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Abstract 24 
Tropical forests store 40-50% of terrestrial vegetation carbon1. Spatial variations in aboveground live 25 
tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane 26 
forests2. Because of climatic and soil changes with increasing elevation3, AGC stocks are lower in 27 
tropical montane compared to lowland forests2. Here we assemble and analyse a dataset of 28 
structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. 29 
We find that montane sites in the AfriMont plot network have a mean AGC-stock of 149.4 Mg C ha-1 30 
(95% CI 137.1-164.2), comparable to lowland forests in the African Tropical Rainforest Observation 31 
Network4 and about 70% and 32% higher than averages from plot networks in montane2,5,6 and 32 
lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the 33 
IPCC default values for these forests in Africa8. We find that the low stem density and high 34 
abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This 35 
carbon store is endangered: we estimate that 0.8 million ha of old-growth African montane forest 36 
have been lost since 2000. We provide country-specific montane forest AGC stock estimates 37 
modelled from our plot network to help guide forest conservation and reforestation interventions. 38 
Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems. 39 
 40 
  41 



 

 

Main text 42 
Tropical forests cover less than 10% of the global land area yet store 40–50% of terrestrial 43 
vegetation carbon1 and contribute more than one third of primary productivity11 so are a key 44 
component of the global carbon cycle12,13. There is substantial variation in carbon stocks across the 45 
biome, with lowland forests in Africa and Borneo storing more carbon per unit area than lowland 46 
forests in the Neotropics4,7. This variation arises partly from structural differences: the signature 47 
feature of African forests is their low stem density but relatively high abundance of large trees (>70 48 
cm diameter) which store large quantities of carbon, while Bornean forests are characterised by high 49 
stem density and basal area4,14,15. 50 
 51 
Despite increased understanding of biogeographic differences in tropical lowland forests, patterns of 52 
spatial variation in carbon stocks remain poorly understood in the 880,000 km2 of tropical montane 53 
forests located ≥ 1,000 m asl2. Montane forests are expected a priori to have lower aboveground live 54 
tree biomass carbon (AGC) stocks than lowland forests because (1) temperature decreases with 55 
increasing elevation, reducing net primary productivity and slowing nutrient recycling, (2) long 56 
periods of cloud immersion in montane forests suppresses productivity, (3) soil waterlogging slows 57 
nutrient recycling and (4) high epiphyte load, local wind exposure in crests and nutrient-limited soils 58 
limit tree size and increase investment in roots over shoots3. While forest inventory plots provide 59 
some support for these assumptions2 data from African mountain regions are exceptionally sparse. 60 
Indeed, in the most recent IPCC guidelines, there is no specific AGC default value for old-growth 61 
montane forests in Africa: the value given of 89.3 Mg C ha-1 is simply a mean of secondary and old-62 
growth forests found ≥ 1,000 m asl8. Mountain areas also pose special challenges for remote-sensing 63 
approaches for estimating carbon stocks, as radar data are affected by geometric distortions16 while 64 
steep slopes bias spaceborne LiDAR estimates towards overestimating canopy height17. These issues 65 
are reflected in the limited correlation between estimates of AGC-stocks at mountain locations from 66 
different recent remote-sensing derived carbon maps (Supplementary Information Table S1).     67 
 68 
Better understanding of montane carbon stocks is important for many African countries, particularly 69 
in eastern Africa where montane forests represent most of the extant evergreen old-growth forest 70 
cover. Quantifying carbon stocks in these ecosystems is critical for estimating national carbon losses 71 
from deforestation and forest degradation18. Quantifying carbon stocks in old-growth montane 72 
forests also serves to constrain potential carbon uptake by restored natural forests, given the high 73 
commitment of most African nations to the Bonn Challenge effort to restore 150 million ha of 74 
degraded and deforested lands by 2020 (see Table 1), and 350 million by 2030.  75 
 76 
Here we measured, compiled and analysed an unprecedented dataset of 226 plot inventories 77 
spanning 44 sites in 12 African countries, covering most major mountain regions on the continent 78 
(the “AfriMont” dataset). Plots range from 800 to 3,900 m asl to include submontane forests (800-79 
1,000 m asl) in smaller mountains closer to the ocean19,20. For all plots, stem diameter and species 80 
were recorded for each tree ≥10 cm diameter at breast height (or above buttress) following 81 
standard methods21. Tree height was sampled in 23 montane sites, allowing variation in height-82 
diameter allometry to be incorporated into the calculation of aboveground biomass. A total of 83 
72,336 stems with diameter ≥10 cm were measured. For each tree, we computed AGC (in Mg C ha-1) 84 
according to standard procedures (see methods). 85 
 86 
We find that the mean plot-level AGC-stock across sampled African tropical montane forests is 149.4 87 
Mg C ha-1 (95% CI 137.1-164.2), two-thirds more than the IPCC default value of 89.3 Mg C ha-1. Our 88 
estimates are robust to subsampling our dataset (Extended Data Fig. 1) and excluding small plots 89 
(Extended Data Fig. 2) and are not affected by the sampling strategy used to establish plots in each 90 
study site (Extended Data Fig. 2). Comparing our dataset to previous syntheses of montane2,5,6 and 91 
lowland7 forest plot networks reveals that tropical montane forests in Africa have significantly higher 92 



