞ
Y

ð14Þ

Provided that, the similarity huv is calculated by the following.

huv ¼

X

j¼1...A
huvðX 0jÞ

A
ð15Þ

Step5. After H 2 ½0;1�N�N being formulated, a consensus func-

tion can be applied to create the final clustering p�. For this

research, k-means is exploited as to set the benchmark for more

complex alternatives, in addition to its simplicity and efficiency.

Note that the method of Mehar et al. (2013) is employed to auto-

matically find the optimal number of cluster (K) for the dataset

represented by H. To make this procedure more concisely defined

and reproducible, the following algorithm named Noise-Induced-

Ensemble summarizes all the five processing steps explained

above.

3.2. Context specific classification models

Given the desired clustering result p� ¼ fC�1; . . . ;C
�
Kg and the

corresponding set of centroids z� ¼ fz�1; . . . ; z�Kg, these K clusters is

considered for the formation of classification contexts as follows.

� If a cluster Ce 2 p� is pure with samples belonging to one class

only, a specific data context CTXe � X;CTXe ¼ Ce and the relation

CTXðzeÞ ¼ CTXe are formed. Supposed that p� ¼ fC�1;C
�
2;C

�
3g and

the cluster C�1 is pure, the resulting context CTX1 and relation

CTXðz1Þ ¼ CTX1 are initiated. And specific to CTX1, a simple clas-

sification rule CL1 ¼ 0 can be created if all samples in the con-

text CTX1 belong to class 0, or CL1 ¼ 1 if all samples in the

context CTX1 belong to class 1, otherwise.

� On the other hand, other clusters that are not pure are com-

bined to the same context CTXd � X. Based on the same example

in which two clusters C�2 and C�3 are not pure, they are aggre-

gated to form CTXd ¼ C�2 [ C
�
3, with the two corresponding rela-

tions CTXðz2Þ ¼ CTXd and CTXðz3Þ ¼ CTXd being specified. After

establishing this, a specific classifier CLd is generated for the

context CTXd using the classification algorithm t.

T. Boongoen, N. Iam-On and J. Mullaney Journal of King Saud University – Computer and Information Sciences xxx (xxxx) xxx

5



Algorithm: Noise-Induced-Ensemble (X, a, g, A, Y, K)

X 2 ½0;1�N�D, a normalized dataset of Nsamples and D

features;

a, a desired ratio of noise between 1 to 100%;

g, a choice of algorithm to create ensemble members & final

clustering, e.g., k-means;

A, a number of perturbed data matrices generated by injecting

noise into X;

Y, a number of ensemble members generated from each

perturbed data matrix

K, a number of clusters preferred in the final clustering

(1) For each data perturbation j = 1 . . .A

(2) X0j  X

(3) Randomly select a� positions in X0j (see Eq. 12)

(4) For each selected entry xt 2 X0j; t ¼ 1 . . .a�

(5) xt  a random value in [0, 1]

(6) For each ensemble member peðX0jÞ; e ¼ 1 . . .Y

(7) peðX0jÞ  gðX0j; kÞ; k is randomly selected from

f2; . . . ;
ffiffiffiffi

N
p
g

(8) Generate the pairwise matrix Husing Eqs. 14 and 15

(9) Create final clustering p�  gðH;KÞ
(10) Return p� ¼ ðC�1;C�2; . . . ;C�KÞ

As for the predictionmade to a test or unseen sample y 2 ½0;1�1�D,
the selection of context-based classification model can be summa-

rized by the following steps and associated algorithm.

Step1. Firstly, the sample under question y will be mapped to

the cluster ensemble that is used to create the pairwise similarity

matrix H, such that the resulting representation of this sample is

transformed to y0 2 ½0;1�1�N . See details of this process in the

Mapping-New-Sample algorithm.

Step2. Having obtained the new representation y0 of a test sam-

ple, find distances dðy0; z�qÞ between y0 to all centroids z�q 2 z�, using

the Euclidean metric of:

dðy0; z�qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

o¼1...Nðy
0
o � z�q;oÞ

2
q

ð16Þ

Step3. Then, select the centroid z0 2 z�, where the distance

between y0 and z0 is the minimum from those estimated in Step 2.

z0 ¼ arg min
8z�q2z�

dðy0; z�qÞ ð17Þ

Step4. And finally, find out the data context from the relation

CTXðz0Þ, then select the appropriate classifier or rule to generate

the predicted class of y.

