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Stability Oriented Design of Cyber Attack Resilient

Controllers for Cooperative DC Microgrids
Mahdieh S. Sadabadi, Member, IEEE, Subham Sahoo, Member, IEEE, and Frede Blaabjerg, Fellow, IEEE

Abstract—Due to the importance of reliability and security
in DC microgrids, it is essential to provide maximum resilience
against cyber-attacks. However, insufficient global information
in the microgrid makes it difficult to accurately identify the
location of these attacks. To address these issues, this paper
develops a novel resilient distributed control mechanism, which
ensures average voltage regulation and proportional load sharing
in DC microgrids under unknown cyber-attacks. The proposed
resilient control design does not require any information re-
garding the nature or location of the attacks. By virtue of a
graph theoretical approach and a Lyapunov-based framework,
the proposed resilient distributed control strategy is designed in a
way such that the system stability is always guaranteed following
a comprehensive design mechanism. Finally, the robustness of the
proposed resilient distributed control approach is demonstrated
via simulations and validated by experimental results.

Index Terms—DC microgrids, distributed control, resilient
control, cyber-attack, stability analysis.

I. INTRODUCTION

D ISTRIBUTED control offers a promising solution for the

control of Direct Current (DC) microgrids. They bring

several advantages such as improved scalability, reliability,

flexibility, and efficiency [1]. However, due to limited global

information, they are prone to cyber-attacks, thereby affecting

the stability and operation of DC microgrids. To accommodate

privacy and security in DC microgrids, the resilience of dis-

tributed control algorithms against cyber threats need further

improvement [2].

Recently there has been an increasing attention towards

attack detection techniques and development of resilient dis-

tributed control algorithms. The main focus of the existing

literature is devoted to attack detection and mitigation plat-

form, where the misbehaving distribution generation (DG)

units are detected, identified, and removed. O. Beg et al.

in [3] have proposed a false data injection attack (FDIA)

detection framework based on identifying a change in sets of

inferred candidate invariants. Detection theories for detecting

FDIAs on the current sensors, communication networks in the

control architecture, as well as sensors and communication

channels have been developed in [4], [5], and [6]. Several

detection algorithms for different types of cyber-attacks such
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as denial-of-service (DoS) attacks [6], [7], stealth attack [8],

[9], hijacking attacks [10], and man-in-the-middle (MITM)

attacks [11] have been developed in the literature. Although

these approaches propose various detection algorithms for

detecting and/or mitigating the cyber-attacks, the limitations

on the number of compromised DG units constrain their

applicability for the case where most or all DG units are

subject to cyber-attack. Furthermore, in these algorithms, the

detection and mitigation of cyber-attacks must be fast, before

the stability and performance of the microgrid is disrupted [9].

To deal with the above-mentioned challenges of the attack-

detection techniques, the resilience to the malicious attacks

should be considered as one of the main properties of the

distributed control algorithms. Although extensive research has

been carried out on the development of distributed control

approaches for voltage regulation and current sharing in DC

networks, e.g. [12], [13], the research on stability oriented

resilience of the distributed control algorithms has still not

been extensively explored. To the best of our knowledge, there

exists a few approaches in the literature that solely consider the

resilience property of the distributed control algorithms for DC

microgrids in [14], [15]. These approaches aim to enhance the

resilience of the distributed control algorithms such that DC

microgrids operate as close to normal as possible while under

cyber-attack. In [15], a secondary control in DC microgrids

has been developed which is resilient against FDI attacks on

the actuators. However, the proposed control strategy in [15]

requires exchanging both current and voltage (estimate of the

PCC voltages) of DG units amongst their neighbors, which

increases the vulnerability of DC microgrids to cyber attacks

on the communication links. Embedding the aforementioned

discussions into future research efforts, it is essential to address

the following concerns:

• Can a DC microgrid be uncompromised and stable at the

same time?

• Is resilience feasible under worse case cyber intrusions?

Motivated by these points, this paper aims to design a re-

silient distributed control algorithm that steers DC microgrids

as close as possible to their desired equilibrium and stability

bounds regardless of the presence of any potential unknown

cyber-attacks. In this paper, two types of cyber-attack are

considered, which can compromise the system performance:

(i) false data injection attacks, where the adversary injects false

data to the actuators of DC-DC converters and/or transmitted

data and (ii) man-in-the-middle attacks, which involve infil-

trating the communicated information by a third party [11]. In

contrast to the existing attack detection followed by mitigation
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approaches, the proposed distributed control technique in this

paper does not require any information about the locations

and nature of the cyber-attacks. In addition to the attack

resilient property of the proposed distributed control technique,

it works satisfactorily for other cyber-physical disturbances.

A rigorous stability analysis based on a graph theoretical

approach and the Lyapunov stability methods show that the

proposed resilient control strategy guarantees overall stability

of DC microgrids with DC-DC buck converters, which has

been explained in detail through a comprehensive set of design

guidelines. Finally, a unified design of a stability oriented

cyber-attack resilient distributed controller has been designed

for DC microgrids.

The rest of the paper is structured as follows. The model of

DC microgrids is presented in Section II. The resilient design

of distributed controllers in DC microgrids is proposed in Sec-

tion III. Section IV is devoted to simulation and experimental

results. Finally, the paper ends with concluding remarks in

Section V.

Notation: Throughout this paper, 1n is an n × 1 vector of

ones, 0n is an n × 1 zero vector, In is an n × n identity

matrix, and 0n×m is a zero matrix of dimension n×m. The

symbols XT , X+, tr(X), det(X), and X = [xij ] denote

the transpose, the Moore Penrose inverse, trace, determinant

of matrix X , and a matrix with entries xi,j , respectively.

Throughout the paper, col(x) =
[

xT1 xT2 . . . xTn
]T

and [a] = diag(a1, a2, . . . , an). For a symmetric matrix X ,

the positive definite and positive semidefinite operators are

respectively shown by X ≻ 0 and X � 0. We define the sets

R+ := {x ∈ R |x > 0} and R≥0 := {x ∈ R |x ≥ 0}.

Preliminaries: Let L ∈ R
n×n be a Laplacian matrix for a

connected undirected graph. Then, L = LT , L1n = 0n, and

1
T
nL = 0

T
n [16].

II. CYBER-PHYSICAL DC MICROGRIDS

A. Modeling

Consider a DC microgrid consisting of n distributed gen-

eration (DG) units with DC-DC buck converters, which are

physically connected via m distribution lines, as shown in

Fig. 1(a). The dynamics of DG i connected to DG j via a

distribution line can be described by the following equations:

Liİi(t) = −Vi(t)− riIi(t) + ui(t),

CiV̇i(t) = Ii(t)− YiVi(t)− BijIij(t),

Lij İij(t) = −RijIij(t) + Bij(Vi(t)− Vj(t)),

(1)

where Ii(t), Vi(t), Iij(t), and ui(t) = Vdc,idi(t) are the

current of the power converter i, the voltage at the point of

common coupling (PCC) i, the current of the distribution line

connecting DG i to DG j, and the control input (Vdc,i is the

DC voltage of the input side of the converter i and di(t) is the

duty cycle of DC-DC converter i), respectively. (Li, ri, Ci) are

the filter parameters of the DC-DC buck converter i, (Rij , Lij)
are the parameters of the line, and Yi is the load conductance

of DG i. Bij determines the direction of the line current Iij(t).
Bij = 1 if line current leaves DG i; Bij = −1 if line current

enters DG i; otherwise, Bij = 0. B is the incidence matrix of

the graph.
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Fig. 1. Schematic of the (a) physical and (b) cyber layer of DC microgrid
under study with eight DG units – the physical layer consists of n = 8 DGs
(represented as a node) connected via distribution lines, whereas the cyber
layer includes distributed control modules and communication links.
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Fig. 2. Performance of distributed control in (5) in the presence of cyber-
attack at t = 1s for the microgrid in Fig. 1.