 

 

AGC-stocks per unit area than both montane (95% CI = 50.4 – 71.9 Mg C ha-1) and lowland  (95% CI = 93 
124.0 – 147.9 Mg C ha-1) forests in the Neotropics, and that they do not differ significantly from 94 
lowland forests in Africa (95% CI = -27.6 – 9.6 Mg C ha-1, Fig. 1, Table S2). The similar AGC-stocks in 95 
montane and lowland forests in Africa contrasts with the Neotropics and Southeast Asia, where 96 
carbon stocks are lower in montane forests than lowland forests (albeit not significantly different in 97 
Southeast Asia due to the small sample size, Fig. 1). These differences are robust to accounting for 98 
differences in elevation among montane datasets: removing African plots 800-1,000 m asl slightly 99 
reduces estimated montane forest AGC-stock to 145.0 Mg C ha-1 (95% CI 129.6 – 163.2), but 100 
observed differences in AGC-stock among continents remain when plots are restricted to elevations 101 
well represented in all continents (Extended Data Fig. 3). 102 
 103 
The characteristic structural properties of lowland African forests (relatively low stem density and 104 
greater importance of large trees compared to elsewhere in the tropics4) are also evident in the 105 
African montane forests we sampled. In these montane forests mean stem density is 483.3 stems ha-106 
1 (± 177.7 s.d.) and mean basal area is 39 m2ha-1 (± 14.8 s.d.). We find a high density of large stems 107 
(>70 cm diameter, 19.1 stems ha-1 ± 15.4 s.d.) which contribute 35.3% (95% CI = 29.6 – 41.8 %) to 108 
plot-level AGC-stock (Fig. 2). The contribution of large trees to plot-level AGC-stock is also similar in 109 
montane and lowland Africa (95% CI of difference in square-root transformed proportional 110 
contribution of large trees between lowland and montane forests = -0.100 - 0.075, P = 0.80). There 111 
was no significant difference in the proportional contribution of any other size class to AGC-stocks 112 
between our montane dataset and 132 lowland plots from the AfriTRON network (P≥0.24, Table S3), 113 
although greater variation among plots is observed in montane forests (Fig. 2).  114 
 115 
To investigate if elevation affected AGC or forest structure, we modelled these variables as functions 116 
of elevation using random slopes mixed-effects models. This approach allows intercepts and 117 
relationships to vary among sites, which would be expected as mountains can have very different 118 
climate at the same elevation due to proximity to the ocean (generally the further, the drier) and 119 
because of the mass-elevation or telescopic effect22 (larger mountains are better at warming the 120 
atmosphere above them). We found that AGC, stem density or density of large stems (>70 cm 121 
diameter) were not significantly related to elevation (Fig. 3, Table S4). Across sites these non-122 
significant relationships were all negative, although there was some variation in strength and 123 
direction amongst sites (Fig. 3). Similarly, in the Neotropics and Southeast Asia montane forest plot 124 
datasets, AGC was not significantly correlated with elevation (Extended Data Fig. 4).  125 
 126 
To assess potential environmental drivers of AGC-stock variation across the AfriMont plot network, 127 
we related AGC to climate, soil and topography. We found that AGC-stocks increased with annual 128 
precipitation (albeit not statistically significantly), decreased with soil fertility and were higher in 129 
plots which were locally at higher elevation than their surroundings (Extended Data Fig. 5). 130 
Relationships with other environmental variables were non-significant (Extended Data Fig. 5). 131 
Although global datasets might not capture fine-scale variation in climate or soils in mountain 132 
regions23, leading to regression dilution24, the general absence of strong climate effects combined 133 
with the lack of significant effect of elevation on AGC-stocks suggest that the high AGC-stock of 134 
African montane forests is a pervasive phenomenon across a wide environmental gradient. 135 
 136 
Although the AfriMont dataset covers most major mountain areas in tropical Africa (Fig. 4), some 137 
areas remain under-sampled relative to forest extents (Extended Data Fig. 6), resulting in some 138 
differences between the environmental conditions sampled by our plot network and the wider 139 
montane forest biome in Africa (Extended Data Fig. 7). Notably, the absence of plots from montane 140 
forests of eastern Democratic Republic of the Congo (Fig. 4, Extended Data Fig. 6) means that the 141 
AfriMont dataset samples forests that are, on average, at higher elevations, and that are cooler and 142 
cloudier than the wider montane forest biome in Africa (Extended Data Fig. 7). Using relationships 143 



