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Abstract—Noise-like artifacts, which are caused by incomplete
and randomly sampled data, spread over the whole ambiguity
domain, and thus seriously obscure the true time-frequency
signature of the data. In this paper, a new design for the signal-
dependent adaptive kernel is proposed, which is robust with
missing data. The method relies on the properties of chirps whose
auto-terms only reside in a fixed half of the ambiguity domain.
The important thing is that this half excludes the Doppler axis,
where the chirps’ noise-like artifacts concentrate. By cutting out
this region when performing the optimization problem, a better
signal-dependent kernel for chirps is obtained, which efficiently
suppresses not only the cross-terms but also the missing sample
artifacts. Moreover, since any windowed non-stationary signals
can be approximated as a sum of chirps, the proposed approach
can be applied to other types of non-stationary signals. It is
shown in the simulation that our method outperforms other
reduced interference time-frequency distributions of incomplete
observations.

Index Terms—reduced interference time-frequency distribu-
tion, missing samples, signal-dependent kernel, chirps.

I. INTRODUCTION

Time-frequency distributions (TFDs) are employed to an-

alyze signals with time-varying spectral content in a wide

variety of applications [1]–[7]. While numerous different time-

frequency representations (TFRs) have been developed, no

single time-frequency (TF) estimation is ideal in all cases. The

most widely used method is the short-time Fourier transform

(STFT), in which the Fourier transform is implemented for

each sliding window to ascertain the signal ’s frequency

content [8]–[10]. The major limitation is the trade-off between
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time and frequency resolution. While the Wigner- Ville ap-

proach does provide better resolution, it suffers significantly

from the cross-terms resulting from the bilinear product. This

could lead to misinterpretation of local power location. To

solve this problem, many approaches of signal-independent

and signal-dependent reduced interference distributions (RIDs)

have been proposed. The former involves applying a fixed two-

dimensional (2D) low-pass filter in the ambiguity domain to

capture the signal’s auto-terms which normally locate around

the center. However, these fixed masks do not always work

effectively because there are signals with their cross-terms also

residing near the origin and their auto-terms locating far away

the center. As the distribution of cross- and auto-components

in the ambiguity domain actually depends upon the analyzed

data, signal-dependent kernels have been proposed to guaran-

tee a good performance for a large class of signals. The radially

Gaussian kernel (RGK) and its online performance version,

adaptive optimal kernel (AOK), are outstanding examples in

this category [11], [12]. In general, the algorithm of these

signal-dependent kernels constructs a mask that automatically

matches with the signal’s auto-terms, and so it largely removes

the cross-terms and performs well with many types of signals.

However, in the case of missing samples, artifacts appear all

over the ambiguity domain, which can be wrongly interpreted

as signal auto-terms and misguide the conventional signal-

dependent kernel methods to capture the incorrect region in

the ambiguity domain, thus resulting in highly cluttered TFRs.

In this paper, we introduce a new design for the signal-

dependent RID which can both efficiently remove cross-terms

and combat with missing sample effects. The method relies on

three features. Firstly, according to [15], a chirp’s auto-terms

always reside in only a fixed half of the ambiguity domain.

Thus, for chirp signals, the other half of the ambiguity domain



could be eliminated without any concern for loss of the signal’s

auto-terms. Secondly, the Doppler axis, where the chirp’s

artifacts gather, does not lie in the auto-terms residing half of

the ambiguity domain. By removing the other half, the artifacts

are largely suppressed. Finally, according to [13] and [14], any

non-stationary signal segment can be approximated as a sum

of chirps. Therefore, for any non-stationary signal segments,

we can freely cut off the other half of the ambiguity domain.

So this paper is organized as follows. Section II presents

the artifact distribution of the compressed chirp signals, and

the unsuitability of traditional signal-independent and signal-

dependent RID in the case of incomplete data. Section III

introduces the signal-dependent chirp-based adaptive kernels.

Section IV shows simulation results. Finally, conclusions are

given in section V.