Algorithm: Mapping-New-Sample (y, P)

y, a new sample where y 2 ½0;1�1�D;
y0, the tansformed representation of y where y0 2 ½0;1�1�N;
P, a cluster ensemble with A � Y members, with Y clusterings

are; generated from each X0j; j ¼ 1 . . .A;

sim(a,b,p), a function that returns 1 if samples a and b they

are assigned; to the same cluster in clustering pand 0,

otherwise;

(1) For each sample xi; i ¼ 1 . . .N

(2) y0i  0

(3) For each clustering pg 2 P
(4) y0i  y0iþ � ðy; xi;pgÞ
(5) y0i  

y0
i

A�Y
(6) Return y0 ¼ ðy01; . . . ; y0NÞ

4. Performance evaluation

This section presents the design of empirical study, which aims

to assess and compare accuracies between the proposed method

and other relevant techniques. It is followed by a report of results

with discussion that provides other useful theoretical and practical

issues.

4.1. Experimental design

Table 2 provides details of the two datasets exploited in this

study, each of which is described in terms of numbers of samples

belonging to the two classes (i.e., Class1 and Class0 that correspond

to real transients and bogus samples, respectively) and corre-

sponding percentages. Based on both percentages of Class1 sam-

ples that are around 0.3%, these datasets provide a great

challenge to the research community of imbalance classification.

At the same time, this illustrates an actual scenario of discovering

transient events, which rarely happen and appear in a survey.

Other experimental settings are summarized as follows.

� For the application of noise-induced cluster ensemble, the noise

ratio of a ¼ 8% is investigated as suggested by the original work

(Panwong et al., 2018). For each dataset, the localization and

noise injection trials (A) and the clusterings created from each

perturbed matrix (Y) are all set to 20. In addition, the k-means

clustering technique is employed to create both ensemble

members and the final clustering.

� Having obtained the target clustering result, the contexts and

associated relations are formed in accordance with the steps

identified previously. Specific to the context CTXd, three classi-

cal classifiers are exploited as the preferred algorithm t: NB

(Naive Bayes with the Gaussian kernel function), C4.5 (Decision

Tree with the maximum depth of 10) and KNN (k-Nearest

Neighbors, where k = 1), respectively. These settings form a

basis to compare the proposed framework with its baseline,

where the whole dataset is considered as one context of CTXd.

Note that KNN is included here to represent the result obtained

by a lazy learning model where a distance metric is simply used

to determine the predicted class from a nearest neighbor. Sim-

ilar to KNN where all features contribute to the estimation of a

prediction output, NB approaches this using a different concept

of conditional probability, which is later simplified by the

assumption of independency among features. In contrary, C4.5

differentiate the significance among features, i.e., which one

should be used to assess a sample under examination first,

and which are later. A decision tree is built to form branches

of such an order, which allows a classification to be made based

on a subset of original features. This collection of classification

algorithms also present two different approaches to analyzing

a numerical dataset, which are usually included in many com-

parative studies of classification problem (Alghobiri, 2018). On

one hand, refined domains of numeric features are exploited

as they are for the estimation of distance metric used by KNN.

On the other, they are reduced to intervals by C4.5 and NB to

simplify sample-class relations. More complex alternatives like

classifier ensemble (Dong et al., 2020) and a deep learning

model (Dong et al., 2021) may be explored in the future work.

Table 2

Description of examined dataset: numbers of class-specific samples and percentages.

Dataset No. of all Class 0 Class 0 Class 1 Class 1

samples samples percentage samples percentage

Data1 5,989 5,973 99.733 16 0.267

Data2 6,771 6,753 99.734 18 0.266
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� To allow a robust comparison, 20 trials of 10-fold cross valida-

tion are employed to determine F1 measure 2 ½0;1�, where the

rate of 1 indicates the most effective classifier with no false pos-

itive nor false negative. It can be defined by the following equa-

tions, where TP = true positive, FP = false positive, TN = true

negative and FN = false negative.