 

 

with environmental variables (Extended Data Fig. 5) to predict AGC-stocks in each 1-km grid cell 144 
containing montane forest gives a mean (weighted by remaining forest cover) AGC-stock of 176.9 145 
Mg C ha-1 (± 32.0 s.d.) for the tropical montane forest biome in Africa. This indicates that the 146 
estimate we report based on our AfriMont plot network data (149.4 Mg C ha-1) is conservative.    147 
 148 
Several mechanisms could explain the high AGC-stock of montane forests in the AfriMont plot 149 
network. Firstly, large herbivores such as elephants (Loxodonta spp.) can have profound effects on 150 
forest structure by consuming biomass, destroying small stems, dispersing seeds and transporting 151 
nutrients25. Studies for lowland forests suggest that elephants can increase carbon stocks26,27. We 152 
tested if AfriMont plots with known elephant presence as of 2019 had significantly higher AGC-153 
stocks, but found that they had significantly lower AGC-stocks, although significant differences were 154 
not observed in some countries (Extended Data Fig. 8). While the initial ecosystem response to 155 
elephant removal might be greater AGC-stocks due to reduced biomass consumption and small-stem 156 
destruction, the longer-term effects might differ. We were unable to fully disentangle such effects, 157 
as we lacked details on both i) time since elephant extirpation, and ii) elephant abundance and its 158 
determinants (see Table S5). 159 
 160 
A second potential explanation is a relatively low frequency of large-scale abiotic disturbances, 161 
allowing trees time to grow large and stands to self-thin, as is seen in lowland African forests4. For 162 
example, tropical cyclones are largely absent in mainland Africa (except in Mozambique28) and lava 163 
flows are limited even in the active volcano of Mt Cameroon29. Although fine-scale variability in 164 
landslide risk limits comparisons across large spatial scales, there are fewer areas with high landslide 165 
susceptibility in mountains in tropical Africa than in the Andes and most mountain ranges in 166 
Southeast Asia30. If forests have been ecologically stable over evolutionary timescales, tree species 167 
may be adapted to grow slowly but potentially reaching great sizes31. On Mt Kilimanjaro 168 
Entandrophragma individuals reach enormous heights and ages32. This low frequency of large-scale 169 
abiotic disturbances contrasts with the Andes and several mountains in Southeast Asia (e.g. Barisian 170 
mountains in western Sumatra), which are tectonically active, so the trees there are adapted to 171 
sudden disturbance followed by intense competition to get established and grow. Future monitoring 172 
of the AfriMont plot network will help determine the extent to which the high biomass of African 173 
tropical montane forests results from them being dynamic and productive, or adapted to stability. 174 
 175 
A third potential explanation could be the presence of conifers33. Mixed conifer/broad-leaved forests 176 
tend to have greater basal area than purely broad-leaved forests due to a more effective use of light 177 
and other resources34. Podocarpaceae can be found in montane forests across the tropics35. Despite 178 
having fewer species in Africa than in other continents36, these could be more abundant at the site-179 
level. However, there is no pantropical comparative study on Podocarpaceae abundance in tropical 180 
montane forests. In our dataset there was no significant correlation between plot-level AGC-stock 181 
and conifer (Podocarpaceae) abundance (Extended Data Fig. 9). Other explanations could be 182 
continental differences in mountain terrain (more gentle slopes or plateau regions in Africa) or types 183 
of montane forests investigated (less cloud forest existing/sampled in Africa). Within our dataset, 184 
slope did not have a significant effect on AGC-stocks (Extended Data Fig. 5). Contrary to the 185 
Neotropics37, there is no high-resolution map of cloud forests available for Africa, so while we found 186 
no relationship between AGC-stock and cloud frequency (Extended Data Fig. 5), we were unable to 187 
investigate differences in AGC-stock between cloud forest vs non-cloud forest plots.  188 
 189 
To understand the policy implications of our findings for African countries, we calculated montane 190 
(≥800 m asl) forest cover change between 2000 and 2018, using forest cover from ref.38 clipped to 191 
'primary humid forest' from ref.39. We show that tropical montane forests represent most -or all- 192 
evergreen old-growth forests found in ten African countries (Fig. 4), and that the Democratic 193 
Republic of the Congo has two thirds of the remaining 16 million ha of montane forests in Africa. 194 