The physical layer of DC microgrids can be modeled by an

undirected graph whose node set V = {1, . . . , n} and edge set

E = {1, . . . ,m} represent the DG units and the distribution

lines, respectively.

B. cyber-attacks and their impact

The common control objectives in DC microgrids are cur-

rent sharing and voltage regulation [9], [15] where the total

load demand is proportionally shared amongst the DG units

at the steady-state and the average voltage of the microgrid is

regulated at a given reference setpoint V ∗. These objectives

are mathematically formulated here:

1

Isi
lim
t→∞

Ii(t) =
1

Isj
lim
t→∞

Ij(t), i, j ∈ V (2)

lim
t→∞

1

n

n
∑

i=1

Vi(t) = V ∗, (3)

where Isi ∈ R+ is the rated current of DG i.
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The above control objectives can be achieved via a dis-

tributed control strategy. In this control setting, each con-

verter transmits Ii(t) and/or Vi(t) to its neighboring DG

units on a communication graph with an adjacency matrix

A = [aij ] ∈ R
n×n. The Laplacian matrix of the undirected

graph is presented by L = D − A, where D is degree

matrix presenting the incoming information to each node [16].

Using the cyber graph topology as shown in Fig. 1(b), the

information is transmitted between the neighboring DG units.

To achieve the control objectives in (2) and (3), [17]

proposes the following distributed averaging controller:

u(t) = 1nV
∗ − [α] (I(t)− φ(t)) +WLT θ(t),

[Tθ] θ̇(t) = −LW I(t),

[Tφ] φ̇(t) = −φ(t) + I(t),

(4)

where [Tθ] ≻ 0, [Tφ] ≻ 0, [α] ≻ 0, u(t) = col(u(t)),
I(t) = col(I(t)), W = diag( 1

Is ), and L ∈ R
n×n is

a Laplacian matrix associated with a connected undirected

communication graph. θ(t) ∈ R
n (in [V]) and φ(t) ∈ R

n

(in [A]) are the states of the distributed controller.

The distributed control systems are subject to cyber-attacks.

In this paper, we specifically consider two types of attacks:

(i) false data injection (FDI) attacks where attackers distort

control input channels by injecting false data and (ii) man-in-

the-middle (MITM) attacks involving infiltrating the commu-

nicated information by a third party [11]. In this paper, we

assume that FDI attacks are only on control input channels.

The distributed control (4) under these attacks can be written

as follows:

u(t)=1nV
∗−α (I(t)− φ(t)) +WLT(θ(t) + d1(t)) + ∆u(t)

[Tθ] θ̇(t) = −LW (I(t) + d2(t)) ,

[Tφ] φ̇(t) = −φ(t) + I(t),
(5)

where ∆u(t) ∈ R
n, d1(t) ∈ R

n, and d2(t) ∈ R
n represent

the attack vectors.

In Fig. 2, it can easily be shown that for a DC microgrid with

n = 8 DG units the voltage regulation and current sharing

objectives in (2) and (3) are no longer achieved by using the

distributed control in (4) in the presence of cyber-attacks. At

t = 1s, DG 3 is subject to bounded attacks ∆u(t), d1(t), and

d2(t). The cyber-physical architecture of the considered DC

microgrid is shown in Fig. 1. As it can be seen in Fig. 2,

the existence of such attacks at t = 1s leads to non-zero

offsets in PCC voltages; furthermore, the load current is no

longer proportionally shared amongst the DG units. Therefore,

it is essential to develop an attack-resilient distributed control

mechanism for DC microgrids so that the effects of the cyber-

attacks on the voltage regulation and proportional current

sharing are mitigated. At the same time, it is important to

prevent the system from unbounded attacks.

III. RESILIENT DISTRIBUTED CONTROL IN MICROGRIDS

This section details out the design of a distributed resilient

control strategy for DC microgrids which are subject to the

aforementioned cyber-attacks. It will be shown that the states

of DC microgrids equipped with the proposed distributed

control remain bounded when attacks occur. Moreover, the

control objectives in (2) and (3) are guaranteed following the

proper design of control parameters.

We propose the following distributed control strategy com-

posed of n nodes, where each node corresponds to a DG unit.

The dynamics of node i are given as follows:

ui(t) = k1,iVi(t) + k2,iIi(t) + k3,ivi(t)

+ k4,i
∑

j∈Ni

ηi,j

(

Ii(t)

Isi
−

Ij(t)

Isj

)

+ k5,iγ
∑

j∈Ni

ηi,j (θi(t)− θj(t)) + k6,i (Ii(t)− φi(t)) ,

Tvi v̇i(t) =
β

Isi
(−Vi(t) + V

∗) +
γβ

Isi

∑

j∈Ni

ηi,j (θi(t)− θj(t))

−
αiβ

Isi
(Ii(t)− φi(t))−

Kβ

Isi

∑

j∈Ni

ηi,j

(

Ii(t)

Isi
−

Ij(t)

Isj

)

,

Tθi θ̇i(t) =−γ
∑

j∈Ni

ηi,j

(

Ii(t)

Isi
−

Ij(t)

Isj

)

−
∑

j∈Ni

ηi,j (θi(t)− θj(t)) ,

Tφi
φ̇i(t) = −φi(t) + Ii(t),

(6)

where vi(t), θi(t), and φi(t) are the states of the controller. In

(6), Ni is the set of neighboring DG units of DG i, Tθi ∈ R+,

Tφi
∈ R+, Tvi ∈ R+, K ∈ R+, γ ∈ R+, αi ∈ R+, β ∈

R+, and ηi,j ∈ R+. The gain parameters kj,i, j = 1, . . . , 6
and i = 1, . . . , n, affect the stability and performance of DC

microgrids. The control structure for each DG has been shown

in Fig. 3. The control parameters can be designed based on

the design criteria using Theorem 1 in Subsection III-A.

Assumption 1. It is assumed that the undirected communica-

tion graph in the distributed controller in (6) is connected.