F1 ¼ 2� Precision� Recall

Precisionþ Recall
; ð18Þ

where Precision ¼ TP
TPþFP and Recall ¼ TP

TPþFN.

4.2. Results and discussion

After the initial stage of applying the noise-induced cluster

ensemble to the two datasets under examination, optimal numbers

of clusters for Data1 and Data2 are 5 and 4, with percentages of

data distribution among different clusters being illustrated in

Figs. 3 and 4, respectively. The Cluster0 in both cases are similarly

pure with samples of Class0 only. Henceforth, simple rules can be

formed to classified a new instance, whose distance to z�0 is the

shortest among available centroids, as a member of Class0. Specific

to Data1, samples belonging to Cluster1, Cluster2, Cluster3 and

Cluster4 are combined to form the context CTXd. Likewise, for

Data2, samples in CTXd are from Cluster1, Cluster2 and Cluster3.

With respect to the F1 metric, Fig. 5 presents the comparison of

those scores obtained by the baseline and context-based counter-

part, across three classification algorithms identified earlier. It is

clearly shown that the proposed framework usually delivers a

more effective classifier than the baseline model, i.e., average F1

values from the 10-fold cross validation are improved from

0.0091 to 0.0162 with NB, from 0.0000 to 0.0325 with C4.5, and

from 0.1667 to 0.3636, respectively. Similarly, the average F1

scores achieved with Data2 is given in Fig. 6, which confirms the

effectiveness of the context-based strategy. In particular, the scores

of the baseline are lifted from zeros to 0.3478 and 0.5000 by the

coupling of data contexts with KNN and C4.5.

From previous illustrations, NB appears to be the least accurate

among three classification techniques with the best F1 measures of

0.0162 for Data1 and 0.0178 for the other dataset. This observation

is caused by the sparseness of data represented as zero conditional

probabilities between features and the minority class that has been

exploited within this model. As such, through the smoothing

mechanism that replaces zeros with small numbers, the resulting

probability of Class1 can be much lower than that of Class0, hence

a lack of ability to recognize real transients. Nonetheless, the pro-

posed approach is able to reduce the number of samples belonging

to Class0 (around 24–25% for the entire datasets, see Figs. 3 and 4),

thus partly decrease the difference between class-specific proba-

Fig. 3. Percentages of data distribution among different clusters in Data1.

Fig. 4. Percentages of data distribution among different clusters in Data2.

Fig. 5. F1 scores obtained by different classification models with Data1. These are averages summarized from 20 trials of 10-fold cross validation.
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bilities with every feature. This leads to cases that Class1 probabil-

ity becomes more comparable to that of the other, and as a

result, F1 measures are marginally improved from the baseline

alternative. Between C4.5 and KNN, the former seeks to find highly

discriminative features to present a root node and others in the

upper layer of a decision tree. However, in Data1, correlation mea-

sures between features and target classes are rather low, thus

demoting the effectiveness of this method, which may make use

of some but not all available features. This is in line with the result

of KNN that achieves a better result by simply including all fea-

tures to find a nearest neighbor. With Data2 where correlations

between features and classes get higher than before, C4.5 has

become more effective as some individual features alone are infor-

mative to classify new samples, compared to the aggregation of all

features pursued by the KNN counterpart.

Besides the overview given above, Tables 3 and 4 provides more

details about precision and recall measures (i.e., both averages and

corresponding standard deviations from 10-fold cross validation)

obtained by different classification models for Data1 and Data2.

Based on the former, the context-based framework is able to

improve both precisions and recalls using C4.5 and KNN. As for

the other dataset, the proposed mechanism is exceptional such

that both measures have been significantly improved over those

of the baseline. For instance, the recall scores of both C4.5 and

KNN that are simply nothing before have become more desirable

for the discovery in astronomy (i.e., it is preferred that a model is

capable of recalling all the real sources). Another interesting find-

ing from these results is that reducing the size of the original data

to the context CTXd not only makes the prediction more efficient,

but also allows a classifier like C4.5 that determines significance

of features more effective. With the arguments made thus far,

the clustering-led context generation proves to be useful and gives

a good foundation for further development. For the context CTXd,

the undersampling method introduced by Tabacolde et al. (2018)

can be exploited prior the creation of a classifier.