 

 

Over 0.8 million ha (5%) have been lost in Africa since 2001, with the highest losses in the 195 
Democratic Republic of the Congo (536,000 ha), Uganda (65,000 ha) and Ethiopia (62,000 ha) (Fig. 4, 196 
Table 1). In terms of percentage, Mozambique and Côte d'Ivoire lost over 20% of their montane 197 
forests over this period (Fig. 4, Table 1). In some sites, however, a larger proportion of montane 198 
forests was lost before 2000, e.g. in Taita Hills in Kenya40. If absolute country-level deforestation 199 
rates continue, a further 0.5 million ha of tropical montane forests will be lost by 2030. 200 
 201 
African tropical montane forests are not only carbon-rich, but they also harbour some of the highest 202 
concentrations of biodiversity and endemism in the world9,10. They are important ‘water towers’ as, 203 
located at the headwaters of numerous river systems, including the Congo and the Nile, they 204 
regulate timing and magnitude of runoff9. They also regulate local temperatures41 and provide 205 
numerous other services to people in the surrounding landscapes9. Clearly, more should be done to 206 
avoid the destruction of these important ecosystems. Logging, mining and clearing land for farming, 207 
but also political unrest and militia presence have affected -and continue to affect- these forests, e.g. 208 
in Itombwe Mts in the Democratic Republic of the Congo42. Protected areas are known to help 209 
reduce deforestation in the tropics43. Beyond protected areas, other forest conservation 210 
mechanisms could be implemented, including effective carbon finance. Previous IPCC AGC-stock 211 
estimates for montane forests in Africa (89.3 Mg C ha-1) may have contributed to low incentives for 212 
carbon finance mechanisms in these ecosystems. Our study shows the far greater carbon storage 213 
potential in these tropical montane forests, which will be even higher if soil carbon stocks are 214 
considered (e.g. > 200 Mg C ha-1 of organic carbon occurs in the top 0-30 cm soil on Mt Cameroon44 215 
and in the Usambara Mts, Tanzania45). 216 
 217 
As well as conserving the remaining montane forests, efforts to restore them are critical. Forest 218 
restoration at one of our sites, Kibale National Park in Uganda, indicates the potential for rapid AGC 219 
accumulation46. Our study shows the high potential AGC-stock these montane forests can attain. The 220 
possible co-benefits of forest restoration, notably water regulation, control of soil erosion and 221 
landslides and biodiversity conservation should also be considered. Most African nations are 222 
committed to the Bonn Challenge; Ethiopia leading with 15 million ha committed (Table 1). We 223 
provide country-specific estimates of potential AGC-stocks based on forests sampled in the AfriMont 224 
dataset to help guide such interventions (Table 1, Extended Data Fig. 10). Caution is needed when 225 
scaling-up our estimates to the landscape scale, as not all forests are closed-canopy old-growth and 226 
structurally intact. Remote sensing or ancillary data (landcover maps, spatial environmental data) 227 
could be used to identify e.g. exotic plantations, degraded or bamboo forests, and thus help create 228 
detailed AGC maps at different spatial scales18,47. A closer collaboration between air-borne, space-229 
borne and ground approaches (such as the AfriMont and AfriTRON plot networks) is key for accurate 230 
quantification and monitoring of landscape-scale tropical forest AGC-stocks, particularly in mountain 231 
regions. 232 
 233 
Our newly compiled dataset and analysis has provided the first large-scale quantification of AGC-234 
stock in African tropical montane forests, indicating it to be on average substantially higher than 235 
previously thought. While there is variation around this mean AGC-stock within and across sites, it is 236 
not systematically related to elevation. Apart from helping refine country-level estimates, IPCC 237 
guidelines and ground-calibration of remote-sensing estimates, continued on-the-ground monitoring 238 
of the AfriMont plot network will help determine ecosystem dynamics and carbon residence time in 239 
these extraordinarily carbon-rich forests, as well as their responses to climatic changes. 240 
  241 
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Figures main document 243 
  244 
Fig. 1 ǀ Pantropical variation in aboveground carbon stocks sampled by plot networks in montane 245 
(≥ 800 m asl) and lowland (< 800 m asl) tropical forests. Data from this study for African montane 246 
forests (n = 226 plots), montane forests in the Neotropics (n = 131) and Southeast Asia (n = 32) from 247 
ref.2,5,6 , lowland forests in Africa (n = 290), the Neotropics (n = 416) and Southeast Asia (n = 60) from 248 
ref.7. Coloured points show the AGC-stock in each plot, with point size proportional to square-root 249 
plot area. Black points show means for each continent-elevation category estimated using linear 250 
mixed-effects models with site as a random effect, and lines show 95% confidence intervals around 251 
means. Letters indicate signficiant differences between continent elevation category combinations 252 
(linear mixed-effects models with site as a random effect, P < 0.05).  253 
 254 
 255 
Fig. 2 ǀ Proportion of plot-level aboveground carbon stock and stems accounted for by each size 256 
class in montane and in lowland forests in Africa. Statistically significant differences in contribution 257 
of each size class between montane and lowland forest plot networks are shown by asterisks (linear 258 
mixed-effects model, P < 0.05). NS = non-significant difference. Montane (n = 226), lowland (n = 259 
132). 260 
 261 
Fig. 3 ǀ Relationship between elevation and (a) plot-level aboveground carbon stock, (b) stem 262 
density and (c) stem density of large stems (>70 cm diameter) for the AfriMont dataset. Note log-263 
scale of y-axis. Each response variable was log-transformed and modelled as a function of elevation 264 
with a linear mixed-effect models with random slopes. The dashed line shows the relationship across 265 
sites (non-significant in all cases, P ≥ 0.3, Table S4), while the black lines show the relationship within 266 
each site. Point sizes are proportional to square-root plot area. A polynomial model allowing a non-267 
linear relationship with elevation was also tested but not supported over the linear model in any 268 
case (P ≥ 0.7, Table S4). The absence of a significant relationship with elevation is robust to removing 269 
the two highest elevation sites, RWE and VRG (Table S4). 270 
 271 
Fig. 4. ǀ Old-growth evergreen humid forests in lowland and montane tropical Africa. Forest 272 
extends circa 2018. Note that montane includes submontane forests (800-1,000 m asl, light purple). 273 
Montane forests represent most (or all) evergreen humid old-growth forest in ten African nations: 274 
Burundi, Ethiopia, Kenya, Rwanda, Tanzania, Uganda and Zimbabwe (included in AfriMont); and 275 
Zambia, Malawi and South Sudan (no plot data available). Forest cover extracted from ref.38 and 276 
clipped to ‘primary humid forest’ using ref.39. See Table 1 for country-level absolute estimates. 277 
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Table 1 ǀ Remaining forest area and aboveground carbon estimates for montane and lowland 279 
tropical forests in Africa 280 