II. COMPRESSED CHIRP SIGNALS

Denote s(n) as the full chirp signal, which is expressed as

follows:

s(n) = exp

[

j2π

(

α
n2

2F 2
s

+ β
n

Fs

)]

, (1)

where α, β, Fs are the chirp rate, initial frequency, and

sampling frequency, respectively. n is the discrete variable,

n = 0, 1, ..., N−1, with N being the length of the signal. The

corresponding instantaneous auto-correlation function (IAF)

Rss and ambiguity function (AF) Ass are as follows [8]:

Rss(n, b) = s(n+
b

2
)s∗(n−

b

2
)

= exp

[
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∑

n
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= exp
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j2πβ
b

Fs

)

δ

(

ω′

2π
− α

b

Fs

)

,

(3)

where b, ω′ are respectively the time lag and the Doppler

angular frequency. Let us define x(n) as the compressed data

of the original full data s(n), which is given as [16]:

x(n) = s(n)

(

1−
∑

nm

δ(n− nm)

)

, (4)

where nm ∈ {0, 1, 2..., N − 1} is a set of random time points

when the original data is missing (i.e. set to zero) and δ(n) is

the Kronecker delta function. The AF of the compressed data

is written as:

Axx(ω
′, b) =

N−1
∑

n=0

x(n+
b

2
)x∗(n−

b

2
)e−jω′n/N . (5)

With x(n) in (4), the AF of the incomplete signal x(n)
obviously has four terms, which are the AF of the full signal

s(n) given by (3) and the three artifacts. The latter terms are

denoted as V1, V2, V3, and are expressed as follows,

V1(ω
′, b) = −

∑

n′

exp

[

j2π

(

α
n′b

F 2
s

+ β
b

Fs

)]

e−j ω′n′

N , (6)

(a) (b)

Fig. 1: AF of (a) A compressed arbitrary chirp; (b) Four

compressed arbitrary chirps.

V2(ω
′, b) = −

∑

n′′

exp
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j2π
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V3(ω
′, b) =

∑
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δ(b) exp
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b
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b

2
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(8)

where n′ = nm − b/2 and n′′ = nm + b/2. From (6), (7) and

(8), it can be seen the missing data artifacts of a compressed

chirp spread across the entire ambiguity domain. However,

we should note that at b = 0, the total artifact at ω′ is

V1(ω
′, 0)+V2(ω

′, 0)+V3(ω
′, 0) = −

∑

nm
exp(−j ω′nm

N ) and

this number will be many times larger if the signal is composed

of more than one chirp. This is illustrated in Fig.1. Fig.1(a)

shows that the entire ambiguity domain of a compressed chirp

is seriously cluttered by artifacts, but their magnitudes are still

less than that of the auto-terms. In Fig.1(b), when the signal

is composed of four chirps and missing samples are present,

the artifacts’ magnitude along the Doppler axis gets stronger,

and even overwhelms that of the auto-terms.

The above analysis discourages the use of traditional signal-

independent kernels, which capture all values along b = 0 due

to the marginal property. Besides, the chirps’ auto-terms are

not restricted to around the origin. By using the conventional

signal-independent kernels, not only part of the chirp’s auto-

terms are omitted but also a major component of missing

artifacts is passed through. The conventional dependent-signal

kernel (RGK or AOK) is also not suitable to be applied in

the case of incomplete signals, which is illustrated in Fig.

2. The artifacts along the Doppler axis (b = 0) are wrongly

interpreted as the chirp’s auto-terms and then the kernel will

operate in favor of this region, taking all these terms (Fig.

2 (b)). This leads to highly contaminated TF representations

(Fig. 2 (d)). So this paper proposes a new design approach to

signal-dependent RIDs to provide robustness to compressed

non-stationary signals.



(a) (b)

(c) (d)

Fig. 2: (a) AF; (b) RGK; (c) AF after being filtered by RGK;

(d) TFR with RGK for a signal composed of two crossing

chirps. Note that 50% of the data is missing in all cases.

III. CHIRP-BASED ADAPTIVE KERNEL

A. Fixed signal-dependent kernel for chirps

This approach applies the chirp’s properties in the ambiguity

domain [15] and the algorithm of RGK to obtain a new kernel

that is appropriate for chirps in the cases of full and incomplete

data. The principle of RGK is that it keeps the magnitude

of the kernel in the ambiguity domain large wherever that

of the signal’s AF is large, regardless of whether the peaks

correspond to auto-terms or undesired terms ( [11], [12]). This

can be implemented by solving an optimization problem in

the polar coordinates of the ambiguity domain, in terms of

the radius r and the aspect angle φ. It samples the angle φ
and the radius r into Q, and G discrete values, respectively.

The original discrete Gaussian kernel in polar coordinates is

then expressed as follows:

C(g, q) = e
−

(g∆r)2

2σ(q∆φ)2

g = 0, ..., G− 1, q = 0, ..., Q− 1,
(9)

where g and q are respectively the radius and angle indices.