For the interpretation of experimental results thus far, averages

across multiple trials are exploited for simplicity. This initial

assessment approach follows the central limit theorem (CLT) sug-

Fig. 6. F1 scores obtained by different classification models with Data2. These are averages summarized from 20 trials of 10-fold cross validation.

Table 3

Precision (PR) and Recall (RC) obtained with all investigated classification models for Data1. These are averages summarized from 20 trials of 10-fold cross validation with

corresponding values of standard deviations being given in (brackets).

Classifier PR(Baseline) PR(Context-based) RC(Baseline) RC(Context-based)

NB 0.0046 0.0082 0.5625 0.5625

(0.0036) (0.0032) (0.1201) (0.1062)

C4.5 0.0000 0.0187 0.0000 0.1250

(0.0000) (0.0079) (0.0000) (0.0842)

KNN 0.2500 0.6667 0.1250 0.2500

(0.0974) (0.1013) (0.0883) (0.1006)

Table 4

Precision (PR) and Recall (RC) obtained with all investigated classification models for Data2. These are averages summarized from 20 trials of 10-fold cross validation with

corresponding values of standard deviations being given in (brackets).

Classifier PR(Baseline) PR(Context-based) RC(Baseline) RC(Context-based)

NB 0.0031 0.0092 0.1667 0.2778

(0.0030) (0.0022) (0.1001) (0.0924)

C4.5 0.0000 1.0000 0.0000 0.3333

(0.0000) (0.0000) (0.0000) (0.0721)

KNN 0.0000 0.4444 0.0000 0.2857

(0.0000) (0.0871) (0.0000) (0.0722)
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gesting that the observed statistics in a controlled experiment can

be justified to the normal distribution. However, to obtain a more

robust comparison between context-based classifiers and their

baseline models, the number of times that one is ‘significantly bet-

ter’ and ‘significantly worse’ (of 95% confidence level) than the

others are investigated next. Let lði; j; tÞ be the average of F1

scores, across the t-th run of n-fold cross validation (n is 10 for

the current research) for a technique i 2 TC (TC contains a

context-based classifier and its baseline model), on a specific data-

set j 2 DAT (DAT consists of Data1 and Data 2). Formally, lði; j; tÞ
can be defined as follows:

lði; j; tÞ ¼ 1

n

X

n

g¼1
F1gði; j; tÞ; ð19Þ

where F1gði; j; tÞ denotes the F1 score obtained from the g-th fold

within the t-th run of method i, on the dataset j. The comparison

of means obtained from a single trial of cross validation may be

misleading, as the difference between means may not be statisti-

cally significant at times. As such, it is more reliable to make a deci-

sion based on the 95% confidence interval for the mean lði; j; tÞ.
Such an interval is defined by the following.

lði; j; tÞ � 1:96
Stdði; j; tÞ

ffiffiffi

n
p ; lði; j; tÞ þ 1:96

Stdði; j; tÞ
ffiffiffi

n
p

� �

; ð20Þ

where Stdði; j; tÞ denotes the standard deviation of F1 measures

across n-folds cross validation of the t-th trial, for a technique i over

a dataset j. The statistical significance of the difference between any

twomethods i; i0 2 TC over any dataset j 2 DAT is found if there is no

intersection between their confidence intervals of lði; j; tÞ and

lði0; j; tÞ. For any dataset j, a classifier i is significantly better than

the other model i0 when

lði; j; tÞ � 1:96
Stdði; j; tÞ

ffiffiffi

n
p

� �

> lði0; j; tÞ þ 1:96
Stdði0; j; tÞ

ffiffiffi

n
p

� �

ð21Þ

Following that, the frequency that one technique i 2 TC is signif-

icantly better than the other across all experimented trials and

datasets, i.e., BðiÞ, is calculated by the next equation.

BðiÞ ¼
X

8j2DAT

X

8t¼1...20

X

8i02TC;i0–i
betterjði; i0; tÞ; ð22Þ

where

betterjði;i0;tÞ¼
1 if lði;j;tÞ�1:96Stdði;j;tÞ

ffiffi

n
p

	 


> lði0;j;tÞþ1:96Stdði0;j;tÞ
ffiffi

n
p

	 


0 otherwise

(

ð23Þ

Likewise, the frequency that one technique i 2 TC is signifi-

cantly worse than the other, i.e., WðiÞ, is estimated as follows.