The dynamics of cyber-physical DC microgrids under the

potential FDI and MITM attacks are described by the follow-

ing dynamic equations:

[C] V̇(t) = I(t)− [Y ]V(t)− BIl(t),

[Ll] İl(t) = − [Rl] Il(t) + BT
V(t),

[L] İ(t) = ([k1]− In)V(t) + ([k2]− [r]) I(t) + [k3]v(t)

+ [k4]LW (I(t) + d2(t)) + γ [k5]L
T (θ(t) + d1(t))

+ [k6] (I(t)− φ(t)) + d5(t),

[Tv] v̇(t) = −βW (V(t)− 1nV
∗)−KβWLW (I(t) + d2(t))

−W [α]β (I(t)− φ(t))+γβWLT (θ(t) + d1(t)) + d3(t),

[Tθ] θ̇(t) = −L (θ(t) + γW I(t) + d4(t)) ,

[Tφ] φ̇(t) = −φ(t) + I(t),
(7)

where V(t) = col(V (t)), I(t) = col(I(t)), v(t) = col(v(t)),
φ(t) = col(φ(t)), θ(t) = col(θ(t)), Il(t) is a vector of line

currents, and dk(t) ∈ R
n, k = 1, . . . , 5, denote the attack

vectors. [Ll] and [Rl] are diagonal matrices whose diagonal

elements are the line inductance and resistance values, respec-

tively. In (7), dk(t) ∈ R
n, k = 1, . . . , 4, represent the effects

of MITM attacks on communication links whereas d5(t) ∈ R
n

represents the existence of FDI attacks on control input

channels (actuators). Fig. 4 shows the block diagram of the DC

microgrid controlled by the cooperative resilient distributed
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Fig. 3. A networked DC microgrid with n DG units operating with a
distributed cyber graph, equipped with the proposed distributed control scheme
in (6).
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Fig. 4. Block diagram of the cooperatively controlled DC microgrid – The
blocks highlighted with red indicate the attack vulnerable sections.

controller in (6). The figure highlights the vulnerable areas

of the cooperatively controlled DC microgrid to cyber-attacks

that includes sensors, actuators, and communication channels.

Assumption 2. It is assumed that the attack vectors dk(t),
k = 1, . . . , 5 are uniformly bounded, i.e., ‖dk(t)‖ ≤ δk,

∀t ≥ 0.

Assumption 2 is reasonable from a practical perspective,

since any intelligent attacker would aim at destabilizing dis-

tributed control systems with a bounded injection to avoid the

attack detection. In the case of unbounded attacks, a defensive

mechanism, called bad data detection, can be used. In the bad

data detection mechanism, excessively large values received at

each control node are rejected/filtered by applying a threshold-

based defensive protocol proposed in [18]. To this end, a

compact set Ω is defined for all feasible values of exchanged

variables. If a received state variable at each node belongs to

Ω, it will be accepted. Otherwise, it will be removed or filtered.

The bad data detection mechanism can be incorporated before

applying the proposed resilient control strategy.

The cyber-physical DC microgrids in (7) can be considered

as a perturbed linear system, where dk(t), k = 1, . . . , 5 depict

the perturbation terms. To ensure the stability of the perturbed

microgrid under unknown bounded cyber-attacks, [kq] with

q = 1, . . . , 6 in (7) need to be designed following a certain

policy. This will be explained in details in the next subsection.

A. Stability analysis

The stability analysis of the cyber-physical DC microgrids

in (7) is discussed in Theorem 1.

For the cyber-physical DC microgrid in (7), the error vector

x̃(t) = x(t)− x̄ and d̃(t) are defined, where

x(t) =
[

V
T (t), IT (t), ITl (t),v

T (t), θT (t), φT (t)
]T

,

d̃(t) =
[

d
T
1 (t),d

T
2 (t),d

T
3 (t),d

T
4 (t),d

T
5 (t)

]T

,

(8)

and

x̄ =
[

V̄
T
, Ī

T
, Ī

T
l , v̄

T
, θ̄

T
, φ̄

T
]T

, (9)

are the equilibria of (7) for the case where d̃(t) = 0. The

equilibria x̄ can be obtained as follows (see Lemma 2 in

Appendix B):

V̄ = ∆V +

[

σWW−1L+(1nV
∗)

(K+γ2)

1
T
nV

∗

]

,

Ī =
(

[Y ] + B [Rl]
−1

BT
)

V̄,

Īl = [Rl]
−1

BT
V̄,

v̄ =[k3]
−1
([1− k1] V̄ + ([r]−[k2]−[k4]LW ) Ī−γ [k5]L

T θ̄)

θ̄ = 1nθ
∗ − γW Ī,

φ̄ = Ī,

(10)

where

σW = In −W
−1

1n

(

1
T
nW

−1
1n

)−1

1
T
n ,

θ
∗ =

1
T
n [Tθ]

−1

1T
n [Tθ]

−1
1n

(

θ(0) + γW Ī
)

,

∆V =

[

B [Rl]
−1 BT + σW [Y ] + σWW−1

L
+W−1

(K+γ2)
1
T
n

]

.

(11)

The dynamics of the error system are represented by:

˙̃x(t) = Ax̃(t) +Bd̃(t), (12)

where A and B are defined by (34) in Appendix A. As one

can observe from the above equation, the term d̃(t) appears as

perturbations in the linear dynamics (12). Therefore, in order

to show the stability of the cyber-physical DC microgrid in

(7), it is sufficient to show that A in (12) is a Hurwitz matrix.

Note that d̃(t) does not depend on x̃(t).
The following theorem illustrates the input-to-state stability

(ISS) of the cyber-physical microgrid in (7). As a result of

ISS, the states x(t) in (7)-(8) are uniformly bounded under all

the potential bounded attacks di(t), i = 1, . . . , 5.

Theorem 1. Let’s assume that the communication graph

associated with L in (7) is connected. If K ∈ R+, γ ∈ R+,

β ∈ R+, [α] ≻ 0, [Tv] ≻ 0, [Tθ] ≻ 0, [Tφ] ≻ 0, and kj,i, for

i ∈ V and j = 1, . . . , 6, belongs to the following set:

Z[i] =



































k1,i < 1, k2,i < ri,

0 <k3,i <
Tvi

βLi

(1− k1,i) (ri − k2,i) ,

k4,i = −
K

Isi
(1− k1,i), k5,i =

1

Isi
(1− k1,i)

k6,i = αi(k1,i − 1)



































.

(13)
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then, the matrix A in (34) (see Appendix A) is Hurwitz.

Proof. Let d̃(t) = 0 in (12). Then, it is sufficient to show that

the origin in (12) is globally asymptotically stable. To this end,

we consider the following Lyapunov function:

V(x̃) =
1

2
Ṽ

T (t) [C] Ṽ (t) +
1

2
Ĩ
T
l (t) [Ll] Ĩl(t) +

1

2
θ̃
T (t) [Tθ] θ̃(t)

+
1

2
φ̃
T (t) [α] [Tφ] φ̃(t) +

1

2

n
∑

i=1

[

Ĩi(t) ṽi(t)
]

Pi

[

Ĩi(t) ṽi(t)
]T

,

(14)

where Ṽ (t) = V(t) − V̄, Ĩ(t) = I(t) − Ī, Ĩl(t) = Il(t) − Īl,

θ̃(t) = θ(t)− θ̄, φ̃(t) = φ(t)− φ̄, and ṽ(t) = v(t)− v̄. Matrix

Pi in (14) is defined as follows:

Pi =





Liρi −β Li

Tvi

ρiωi

−β Li

Tvi

ρiωi ωi

(

1 + β2 Li

T2
vi

ρiωi

)



 , (15)

where ρi ∈ R+ and ωi ∈ R+ are determined based on any

values of (k1,i, k2,i, k3,i, Tvi) in Z[i] given in (13) as follows:

ρi =
(ri − k2,i)

(ri − k2,i)(1− k1,i)− β Li

Tvi

k3,i
,

ωi = Tvi

k3,i

β(ri − k2,i)
.