 281 

 282 
Forest cover circa 2018 was extracted from ref.38 and clipped to ‘primary humid forest’ using ref.39. 283 
Montane forest lost covers the period 2000-2018. Mean aboveground carbon (AGC, in Mg C ha-1) 284 
estimates for montane (or lowland) forests were estimated from AfriMont and AfriTRON plot 285 
network data. Mean AGC values are in boldface, 95% confidence intervals in parentheses. For details 286 
on sites and plots used see Table S5. Bonn Challenge pledges for 2030 not yet available. 287 
a ref.48 report 192 Mg C ha-1 for lowland; b ref.49 report 132.2 Mg C ha-1 for lowland. c Data from 288 
neighbouring Liberia.  289 
* few plots sampled, or very small plots sampled, AGC estimates may not be robust, see Extended 290 
data Fig. 10. 291 
**Montane forest loss in Mozambique, Uganda and Zimbabwe represents 27%, 13% and 10% of the 292 
existing montane forest in 2001, respectively. Montane forest loss in Côte d'Ivoire (no plot data 293 
available) was estimated to be 21% for the same period. 294 

 295 
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Country Montane 

(ha) 

Montane 

lost (ha) 

Montane AGC 

(Mg ha
-1

, 95% 

CI) 

Montane 

sites 

(plots) 

 Lowland 

(ha) 

Lowland AGC 

(Mg ha
-1

, 95% 

CI) 

Lowland 

plots 

Bonn 

Challenge 

by 2020 

(ha) 

Burundi 25,000 300 94 (47-176) 1 (7) 0 0 2 million 

Cameroon 840,000 30,200 153 (121-195) 7 (37) 17.7 million 166 (151-185) 72 12 million 

DRC 10.2 million 536,500 129 (84-202) 2 (37) 90 million 158 (135-183) 48 8 million 

Ethiopia 1.7 million 62,100 165 (124-215) 8 (25) 145,000 
a 0 15 million 

Guinea 29,000 1,700 314 (147-616)* 1 (2) 193,000 157 (122 – 206)c 24 2 million 

Kenya 568,000 44,100 
104 (79-136) 