WðiÞ ¼
X

8j2DAT

X

8t¼1...20

X

8i02TC;i0–i

worsejði; i0; tÞ; ð24Þ

where

worsejði;i0;tÞ¼
1 if lði;j;tÞþ1:96Stdði;j;tÞ

ffiffi

n
p

	 


< lði0;j;tÞ�1:96Stdði0;j;tÞ
ffiffi

n
p

	 


0 otherwise

(

ð25Þ

Based on this statistical evaluation approach, Fig. 7 presents (B-

W) statistics, i.e., the difference between frequencies of better and

worse, which compare each of four context-based classifiers to

their baseline models. Given the number of trials as 20, the range

of this (B-W) is between �20 and 20, where the minimum occurs

as a context-based classifier is significantly worse than its baseline

for all 20 trials of 10-fold cross validation, and the maximum hap-

pens as it is constantly better than the baseline model. More details

are provided in Table 5, in which frequencies of both better and

worse are presented for different classification models. Based on

this assessment, the proposed framework is usually more effective

than a baseline for both datasets examined herein. In addition, the

improvement made to NB is less significant than other two cases,

with (B-W) values being around 10. Similar statistics for C4.5

and KNN are 14 and 18 with Data1, 20 and 20 for Data2, respec-

tively. This observation supports the discussion made earlier that

NB is still constrained by a problem of data spareness, despite of

the help of context-based implementation to decrease the differ-

ence of feature-specific probabilities between classes.

Continue from the statistical evaluation emphasized previously,

it is interesting to further explore both KNN and C4.5 with respect

to their parameter settings, i.e., the number of nearest neighbors

(K) and the maximum depth (Depth), respectively. For this pur-

pose, additional assessments are conducted by repeating the afore-

mentioned experiment for different parameter values. Specific to

KNN, Fig. 8 shows F1 measures which have been obtained with dif-

ferent values of K 2 f1;2;3;4;5;6g, and categorized by datasets.

Note that, just like before, these scores are averages from 20 trials

Fig. 7. Frequency of (B-W) obtained by four context-based classifiers, each of which is compared to its baseline model.
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Table 5

Better and worse frequencies obtained by different classification models, categorized by two datasets investigated in this study. Note that these are acquired from a comparison

between each context-based classifier and its baseline counterpart.

Dataset Classifier Modeling approach Better (frequency) Worse (frequency)

Data1 NB Baseline 2 12

Context-Based 12 2

C4.5 Baseline 0 14

Context-Based 14 0

KNN Baseline 0 18

Context-Based 18 0

Data1 NB Baseline 1 10

Context-Based 10 1

C4.5 Baseline 0 20

Context-Based 20 0

KNN Baseline 0 20

Context-Based 20 0

Fig. 8. F1 scores obtained by KNN with different values of K 2 f1;2;3;4;5;6g. Note that these are averages from 20 trials of 10-fold cross validation.

Fig. 9. F1 scores obtained by C4.5 with different values of Depth 2 f6;8;10;12;14g. Note that these are averages from 20 trials of 10-fold cross validation.
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of 10-fold cross validation. With this figure, the optimal K of 3

should be employed instead of the current choice of K = 1, such

that F1 is improved from 0.3636 to 0.3741 in Data1, and from

0.3478 to 0.3706 in Data2. Likewise, Fig. 9 presents F1 values

obtained with various depths of decision tree, i.e., Depth

2 f6;8;10;12;14g. It is noteworthy that the greatest value of

Depth is 15 that is the number of available features, is not included

here as it does not lead to an improvement to Depth of 14. In accor-

dance with this illustration, the optimal setting of Depth = 8 can

slightly lift the model accuracy from the current choice of

Depth = 10, i.e., from 0.0325 to 0.0742 in Data1, and from 0.5000

to 0.5215 in Data2. Given this insight, classification performance

can be maximized, either though the use of recommended values

or the empirical framework exploited to generate these two

figures.