(16)

Note that Pi ∈ R
2×2, tr(Pi) > 0, and det(Pi) = Liρiωi > 0,

hence Pi ≻ 0. The time derivative of V(x̃) in (14) along the
trajectories (12) is expressed as follows:

V̇(x̃) =
1

2

(

Ṽ
T
Ĩ + Ĩ

T
Ṽ − Ṽ

TBĨl − Ĩ
T
l BT

Ṽ
)

− Ṽ
T [Y ] Ṽ

+
1

2

(

Ĩ
T
l BT

Ṽ + Ṽ
TBĨl

)

− Ĩ
T
l [Rl] Ĩl

−
1

2
θ̃
T (L+ LT )θ̃ −

γ

2

(

θ̃
TLWĨ + Ĩ

T
WLT

θ̃
)

+
1

2

(

φ̃
T [α]

(

−φ̃+ Ĩ
)

+
(

−φ̃+ Ĩ
)T

[α] φ̃

)

+
1

2

n
∑

i=1

[

Ĩi ṽi

]

Qi

[

Ĩi ṽi

]T

+
1

2

n
∑

i=1

(

[

Ĩi ṽi

]

PiBVi
ṽi + ṽiB

T
Vi
Pi

[

Ĩi ṽi

]T
)

+
1

2

n
∑

i=1

([

Ĩi ṽi

]

PiBφi

(

−φ̃i + Ĩi

))

+
1

2

n
∑

i=1

(

(

−φ̃i + Ĩi

)

B
T
φi
Pi

[

Ĩi ṽi

]T
)

+
1

2

n
∑

i=1

(

[

Ĩi ṽi

]

PiBθi

n
∑

j=1

ηi,j

(

θ̃i(t)− θ̃j(t)
)

)

+
1

2

n
∑

i=1

(

n
∑

j=1

ηi,j

(

θ̃i(t)− θ̃j(t)
)

B
T
θi
Pi

[

Ĩi ṽi

]T

)

+
1

2

n
∑

i=1

[

Ĩi ṽi

]

PiBIi

n
∑

j=1

ηi,j

(

Ii(t)

Isi
−

Ij(t)

Isj

)

+
1

2

n
∑

i=1

n
∑

j=1

ηi,j

(

Ii(t)

Isi
−

Ij(t)

Isj

)

B
T
Ii
Pi

[

Ĩi ṽi

]T

, (17)

where

Qi = Pi

[

k2,i−ri
Li

k3,i

Li

0 0

]

+

[

k2,i−ri
Li

k3,i

Li

0 0

]T

Pi,

BVi
=

[

k1,i−1

Li
−β

Tvi
Is
i

]

, Bφi
=

[

k6,i

Li
−αiβ

Is
i
Tvi

]

,

Bθi = γ

[

k5,i

Li
β

Is
i
Tvi

]

, BIi =

[

k4,i

Li

−β K
Is
i
Tvi

]

.

(18)

By direct calculations and taking into account (15)-(16), it

follows that

ρi

(

(k1,i − 1) + β
2 Li

T 2
vi

ωi

)

= −1, (19)

and

Qi = −2ρi





(ri − k2,i) −β
(ri−k2,i)

Tvi

ωi

−β
(ri−k2,i)

Tvi

ωi
β2ν2

i

T2
vi

(ri − k2,i)



 ,

PiBVi
=

[

−1
0

]

, PiBφi
= αi

[

−1
0

]

,

PiBθi =
γ

Isi

[

1
0

]

, PiBIi =
K

Isi

[

−1
0

]

.

(20)

Therefore, considering the above equations and the sym-

metric property of the Laplacian matrix L, V̇(x̃) in (17) can

be rewritten as

V̇(x̃) = −Ṽ
T [Y ] Ṽ − Ĩ

T
l [Rl] Ĩl − θ̃

TLθ̃ −KĨ
T
WLWĨ

−
(

Ĩ − φ̃
)T

[α]
(

Ĩ − φ̃
)

+
1

2

N
∑

i=1

[

Ĩi ṽi

]

Qi

[

Ĩi ṽi

]T

.
(21)

In can be shown that tr(Qi) = −2ρi(ri−k2,i)(1+β
2 ω2

i

T 2
vi

) <

0 and det(Qi) = 0. Since Qi ∈ R
2×2, Qi � 0. Therefore,

V̇(x̃) ≤ 0. Now, we define S =
{

x(t) : V̇(x̃) = 0
}

. If

V̇(x̃) = 0, then Ṽ = 0, Ĩl = 0, θ̃ = 1ne
∗
θ (e∗θ ∈ R),

Ĩ = φ̃, Ĩ = W−1
1ne

∗
I (e∗I ∈ R), and

[

Ĩi ṽi

]T

∈ ker(Qi),

i = 1, . . . , n. The closed-loop trajectories in (12) imply that

Ĩ = φ̃ = 0 and ṽ = 0. As 1
T
n [Tθ]

−1
θ̃ = 0, e∗θ = 0; hence,

θ̃ = 0. Thus, the only solution that can stay identically in

S is x̃(t) = 0. Therefore, the origin in (12) is the globally

asymptotically stable. As a result, A in (34) is Hurwitz (see

Appendix A). Therefore, the closed-loop system in (12) is

input-to-state stable (ISS). This implies that for a potential

bounded attack d̃(t), the states of the cyber-physical DG

microgrid in (7) are bounded.

B. Steady-state analysis

In this subsection, it will be shown that by means of the

cyber-attack-resilient distributed control approach in (6) the

average voltage regulation and proportional current sharing

objectives in (2) and (3) are achieved in steady-state despite

the presence of unknown attacks.

Lemma 1. Consider the cyber-physical DC microgrid (7)

in the presence of the unknown bounded attacks di(t), i =
1, . . . , 5. Under the stability conditions given in Theorem 1, for

a sufficiently large γ and β, the proportional current-sharing

and average voltage regulation in (2) and (3) are achieved.
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Proof. Considering the error dynamics in (12), the error state

vector x̃(t) can be obtained as follows:

x̃(t) = e
At

x̃(0) +

∫ t

0

e
A(t−τ)

Bd̃(τ) dτ. (22)

By invoking the properties of norms, we have:

lim
t→∞

‖x̃(t)‖ ≤ lim
t→∞

∥

∥

∥
e
At

x̃(0)
∥

∥

∥
+

∥

∥

∥

∥

∫ t

0

e
A(t−τ)

Bd̃(τ)dτ

∥

∥

∥

∥

. (23)

Given the stability of the error system in (12),

limt→∞

∥

∥eAtx̃(0)
∥

∥ = 0. As a result,

lim
t→∞

‖x̃(t)‖ ≤ lim
t→∞

∥

∥

∥

∥

∫ t

0

e
A(t−τ)

Bd̃(τ) dτ

∥

∥

∥

∥

. (24)

Since the cyber-attack d̃(t) is assumed to be uniformly

bounded (see Assumption 2), it can be shown that there exists

a constant vector ∆ and a positive constant t⋆ such that for

all t ≥ t⋆, we have
∥

∥

∥

∥

∫ t

0

e
A(t−τ)

Bd̃(τ) dτ

∥

∥

∥

∥

≤

∥

∥

∥

∥

∫ t

0

e
A(t−τ)

B∆ dτ

∥

∥

∥

∥

. (25)

Thus,

lim
t→∞

‖x̃(t)‖ ≤ lim
t→∞

∥

∥

∥

∥

∫ t

0

e
A(t−τ)

B∆ dτ

∥

∥

∥

∥

=
∥

∥−A
−1

B∆
∥

∥ . (26)