∆r, ∆φ, and σ are the radius, the angle step sizes, and the

spread parameter, respectively. Initially, the normal Gaussian

kernel is used with equal spread parameter σ for every angle.

Then, the spread parameter is updated by the gradient ascent

method in such a way that it is large at a certain angle if

the magnitude of the AF is large. The problem is that the

magnitudes of missing sample artifacts along the Doppler axis

are very strong, even larger then that of the auto-terms if

the signal is composed of more than one chirp. Therefore,

the RGK will be wrongly guided to take this region, which

leads to noisy TFRs. Fortunately, for any chirps, the auto-

terms always reside inside a half of the ambiguity domain,

|φ| ≤ π/4 and 3π/4 ≤ φ ≤ 5π/4, which excludes the Doppler

axis [15]. Therefore, the other half of the ambiguity domain

can be removed without causing any loss of auto-terms.

Furthermore, almost half of the cross-terms are removed. And

more importantly, a major part of missing data artifacts is

eradicated. Thus, the optimal kernel is modified so that the

optimization problem is only carried out in the auto-term

residing half of the ambiguity area. First, an edited version of

the Gaussian kernel is applied in the ambiguity plane, where

the spread parameter is zero outside the region |φ| ≤ π/4 and

3π/4 ≤ φ ≤ 5π/4. Then, the spread vector is updated by

performing the optimization which is expressed as follows,

max
C(n;g,q)

G−1
∑

g=0

Q−1
∑

q=0

r |Ass(n; g, q)C(n; g, q)|
2

subject to C(n; r, q) =

{

e
−

(g∆r)2

2σ2(q∆φ) q∆φ ∈ A

0 else

N−1
∑

q=0

σ2(q∆φ) ≤ a,

(10)

where a is the kernel volume (1 ≤ a ≤ 5) [11], [12], and A is

the region of |φ| ≤ π/4 and 3π/4 ≤ φ ≤ 5π/4. The optimal

kernel is converted to the coordinates of Doppler frequency

and lag before being used to calculate the TF as follows,

TFD(n, k) =
∑

p

∑

b

A(p, b)C(p, b)e−j2πnp/Ne−j2πbk/N ,

(11)

where p is the discrete Doppler frequency, and k is the discrete

frequency.

B. Chirp-based signal-dependent adaptive kernel

The above kernel is basically applied when the input signals

are chirps and not for other types of non-stationary signals.

Nevertheless, according to [14], [15], the frequency law of

any non-stationary windowed signal can be approximated as

a sum of chirps. Thus we can use the aforementioned fixed

kernel for each windowed signal. The algorithm proceeds as

follows. At each time n, we compute the short-time ambiguity

function (STFT) centered at time n, which is given by:

AF (n; p, b) =
∑

u

s∗(u− b/2)w∗(u− n− b/2)

s(u+ b/2)w(u− n+ b/2)ej2πup/Nw ,
(12)

where w(u) is a symmetrical window function which is zero

when |u| > Nw/2. Then the signal-dependent kernel for the

windowed signal, C(n; p, b), is obtained by using (9). The

current-time slice of the TFR is computed as follows:

TFR(n, k) =
∑

p

∑

b

A(n; p, b)C(n; p, b)e−j2πnp/Nwe−j2πbk/Nw . (13)



IV. SIMULATION

This section evaluates the performance of the proposed

chirp-based signal-dependent adaptive RID, with various types

of non-stationary signals. The signals are sampled at the

Nyquist rate, and then randomly shortened (as in (4)) to create

the incomplete data to be processed. To get a visual compar-

ison, the other three methods, Choi-Williams, the AOK, and

the fixed chirp-based TFR [15], are simulated with the same

signals. The resulting images are normalized and transfered to

the energy versions to display. A parameter of concentration

level ζ is used to access the accuracy of the resulting TFR.

ζ is the ratio of the sum of pixel magnitude along the actual

instantaneous frequency of the signals with respect to the rest

of the TF values. So, the higher ζ, the more accurate the TF

approximation. It is shown that our proposed method provides

improved TF estimation. In all plots, the frequency axis is

normalized with respect to the sampling frequency Fs.