8 (38) 37,000  
0 

5.1 
million 

Mozambique 18,000 6,600** 226 (146-384)* 3 (4) 93,000 
b 0 1 million 

Nigeria 42,000 1,400 120 (47-309)* 1 (1) 1.8 million 161 (105-262) 2 4 million 

Rwanda 53,000 300 106 (65-168) 2 (11) 0 0 2 million 

Tanzania 587,000 13,900 
175 (129-234) 

6 (29) 130,000 
128 (101-163) 16 

5.2 
million 

Uganda 427,000 64,600** 
158 (111-209) 

6 (23) 18,000  
0 

2.5 
million 

Zimbabwe 7,000 800** 203 (108-363) 1 (12)   <1,000   0 2 million 
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 409 
Methods 410 
AfriMont – montane Africa dataset 411 
We compiled forest inventory plot data from the African Tropical Rainforest Observatory Network 412 
(AfriTRON; www.afritron.org ), with data curated at www.ForestPlots.net50,51 and the TEAM 413 
network52, as well as from numerous site-specific publications detailed in Table S5 and mapped in 414 
Fig. 4. Plots were selected for the analysis when conforming to the following criteria: ≥800 m asl, 415 
closed-canopy evergreen wet or moist tropical forest, geo-referenced, old-growth and structurally 416 
intact (not impacted by recent selective logging, fire or coffee cultivation), with no exotic species 417 
present (e.g. Eucalyptus or Pinus spp.), all trees ≥10 cm diameter measured and majority of stems 418 
identified to species. We included plots from Virunga Massif in Rwanda/Uganda even when not 419 
100% closed-canopy due to high abundance of naturally-occurring bamboo. In all plots, tree 420 
diameter was measured at 1.3 m along the stem from the ground, or above buttresses if present. In 421 
23 sites tree height was sampled in the field for some stems, using a clinometer or a laser. Families 422 
and species names follow the African Plant Database (ville-ge.ch/cjb/bd/africa/). The AfriMont 423 
dataset consists of 72,336 stems, of which 92.9% were identified to species, 98.4% to genus and 424 
98.5% to family. This dataset represents a standardised safe long-term repository of valuable 425 
historical data (four sites initially considered could not be included because tree-level data had 426 
already been lost by data owners).  427 
 428 
AfriTRON – lowland Africa dataset  429 
The 132 lowland-forest plots are all from AfriTRON4,13,53. They were selected using the same criteria 430 
as above (but with elevation <800 m asl), restricted to countries for which we also had montane 431 
plots plus neighbouring countries where the mountains span international borders (e.g. Mt Nimba 432 
spans Guinea and Liberia). The dataset includes 51,305 stems, of which 89.6% were identified to 433 
species, 97.3% to genus and 97.7 % to family. The plot data were retrieved from forestplot.net on 434 
06/01/2019. The plot locations and details are in Table S6. 435 
 436 
Literature dataset 437 
We compiled data on AGC-stocks in tropical lowland and montane forests to compare to the 438 
AfriMont data. Data for lowland forests came from ref.7 and consisted of all multi- and single-census 439 
plots that were <800 m asl. Data for montane forests were obtained from ref.2, with additional data 440 
from Venezuela (ref.5) and Colombia (ref.6). Montane plots were defined as ≥800 m asl; elevation 441 
was not provided for the Colombian dataset so plots were selected based on the forest type, and 442 
these plots were excluded from analyses requiring elevation. To avoid double counting plots, 443 
Venezuelan and Colombian plots were removed from the ref.2 dataset. 444 
 445 
Aboveground carbon  446 



 

 