By calculating A
−1 using the results in [19], it can be

shown that for a sufficiently large γ and β,
∥

∥−A
−1

B∆
∥

∥ ≈ 0.
Hence, limt→∞ ‖x̃(t)‖ ≈ 0. As a result, at the steady-state,
limt→∞ x(t) ≈ x̄, where x̄ is given in (10). Thus, at the steady
state, one can obtain:

0 = −φ̄+ Ī (27a)

0 = βW
((

−V̄ + 1nV
∗
)

−KLW Ī+ γLθ̄
)

(27b)

0 = L
(

θ̄ + γW Ī
)

. (27c)

By left multiplying (27b) by 1
nβ

1
T
nW

−1 and invoking the

properties of the Laplacian matrices L, one obtains:

1

n
1
T
n V̄ = V ∗. (28)

From (27c), one obtains that Lθ̄ = −L
(

γW Ī
)

. Eliminating

Lθ̄ from (27b) yields:
(

K + γ2
)

WLW Ī =W (−V̄ + 1nV
∗). (29)

The above equation can be rewritten as:

LW Ī =
1

(K + γ2)

(

−V̄ + 1nV
∗
)

. (30)

For a sufficiently large γ, from (30) one obtains that

lim
γ→∞

LW Ī = 0. (31)

In this case, Ī = W−1
1ni

∗, where i∗ ∈ R is a scalar. As a

result,
Īi

Isi
=
Īj

Isj
, i, j ∈ V. (32)

From (28) and (32), one can observe that the average voltage

regulation and the proportional current-sharing are achieved

regardless of the existence of potential cyber-attacks.

TABLE I
DESIGN CRITERIA OF CONTROL PARAMETERS IN (6).

Parameter Design Criteria

k1,i k1,i < 1
k2,i k2,i < ri

k3,i 0 < k3,i <
Tvi

βLi
(1− k1,i) (ri − k2,i)

k4,i k4,i = −
K
Is
i
(1− k1,i)

k5,i k5,i =
1
Is
I

(1− k1,i)

k6,i k6,i = αi(k1,i − 1)

C. Design Guidelines

Table I summarizes the design criteria for the proposed

resilient distributed controller in (6), where Tθi , Tφi
, Tvi

, K,

and αi are positive quantities.

In general, the smaller values of (Tθi , Tφi
, Tvi

) lead to

faster responses. As discussed in Lemma 1, γ and β should

be sufficiently large in order to achieve current sharing and

voltage regulation in the presence of cyber-attacks. Moreover,

the value of k3,i provides a trade-off between the speed of the

response and overshoot, i.e., a higher value of k3,i will result

in faster convergence with a higher overshoot.

Remark 1. The proposed resilient control approach in this

paper can be applied to DC microgrids with constant power

loads (CPLs). Assuming that the DC microgrid with CPLs

admits an equilibrium point, the nonlinear terms associated

with CPLs can be linearized around the equilibrium point.

The details about the linearization can be found in [20]. In

this case, the effects of CPLs with a constant power of PLi

appear in the first block of A in (34) as − [C]
−1

([Y ]−YCPL),

where YCPL = diag(
PL1

V̄ 2
1

, . . . ,
PLn

V̄ 2
n

).

IV. RESULTS

A. Simulation Results

This subsection evaluates the performance of the proposed

resilient distributed control strategy in (6) for a case study of

a DC microgrid operating at a voltage reference V ∗ = 48
V. The microgrid consists of n = 8 DG units with DC-

DC buck converters connecting via m = 8 resistive-inductive

power lines, as schematically shown in Fig. 1. The microgrid

topology and the parameters of the DG units has been referred

from [15]. The control parameters of the proposed control

strategy are designed based on the design criteria outlined in

Table I and their numerical values are provided in Appendix C

in Section VI. The rated current of the DC-DC converters are

Is1 = Is4 = Is5 = Is8 = 1 and Is2 = Is3 = Is6 = Is7 = 2.

In simulation case studies in MATLAB/Simscape, a Simulink

switching model has been used.

First, the robust performance of the proposed distributed

control strategy for the DC microgrid in Fig. 1 is assessed. To

this end, it is assumed that the load conductance at PCC 2
is doubled at t = 1s. Next, we evaluate the performance

of the proposed distributed control mechanism in (6) against

the unknown constant cyber-attacks. It is assumed that the

cyber-physical DC microgrid is attacked by injecting the false

data d1 = [0 0 0 5 0 0 0 0]
T

, d2 = [5 0 0 0 0 0 0 0]
T

,
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Load Change at t=1s

Load Change Attack

Attack at t=2s

Fig. 5. Performance of the proposed resilient distributed controller in the

presence of load change and constant FDI and MITM attacks: (a) currents of

DC-DC converters, (b) load voltages at PCCs, and (c) average voltage across

the microgrid.

Fig. 6. Performance of the proposed attack-resilient distributed controller in

the presence of time-varying dynamic FDI attacks on the actuators (The x-axis

in all sub-figures is time t(s)).

d4 = [10 0 0 5 0 0 0 0]
T

to the communication links θ(t)
and I(t), as presented in (7), d5 = [5 15 5 10 10 10 15 5]

T

to the actuators of all DC-DC converters at t = 2s. Moreover,

the microgrid is also subject to the MITM attack d3 =
[0 5 0 15 0 − 7 10 5]

T
at t = 2s. The currents of the DG

units, voltages at PCCs, and the average of the PCC voltages

are depicted in Fig. 5.

As one can observe in Fig. 5, when false data injection

and MITM attacks are launched simultaneously at t = 2s,
the resilient distributed controller mitigates the adverse effect

of the attack on voltage and current signals. As a result, the

sharing accuracy and consensus between DG units is unaltered

despite the presence of the cyber-attack. The results show

that by means of the proposed resilient control strategy, the

average voltage regulation and proportional current sharing in

the microgrid are achieved satisfactorily even in the presence

Fig. 7. Attack attenuation performance of the proposed distributed controllers:

(a) control signals ui(t) and (b) duty cycles of DC-DC converters.

Fig. 8. Performance of the proposed resilient distributed controller in the

presence of constant, sinusoidal, and sawtooth FDI attacks on actuators

launched at t = 3 s (The x-axis in all sub-figures is time t(s)).

Fig. 9. Attack-resilient feature of the proposed distributed controller for a

DC microgrid with different types of DC-DC converters: (a) equal current

sharing of DC-DC converters, (b) load voltages at PCCs, (c) average voltage

across the microgrid.
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Line failure at t=4s

Fig. 10. Robustness of the proposed resilient distributed controller to the

disconnection of the line connecting DG 1 to DG 2: (a) converter currents,

(b) load voltages at PCCs, and (c) average voltage across the microgrid.

of the cyber-attacks and load changes.

In the next case study shown in Fig. 5, the performance of

the proposed resilient control technique is assessed under the

following dynamic bounded FDI attacks on the actuators at

t = 3s:

δ̇(t) = −δ(t) +Bδδ0,

d5(t) = δ(t) + δ0,
(33)

where Bδ ∈ R
8×8 is a random matrix and δ0 = 5 × 18.

The time-varying attack d5(t) is shown in Fig. 6 (a). The

current of DC-DC converters, the zoom version of the current

of converters 1, 4, 5, 8, the zoom version of the current of

converters 2, 3, 6, 7, the load voltages at PCCs, and the average

voltage across the microgrid ( 1
n

∑n
i=1 Vi(t)) are respectively

shown in Fig. 6 (b), (c), (d), (e), and (f).