1) Example 1: The first example considers a signal com-

posed of a chirp and a sinusoid, which is given below:

s(n) = exp

{

j2π[(0.1Fs)
n

Fs
+ (0.3Fs)

n2

2F 2
s

]

}

+

exp

{

j2π[(0.1Fs)
n

Fs
]

}

+ v(n),

(14)

with the sampling frequency Fs = 256 Hz. The signal’s length

is one second, or N = Fs, and n = 0, ..., N − 1. The signal

is corrupted by white Gaussian noise v(n) with the signal-

to-noise ratio (SNR) set to 30 dB. The window size must

be chosen carefully to ensure that the signal captured gives

meaningful interpretation in time-frequency domain while it

still can be approximated as a chirp. With signal length of

256, a rectangular window of length Nw = 64 is used. We

randomly remove 50% of the signal samples to generate the

compressed observations as in (4).

The resulted TFRs are shown in Fig. 3. The traditional fixed

Choi-Williams kernel takes in all artifacts along the Doppler

axis. It also cannot filter the cross-terms locating near the

origin of the ambiguity domain. Thus, the TF signature is very

contaminated with the concentration level ζ = 0.73. The fixed

windowed chirp-based kernel gives a better performance as

can be seen in Fig. 3(c) because it suppresses more cross-terms

and artifacts. The concentration level is ζ = 1.74. Fig. 3(b) has

many vertical lines in the TFR obtained by the AOK. These

lines are impulses caused by components captured along the

Doppler axis. However, it performs better than the two signal-

independent kernels with ζ = 3.39. By removing the artifacts

along the Doppler axis, the proposed signal-dependent chirp-

based adaptive kernel achieves the most reliable result among

the four methods with ζ = 6.

2) Example 2: The second example is a multi-component

(a) (b)

(c) (d)

Fig. 3: Example 1, a chirp and a sinusoid with 50% data

removed: (a) Windowed Choi-Williams distribution; (b) TFR

obtained using the AOK; (c) Windowed chirp-based TFR; (d)

Chirp-based adaptive optimal TFR.

signal as follows:

s(n) = exp

{

j(0.15Fs) cos(2π
n

Fs
+ π) + j2π(0.25Fs)

n

Fs

}

+ exp

{

j(0.15Fs) cos(2π
n

Fs
) + j2π(0.25Fs)

n

Fs

}

+ v(n).
(15)

Similarly, we set SNR = 30dB, Fs = 256 Hz, N = 256,

n = 0, ..., N − 1. A rectangular window of length Nw = 64
is used. The signal is also randomly shortened by 50%. The

simulation results in Fig. 4 show that both fixed and adaptive

kernels based on the chirp give a better performance than the

traditional ones. It is evident that the windowed Choi-Williams

distribution is severely influenced by the cross-terms and the

artifacts, which can be seen in Fig. 4(a). The concentration

level is ζ = 0.52. The fixed chirp-based kernel gives better

results compared with the fixed Choi-William kernel with

ζ = 2.48. Similar to example 1, the AOK experiences some

vertical lines as the result of wrong areas captured in the

ambiguity domain. The concentration level is ζ = 3.5. The

TF estimations get improved when the signal-dependent chirp-

based adaptive kernel is used with ζ = 5.8. The performance

of the proposed algorithm will be less desirable in the case

of lower SNR and more missing samples. Nevertheless, with

near- range applications, these aforementioned values for SNR

and missing samples are suitable. Moreover, in all cases,

the proposed method outperforms the conventional reduced

interference distributions for incomplete data.

V. CONCLUSION

This paper has introduced a new design for signal-dependent

RIDs. Based on the fact that the auto-terms of chirps only



(a) (b)

(c) (d)

Fig. 4: Example 2, a multi-component signal with 50% data

removed: (a) Windowed Choi-Williams distribution; (b) TFR

obtained using the AOK; (c) Windowed chirp-based TFR; (d)

Chirp-based adaptive optimal TFR.

reside inside a fixed half of the ambiguity domain, which does

not accommodate the Doppler axis, and any non-stationary

segments can be approximated by a sum of chirps, the

proposed approach is operated on windowed signals with the

kernel being zero outside that half of the ambiguity plane. By

removing a half of the ambiguity plane where the signals’

auto-term do not reside, the outcomes of the optimization

problem are much better in the case of incomplete data as

it does not wrongly capture the region of Doppler axis, where

the artifacts always appear. Also, the kernel shapes in favour

of the auto-terms and so that the cross-terms are efficiently

suppressed. It is illustrated by simulations that our method

is superior to other conventional signal-dependent and signal-

independent methods when missing samples are present.
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