For each tree in the montane dataset we used the published allometric equation by ref.54 to 447 
estimate aboveground biomass. This allometric equation was created using data from directly 448 
harvested trees at 58 sites across the tropics, including eight sites with elevation ≥800m asl (range 449 
900-3,000m asl including sites in Africa). We then converted this biomass to carbon, assuming that 450 
aboveground carbon (AGC, in Mg C ha−1) is 45.6% of aboveground biomass55. AGC for each plot was 451 
estimated as the sum of the AGC of each living stem, divided by planimetric plot area (in hectares). If 452 
field measurements of slope were unavailable, we converted surface to planimetric area extracting 453 
slope from the SRTM product. We excluded tree ferns, bamboo and palms, as these were not 454 
measured in all plots. Ref.54 includes tree diameter, wood mass density and tree height. The best 455 
taxonomic match wood density of each stem was extracted from a global database56,57 following 456 
ref.53. For some sites, all trees in a plot had been sampled for height. If this was not the case, but 457 
some field measurements of height were available (typically ten stems per diameter class), we 458 
constructed a site-specific height-diameter model, using a Weibull equation following ref.58. If no 459 
field measurements of height were available, we constructed a cluster-specific height-diameter 460 
model, using a Weibull equation, as explained in Table S7 in Supplementary Information. The same 461 
approach was used to calculate aboveground biomass for lowland forests. For these, height was 462 
estimated using a Weibull equation following ref.58. 463 
 464 
Small plots and data subsampling 465 
For 22 sites where plots were small (<0.2 ha), we aggregated plots to groups of about 0.2 ha based 466 
on their geographic proximity, elevation, environmental affinity and the co-authors’ knowledge of 467 
the site, to help reduce the variation among plots at site level. This is because the presence of an 468 
extremely large tree in a small plot can result in overestimates of AGC59. We investigated if using the 469 
aggregated-plot approach affected AGC-stock estimates at the site level, and this was not the case 470 
(Extended Data Fig. 2). We also investigated if including small plots affected the continental mean 471 
AGC-stock estimates, as small plots have greater edge surface, and there is a tendency of some field 472 
teams to include large trees inside plots when laying out the boundaries60. Including small plots did 473 
not significantly affect our continental mean AGC-stock estimates (Extended Data Fig. 2). We also 474 
explored the sensitivity of our continental mean AGC-stock estimates to data subsampling. Data 475 
were resampled at different sample sizes either at plot level (sampling with replacement) or at site 476 
level (sampling without replacement). The number of plots (n=226) and the number of sites (n=44) 477 
we sampled indicate that our estimates of AGC-stock at the continental level are robust (Extended 478 
Data Fig. 1). They are also not affected by the fact that we included plots 800-1,000 m asl (Extended 479 
Data Fig. 3). 480 
 481 
Size classes 482 
For all plots, we computed the proportion of AGC which was distributed in each size-diameter class, 483 
using the classes of ref.15. We also computed stem density, basal area, density of large trees (>70 cm 484 
diameter, named SD70 in stems ha-1) and Podocarpaceae abundance (in percentage of plot-level 485 
basal area). 486 
 487 
Environmental variables and their effects 488 
Climate variables (temperature annual mean and seasonality, and precipitation mean and 489 
seasonality, i.e. Bio1, 4, 12 and 15) were extracted from WorldClimV261 at 30 arc-sec (~1-km) 490 
resolution. Mean temperature values were adjusted for the difference in elevation between the plot 491 
and the wider 1-km grid cell using the lapse rate of -0.005°C m-1. We obtained data on cloud cover 492 
from ref.62 and lightning frequency (0.1 degree, ~11 km) from the LIS very high resolution 493 
climatology63. Values for soil variables (cation exchange capacity, CEC, representing soil fertility, and 494 
percentage clay representing soil texture) were extracted from SoilGrids64 (~1-km resolution) and a 495 
depth-weighted mean taken for values from 0 to 30 cm depth to give a single value of each soil 496 
variable per plot. Elevation was obtained from SRTM (at 3 arc-second resolution, ~90 m). 497 



 

 