It is also important to point out that the current work provides a

new benchmark for researches in both areas of general data mining

as well as astronomical data analysis. As such, most of the studies

focus on assessing a new method or a collection of them over data-

sets in which the minority class occupies 1% to 30% of the whole

Fig. 10. A scatter plot of samples in Data1, categorized into five clusters where x-axis and y-axis correspond to the two attributes of DipoleFit_Flux_x 2 ½0;1� and
DipoleFit_Flux_y 2 ½0;1�. Note that the true sources are highlighted by red blocks.

Fig. 11. A scatter plot of samples in Data1, categorized into five clusters where x-axis and y-axis correspond to the two attributes of DipoleFit_Flux_x 2 ½0;1� and
DipoleFit_Flux_y 2 ½0;1�. Note that the blue dashed blocks with samples of class0 only are those areas that can be further filtered out.
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training set. Very few such as Nanni et al. (2015) has a try with the

case of minority class being between 0.5% to 1%. Given this, the

investigation with the two datasets in this paper (minority class

is less than 0.5%) provides a rare opportunity to assess how well

the proposed and existing techniques can cope with the extreme

scenario. Fig. 10 presents the scatter plot of samples belonging to

five clusters in Data1, with the true sources being highlighted in

red marks. Note that x-axis and y-axis of this plot correspond to

the two attributes of DipoleFit_Flux_x 2 ½0;1� and DipoleFit_Flux_y

2 ½0;1�, which exhibit the best correlations to the known classes. It

is obvious from this figure that cluster0 can be effectively identi-

fied with minimal overlapping with the rest. As a result, a classifi-

cation rule built upon the context CTX0 delivers good performance.

However, the context CTXd covering samples from the other four

clusters obtains a small number of true sources sparsely dis-

tributed over this space. With this illustration, one may realized

that a single model might not be equally effective for the sub-

problems found in this context. Intuitively, it may be possible to

break each of the four clusters further down such that the areas

specified with dashed-blue blocks in Fig. 11 are filtered out. Of

course, the level of imbalance will be even better with this

iterative-like clustering, hence the accuracy of classification model.

Nonetheless, a stopping criterion of such a process seems to be

critical as to prevent the event of overfitting.

5. Conclusion

This paper has presented a new framework to provide data con-

texts from which different classification strategies can be estab-

lished. The proposed idea is unique and different from a

conventional approach to develop a single model to solve all pos-

sible sub-problems within the data under examination. In particu-

lar, these contexts are derived using the recently published method

of noise-induced cluster ensemble that shows exceptional perfor-

mance across several benchmark data collections. Based on the

empirical study with two simulated datasets generated within

the GOTO project and three well-known classification algorithms,

the context-based framework usually leads to better predictive

quality than the baseline counterpart. It is also noteworthy that

the new method is generalized such that the resulting contexts

can be coupled with existing techniques to solve the imbalance

problem.

Despite the reported improvement, one possible way to take

this framework forward is to repeatedly apply the clustering to fil-

ter out those samples of the majority class. This is rather similar to

the bi-level learning mechanism employed for the task of face

detection (Boongoen et al., 2016). As mentioned earlier, figuring

out effective stopping criteria would be a challenge. Another signif-

icant work that may reveal an important factor to enhance the pro-

posed framework further is applications of different ensemble

matrices, consensus functions and aggregation operators

(Boongoen, 2017). A great deal of alternatives can be found in

the literature, which has been developed over the past two decades

(Boongoen and Iam-On, 2018; Pattanodom et al., 2016; Iam-On

and Boongoen, 2015). Besides, possible applications of fuzzy rea-

soning (Fu et al., 2010) and clustering-based data discretization

(Sriwanna et al., 2017) can also be further studied to add the expla-

nation aspect to the desired classification process. Moreover, it will

be interesting to combine this context generation with convolu-

tional neural networks (CNN). This follows the recent trend of

exploiting deep learning technology in the astronomy domain

(Wright et al., 2017). For instance, Deep-HiTS (Cabrera-Vives

et al., 2017) that is a rotation-invariant convolutional neural net-

work model has been introduced to classify images of transient

candidates for the High cadence Transient Survey (HiTS).
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