Note that since the dynamic system in (33) is stable, d5(t) is

bounded. Moreover, the attack dynamics in (33) are not known

to the control system. This figure illustrates that the effects

of the dynamic attacks d5(t) on the voltage and currents

of DG units are fully compensated by the attack-resilient

distributed control system in (6). As expected from Lemma 1,

the proposed control framework achieves proportional current

sharing; moreover, the average voltage is regulated at the

specific value of V ∗ = 48 V .

Fig. 7 illustrates how the resilient distributed controllers mit-

igate the effects of the time-varying dynamic attacks defined

in (33). Upon launching the attacks at t = 3s, the controller

attenuates the attacks as shown in Fig. 7(a). Furthermore, the

duty cycles of each DG is shown in Fig. 7(b).

In order to show the performance of the proposed resilient

control strategy against sinusoidal and sawtooth false data

injection attacks, a new case study in carried out. In this

case study, false data in terms of constant, sinusoidal, and

sawtooth signals of different magnitudes and frequencies (see

Fig. 8 (a)) are injected to control input channels at t = 3 s. The

current trajectories of DC-DC converters, the zoom version of

the current of converters 1, 4, 5, 8, the zoom version of the

current of converters 2, 3, 6, 7, the load voltages at PCCs,

DC Programmable 
Load

Level 
Shifter

Buck 
Converters LEM 

Sensor 
Box

MicroLabBox 
DS1202

PC

DC 
Power 
Supply

Oscilloscope
Tie-line 

Resistances

Fig. 11. Experimental setup of a DC microgrid comprising of n = 2 DG

units controlled by dSPACE MicroLabBox DS1202 supplying power to a

programmable DC load.

and the average voltage across the microgrid are respectively

depicted in Fig. 8 (b), (c), (d), (e), and (f). The results in Fig. 8

highlight the attack-resilience feature of the proposed resilient

distributed controller in (6).

In the next case study, it is assumed that DG 8 includes

a DC-DC boost converter, while other DG units are DC-DC

buck converters. The current rating of all the converters are

assumed to be equal. Also, it is assumed that control input

channels are subject to a variety of FDI attacks launched at t =
2 s where the false injection is in terms of constant, sinusoidal,

white noise, and sawtooth signals. The current and voltage

trajectories are shown in Fig. 9. As one can observe from this

figure, average voltage regulation and equal current sharing

are achieved regardless of the existence of cyber-attacks in

the controller.

The final case study in Fig. 10 evaluates the performance

and robustness of the proposed control approach to line

failures. When the power line connecting DG 1 to DG 2
is disconnected at t = 4s, the dynamic responses of the

microgrid under study are shown in Fig. 10. As one can

observe from the figure, the average voltage regulation and

accurate current sharing are unaffected even under physical

line disconnection.

B. Experimental Results

The proposed resilient distributed strategy is experimentally

validated in a DC microgrid composed of n = 2 DG units with

DC-DC buck converters and programmable loads (voltage-

dependent mode). Each converter is controlled by dSPACE

MicroLabBox DS1202 (target), with control commands from

ControlDesk from a PC (host). The DC microgrid operates at

a voltage reference V ∗ = 48 V . The experimental setup is

shown in Fig. 11. The parameters of the experimental setup

are given in Appendix D in Section VI.

Fig. 12(a) shows the performance of the proposed dis-

tributed control in voltage tracking and current sharing under

the presence of false constant data injection attacks to both

DG units’ actuators (u1(t) and u2(t)). When the false data

injection attack is launched, it can be seen that the pro-

posed resilient distributed controller mitigates the effects of

the attacks following a transient. As one can observe, after

some transient time, the total load current is equally shared

between the converters. In Fig. 12(b), the performance of the

proposed controller is assessed with respect to time delays in
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(a)

(b)

Idc1 (5 A/div)

Idc2 (5 A/div)

Vdc1 (25 V/div)

Vdc2 (25 V/div)

Vdc1 (25 V/div)

Vdc2 (25 V/div)

Idc1 (5 A/div)

Idc2 (5 A/div)

Communication delay of 60 ms

Cyber attack

Cyber attack
Load change

Load change

Plug-in and out of DG 1 (c)

Plug-in of DG 1
Plug-out of 

DG 1

Fig. 12. Experimental validation of the proposed resilient distributed con-
troller for (a) load change and false data injection attack, (b) time delay of
τ = 60 ms, and (c) plug-and-play operation.

communication. For a maximum time delay of τ = 60 ms in

transmitting I2(t) to the controller of DG 1, the performance

of the proposed distributed controller in voltage regulation

and current sharing is satisfactory. The maximum time delay

for the asymptotic stability of the DC microgrid with the

proposed resilient distributed control approach in (6) can be

obtained based on linear matrix inequalities (LMIs) proposed

in Theorem 2, given in Appendix E. Finally, Fig. 9(c) reveals

the performance of the resilient distributed controller in plug-

and-play functionality of DG units, where DG 1 is plugged

out and plugged-in. As depicted in Fig. 12(c), when DG 1

is disconnected, the total load current is provided only by

DG 2. However when it is plugged back in, the load current is

equally shared with voltage regulated according to the defined

objective.

V. CONCLUSION

This paper presents a novel stability oriented resilient dis-

tributed control strategy for converter-interfaced DC micro-

grids, which are subject to cyber-attacks. The attackers inject

false data into actuators and/or transmitted data within the

microgrid and its control system to infiltrate the information.

The proposed resilient control algorithm steers DC microgrids

as close as possible to their desired equilibrium regardless of

potential unknown cyber-attacks and guarantees average volt-

age regulation and proportionate current sharing. Furthermore,

a comprehensive design criteria of the control parameters using

a thorough stability analysis has been conducted to ensure

stability and resilience simultaneously. The resilience of the

microgrid with the proposed distributed control strategy to

cyber-attacks and its robustness to cyber-physical disturbances

are assessed via simulations and experimental case studies on a

DC microgrid in the presence of false data injection and man-

in-the-middle attacks. As a future work, (i) the effects of larger

communication time delays in the design of the proposed

resilient distributed controller, stability, and consensusability

as well as (ii) the extension of results to DC microgrids

with different types of DC-DC converters will be analyzed

in detail. Moreover, we will consider the robustness of the

proposed attack-resilient control framework under different

protection mechanisms for DC grids, where grid faults need

to be distinguished against cyber-attacks.

VI. APPENDICES

Appendix A: State Space Matrices in (12)

The state-space matrices of cyber-physical DC microgrids

in (12) are defined by (34).

Appendix B: Equilibria of Unperturbed System

Lemma 2. Consider the DC microgrid (7). It is assumed that

di(t) = 0, i = 1, . . . , 5. Then, for a non-zero k3,i, there

exits an equilibrium point x̄ =
[

V̄
T , ĪT , ĪTl , v̄

T , θ̄T , φ̄T
]T

that

satisfies the following equations:

V̄ = ∆V
+





σWW−1
L

+(1nV ∗)
(K+γ2)
1
T
nV

∗



 ,

Ī =
(

[Y ] + B [Rl]
−1 BT

)

V̄, Īl = [Rl]
−1 BT

V̄,

v̄ =[k3]
−1([1− k1] V̄ + ([r]−[k2]−[k4]LW ) Ī−γ [k5]L

T
θ̄),

θ̄ = 1nθ
∗ − γW Ī, φ̄ = Ī,

(35)

where

σW = In −W
−1

1n

(

1
T
nW

−1
1n

)−1

1
T
n ,

θ
∗ =

1
T
n [Tθ]

−1

1T
n [Tθ]

−1
1n

(

θ(0) + γW Ī
)

,

∆V =

[

B [Rl]
−1 BT + σW [Y ] + σWW−1

L
+W−1

(K+γ2)
1
T
n

]

.

(36)

Proof. The equilibria of (7) with di(t) = 0, i = 1, . . . , 5 can
be obtained by solving the following algebraic equations:

0 = Ī− φ̄, (37a)

0 =βW
((

−V̄ + 1nV
∗
)

−KLW Ī+ γLθ̄
)

, (37b)

0 = L
(

θ̄ + γW Ī
)

, (37c)

0 = −V̄ + [r] Ī+ ū, (37d)

ū =[k1] V̄ + [k2] Ī+ [k3] v̄ + [k4]LW Ī+ [k5]L
T
θ̄ (37e)

0 = − [Rl] Īl + BT
V̄, (37f)

0 = Ī− [Y ] V̄ − BĪl. (37g)
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A =

















− [C]−1 [Y ] [C]−1 − [C]−1 B 0n 0n 0n

[L]−1 [k1 − 1] [L]−1 ([k2] + [k4]LW − [r] + [k6]) 0n [L]−1 [k3] γ [L]−1 [k5]L
T − [L]−1 [k6]

[Ll]
−1 BT

0n − [Ll]
−1 [Rl] 0n 0n 0n

−β [Tv]
−1

W −β [Tv]
−1 (KWLW + [α]) 0n 0n β [Tv]

−1
γWLT β [Tv]

−1
W [α]

0n − [Tθ]
−1 LγW 0n 0n − [Tθ]

−1 L 0n

0n [Tφ]
−1

0n 0n 0n − [Tφ]
−1

















,

B =















0n 0n 0n 0n 0n

[L]−1 [k5]L
T [L]−1 [k4]LW 0n 0n [L]−1

0n 0n 0n 0n 0n

γ [Tv]
−1

WLT −K [Tv]
−1

WLW [Tv]
−1

0n 0n

0n 0n 0n − [Tθ]
−1 L 0n

0n 0n 0n 0n 0n















.

(34)

First, from (37a), we obtain that φ̄ = Ī. Next, by left

multiplying (37b) by 1
nβ

1
T
nW

−1 and taking into account the

properties of the laplacian matrix L, one obtains:

1

n
1
T
n V̄ = V ∗. (38)

Eliminating Lθ̄ from (37b) using (37c) yields:

(

K + γ2
)

WLW Ī =W (−V̄ + 1nV
∗). (39)

By left multiplying the above equation by W−1LL+ and

taking into account LL+L = L, it follows:

L

(

W Ī−
1

(K + γ2)
L+

(

−V̄ + 1nV
∗
)

)

= 0. (40)

Hence, W Ī− 1
(K+γ2)L

+
(

−V̄ + 1nV
∗
)

= 1ni
∗, where i∗ is

a scalar. Therefore,

Ī=W−1
1ni

∗ +
1

(K + γ2)
W−1L+

(

−V̄ + 1nV
∗
)

(41)

Left multiplying both sides of (37g) and (41) by 1
T
n yields:

1
T
n Ī = 1

T
n [Y ] V̄,

1
T
n Ī = 1

T
nW

−1
1ni

∗ +
1
T
nW

−1L+

(K + γ2)

(

−V̄ + 1nV
∗
)

.
(42)

From the above equations, i∗ is obtained as follows:

i
∗ =

1
T
n [Y ] V̄ −

(

1
T
nW−1

L
+

(K+γ2)

(

−V̄ + 1nV
∗
)

)

(1T
nW

−11n)
.

(43)

Therefore, Ī is obtained as follows:

Ī =
1

1T
nW

−11n

(

W
−1

1n1
T
n [Y ] V̄

)

+
σW

(K + γ2)
W

−1L+ (−V̄ + 1nV
∗
)

,
(44)

where σW is defined in (36). Moreover, from (37f) and (37g),

one obtains:

Īl = [Rl]
−1 BT

V̄, Ī =
(

[Y ] + B [Rl]
−1 BT

)

V̄. (45)

According to the above equation, (38), and (44), it follows:

∆V V̄ =

[

σWW−1
L

+(1nV ∗)
(K+γ2)
1nV

∗

]

, (46)

where ∆V is defined in (36). As a result, V̄ can be ob-

tained by (35). From (37c), we have θ̄ = 1nθ
∗ − γW Ī,

where θ∗ is a scalar. Moreover, it can be shown that

1
T
n [Tθ]

−1 (
θ̄ − θ(0)

)

= 0. Therefore, θ∗ is obtained as

θ∗ =
1
T
n [Tθ]

−1

1T
n [Tθ]

−1
1n

(

θ(0) + γW Ī
)

. Finally, from (37e), v̄ is

obtained.

Appendix C: Simulation Parameters

The DC microgrid consists of eight DG units with DC-DC

buck converters, rated equal to 500 W and 1000 W, connected

via eight tie-lines, which are equipped with the proposed

resilient distributed controller.

Lines: Rij = 0.5 Ω and Lij = 2 µH .

Converters: Li = 2.64 µH and Ci = 2.2 mF for i =
1, . . . , 8.

Controller: ηi,j = 0.01, γ = 500, β = 250, K = 1, [Tθ] =
[Tφ] = [Tv] = 0.01I8, [α] = 100I8, k1,i = −10, k2,i = −100,

k3,i = 10, k4,i = −11
Is
i

, k5,i = 11
Is
i

, and k6,i = −1100, for

i = 1, . . . , 8.

Appendix D: Experimental Setup Parameters

The DC microgrid consists of two DC/DC buck converters

each rated equal to 600 W and equipped with a resilient

distributed controller.

Lines: R1L = 1.2 Ω, R2L = 1.8 Ω.

Converters: Li = 3 mH , Ci = 100 µF , Is1 = Is2 = 12.5.

Controller: γ = 68.4, β = 36.1, K = 0.006, [Tθ] = [Tφ] =
0.004I2, [Tv] = 0.001I2, [α] = 50I2, k1,i = −8.4, k2,i =
−0.45, k3,i = 0.92, k4,i = −0.0564

Is
i

, k5,i = 9.4
Is
i

, and k6,i =

−470, for i = 1, 2.

Appendix E: Stability Analysis of Time-Delay Systems

Consider the following linear time-delay system:

ẋ(t) = A1x(t) +A2x(t− h),

x(t) = ψ(t), ∀t ∈ [−h, 0] ,
(47)

where A1 ∈ R
n×n, A2 ∈ R

n×n are known constant matrices,

ψ(t) is continuous initial conditions, and h ∈ R+ is a constant

time-delay.

The following theorem proposed in [21] discusses the

asymptotic stability of the time-delay system in (47):

Theorem 2. The time-delay system in (47) is asymptotically

stable for any time delay h satisfying 0 < h < h̄ if there exist
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P ≻ 0, Q ≻ 0, and R ≻ 0 such that the following linear

matrix inequality (LMI) holds:
[

PA1 +AT
1 P +Q PA2

AT
2 P −Q

]

+

h̄

[

AT
1

AT
2

]

R

[

AT
1

AT
2

]T

−
1

h̄

[

In

−In

]

R

[

In

−In

]T

≺ 0.

(48)

Proof. To demonstrate the asymptotic stability of the time-

delay system in (47), the following Lyapunov-Krasovskii

functional is chosen [21]:

Ṽ = xT (t)Px(t) +

∫ t

t−h

xT (θ)Qx(θ)dθ

+

∫ t

t−h

∫ t

s

ẋT (θ)Rẋ(θ)dθds,

(49)

where P ≻ 0, Q ≻ 0, and R ≻ 0. The time-derivative of Ṽ
along the system trajectories in (47) can be obtained as follows

[21]:

˙̃V = 2xT (t)Pẋ(t) + xT (t)Qx(t)− xT (t− h)Qx(t− h)

+ hẋT (t)Rẋ(t)−

∫ t

t−h

ẋT (θ)Rẋ(θ)dθ.

(50)

It can be shown that
˙̃V ≤ xTaug(t)M(h)xaug(t) where

xaug(t) =







ẋ(t)
x(t)

x(t− h)
z(t)






, M(h) =







hR P 0 0
P Q 0 0
0 0 −Q 0
0 0 0 − 1

h
R






,

z(t) = x(t)− x(t− h).
(51)

Moreover, it can be shown that the extended variable xaug(t)
satisfies Bxaug = 0, where

B =

[

In −A1 −A2 0n×n

0n×n −In In In

]

. (52)

The time-delay system in (47) is asymptotically stable if

for all xaug(t) such that Bxaug = 0, the inequality

xTaug(t)M(h)xaug(t) < 0 holds. This condition is equivalent

to BT
o (t)M(h)Bo < 0, where Bo is a right orthogonal

complement of B, thanks to Finsler lemma [21]. Moreover,

it can be easily shown that M(h) ≤ M(h̄) if h < h̄. By

simple calculations, we can show that BT
o (t)M(h̄)Bo < 0 is

equivalent to the conditions given in (48). This completes the

proof of Theorem 2.

Using the proposed condition (48), one might obtain the

maximum time delay for the asymptotic stability of DC micro-

grids with the proposed resilient distributed control approach

in (6).

REFERENCES

[1] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC
microgrids– Part II: A review of power architectures, applications, and
standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp.
3528–3549, May 2016.

[2] T. V. Vu, B. L. H. Nguyen, Z. Cheng, M. Y. Chow, and B. Zhang,
“Cyber-physical microgrids: Toward future resilient communities,” IEEE

Ind. Electron. Mag, vol. 14, no. 3, pp. 4–17, Sept. 2020.
[3] O. A. Beg, T. T. Johnson, and A. Davoudi, “Detection of false-data

injection attacks in cyber-physical DC microgrids,” IEEE Trans. Ind.

Informat., vol. 13, no. 5, pp. 2693–2703, Oct. 2017.
[4] S. Sahoo, J. C. Peng, A. Devakumar, S. Mishra, and T. Dragicevic,

“On detection of false data in cooperative DC microgrids-A discordant
element approach,” IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6562–
6571, Aug. 2020.

[5] A. J. Gallo, M. S. Turan, F. Boem, T. Parisini, and G. Ferrari-Trecate,
“A distributed cyber-attack detection scheme with application to DC
microgrids,” IEEE Trans. Autom. Control, vol. 65, no. 9, pp. 3800–3815,
Sept. 2020.

[6] O. A. Beg, L. V. Nguyen, T. T. Johnson, and A. Davoudi, “Signal
temporal logic-based attack detection in DC microgrids,” IEEE Trans.

Smart Grid, vol. 10, no. 4, pp. 3585–3595, Jul. 2019.
[7] P. Danzi, M. Angjelichinoski, C. Stefanovic, T. Dragicevic, and

P. Popovski, “Software-defined microgrid control for resilience against
denial-of-service attacks,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp.
5258–5268, Sept. 2019.

[8] S. Sahoo, S. Mishra, J. C. Peng, and T. Dragicevic, “A stealth cyber-
attack detection strategy for DC microgrids,” IEEE Trans. Power Elec-

tron., vol. 34, no. 8, pp. 8162–8174, Aug. 2019.
[9] S. Sahoo, T. Dragicevic, and F. Blaabjerg, “An event-driven resilient

control strategy for dc microgrids,” IEEE Trans. Power Electron.,
vol. 35, no. 12, pp. 13 714–13 724, Dec. 2020.

[10] S. Sahoo, J. C. Peng, S. Mishra, and T. Dragicevic, “Distributed
screening of hijacking attacks in DC microgrids,” IEEE Trans. Power

Electron., vol. 35, no. 7, pp. 7574–7582, Jul. 2020.
[11] S. Sahoo, T. Dragicevic, and F. Blaabjerg, “Multilayer resilience

paradigm against cyber attacks in DC microgrids,” IEEE Trans. Power

Electron., vol. 36, no. 3, pp. 2522–2532, Mar. 2021.
[12] M. S. Sadabadi, “A distributed control strategy for parallel DC-DC

converters,” IEEE Contr. Syst. Lett., vol. 5, no. 4, pp. 1231–1236, Oct.
2021.

[13] S. Sahoo and S. Mishra, “A distributed finite-time secondary average
voltage regulation and current sharing controller for dc microgrids,”
IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 282–292, 2019.

[14] S. Abhinav, H. Modares, F. L. Lewis, and A. Davoudi, “Resilient
cooperative control of DC microgrids,” IEEE Trans. Smart Grid, vol. 10,
no. 1, pp. 1083–1085, Jan. 2019.

[15] S. Zuo, T. Altun, F. L. Lewis, and A. Davoudi, “Distributed resilient
secondary control of DC microgrids against unbounded attacks,” IEEE

Trans. Smart Grid, vol. 11, no. 5, pp. 3850–3859, Sept. 2020.
[16] F. Bullo, Lectures on Network Systems, 1st ed. Kindle Direct

Publishing, 2020, with contributions by J. Cortes, F. Dorfler, and S.
Martinez. [Online]. Available: http://motion.me.ucsb.edu/book-lns

[17] S. Trip, M. Cucuzzella, X. Cheng, and J. Scherpen, “Distributed averag-
ing control for voltage regulation and current sharing in DC microgrids,”
IEEE Contr. Syst. Lett.s, vol. 3, no. 1, pp. 174–179, Jan. 2019.

[18] A. Gusrialdi, Z. Qu, and M. A. Simaan, “Competitive interaction design
of cooperative systems against attacks,” IEEE Trans. Autom. Control,
vol. 63, no. 9, pp. 3159–3166, Sept. 2018.

[19] T. T. Lu and S. H. Shiou, “Inverses of 2×2 block matrices,” Computers

and Mathematics with Applications, vol. 43, pp. 119–129, 2002.
[20] M. S. Sadabadi and Q. Shafiee, “Robust voltage control of DC micro-

grids with uncertain constant power loads,” IEEE Trans. Power Syst.,
vol. 35, no. 1, pp. 508–515, Jan. 2020.

[21] F. Gouaisbaut and D. Peaucelle, “Delay-dependent robust stability of
time delay systems,” in 5th IFAC Symposium on Robust Control Design,
vol. 39, Jul. 2006, pp. 453–458.