Topographic metrics were calculated from elevation data using the terrain function in the raster R 498 
package. These were slope and topographic position index (TPI). TPI is the difference between the 499 
elevation of the plot and the mean value of the eight surrounding grid cells – positive values indicate 500 
locally high locations and negative values indicate locally low locations. Where small plots were 501 
aggregated for analysis, environmental variables were extracted for the ungrouped plot locations, 502 
and then an area-weighted mean taken to obtain a plot-level value. 503 
 504 
Elephant and conifer effects on AGC-stocks 505 
For the current elephant presence in the AfriMont plots, we created a binary variable 506 
(presence/absence) based on co-authors knowledge of elephant ranges and elevation distribution at 507 
each site as of 2019. Co-authors estimated that elephants were present in 2019 in 54 plots in 12 508 
sites in five countries (see Table S5). For all plots which had at least one individual in the 509 
Podocarpaceae family (47 plots, 16 sites, 7 countries), we computed the contribution of 510 
Podocarpaceae to plot basal area and AGC-stock in terms of percentages.  511 
 512 
Estimating forest cover and loss 513 
We obtained estimates of forest cover and loss in the years 2000 through to 2018, using the ‘loss 514 
year’ dataset of the Global Forest Change database, version 1.6 (ref.38). To exclude plantation 515 
forests, ‘dry’ forests (e.g. miombo woodland) and degraded forests, we applied the ‘primary humid 516 
forest’ mask developed by ref.39. We distinguished montane from lowland forests using an 517 
elevational cut-off of 800-m elevation, using the SRTM v3 product at 1 arc-sec resolution (snapping 518 
to the ref.38 grid of the same resolution). Where there were gaps in the 1 arc-sec SRTM product, we 519 
filled these using a 1 arc-sec bilinear interpolation of the (gapless) 3 arc-sec SRTM product. Areal 520 
estimates of forest cover and loss were calculated at 30-m resolution using the Africa Sinusoidal 521 
projection. To estimate future forest loss by year 2030, we extrapolated absolute country-level 522 
deforestation rates for the period 2000-2018 (in ha per year). 523 
 524 
Investigating AfriMont representativeness 525 
To quantify AfriMont sampling effort within the montane forest biome in Africa, we used the map of 526 
tropical montane forest extent (see above) and calculated the amount of remaining forest in each 1-527 
degree grid-cell. By dividing the area sampled in the AfriMont dataset by the proportion of this 528 
biome in a grid-cell, we calculated the expected sampling intensity if sampling was proportional to 529 
remaining forest extent. To assess how representative our plot network was of the environmental 530 
conditions of the wider tropical montane forest biome in Africa, we extracted the environmental 531 
data (climate and soil variables presented above) at ~1-km resolution from grid-cells that contained 532 
montane forest. We then visually compared the distribution of each variable in our dataset to its 533 
distribution across the biome (Extended Data Fig. 7). 534 
 535 
AfriMont vs global AGC maps 536 
We extracted alternative AGC estimates for the AfriMont plots (unaggregated, n=666) from four 537 
different sources: Harris et al. (ref.65) (30-m resolution, dated 2000), the ESA CCI Biomass map66 538 
(100-m resolution, 2017), Saatchi, et al. (ref.67) (1-km resolution, 2007/8) and Avitabile et al. (ref.68) 539 
(1-km resolution, circa 2000-2010). Most of the AfriMont plots were sampled between 2000 and 540 
2019 (Table S5). Where the plots were found within a single map pixel, we extracted that value. 541 
Where plots were larger than the pixel size, we averaged the values from the surrounding pixels 542 
weighted according to the proportion of the pixel that was in the plot. 543 
 544 
Statistical analysis 545 
Data were analysed using linear mixed-effects models, with site as a random effect. Site was 546 
included as a random intercept in all models, and as a random slope where relationships were 547 
assessed against elevation. Allowing the slope of the elevation effect to vary amongst sites in this 548 



 

 

way captures the a priori expectation for slopes to differ among sites, for example due to mass 549 
elevation effects. The effect of plot size on variation was accounted for by weighting observations by 550 
a power transformation of plot size; this was estimated during model fitting using the varPower 551 
function in the nlme R package (ref.69), and then models refitted using the lme4 R package (ref.70) 552 
using these estimated weights. Confidence intervals and P-values for mixed effects models 553 
parameters were estimated by bootstrapping models (1,000 iterations) using the 554 
bootstrap_parameters function in the parameters R package (ref.71). AGC-stocks, stem density and 555 
SD70 were natural-log transformed (a small constant was added to SD70 before log transforming to 556 
avoid log-transforming zeros) to meet assumptions of normality and avoid heteroscedacity. Likewise, 557 
the proportional contribution of each size class was square-root transformed. Differences in AGC-558 
stocks between all combinations of lowland and montane forests amongst continents were assessed 559 
using Tukey post-hoc tests implemented in the multcomp R package (ref.72). Relationships between 560 
AGC-stocks and environmental variables were investigated by fitting all subsets of the full model 561 
with all environmental covariates and averaging the best supported (ΔAIC<4) models (using dredge 562 
and movel.avg functions in the MuMIn R package (ref.73). We used these relationships with climate 563 
and soil to predict AGC-stocks in each 1-km grid cell containing montane forests (holding 564 
topographic variables at their dataset wide mean), and then took the forest-area weighted mean of 565 
these to obtain a single mean for the tropical montane forest biome in Africa. Differences in AGC-566 
stocks between plots with and without elephants were tested using t-test with AGC-stocks natural-567 
log transformed. We investigated if Podocarpaceae abundance (in terms of basal area) and plot 568 
AGC-stocks were significantly correlated using Spearman's rank correlation coefficient. To 569 
investigate if sampling design affected AfriMont AGC-stock estimates we used ANOVA to test 570 
whether site-level mean AGC-stocks differed according to the sampling strategy used to establish 571 
plots at that site. To explore the relationship between AfriMont AGC-stock estimates and global 572 
maps, and among these global maps, we used Spearman’s rank correlation test. 573 
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Extended Data 858 
 859 
Extended Data Fig. 1 ǀ Sensitivity of mean aboveground carbon stock estimates to data 860 
subsampling. AfriMont plot data were resampled at different sample sizes either at plot level 861 
(sampling with replacement) or at site level (sampling without replacement). N = 1,000 resamples 862 
for each sample size. 863 
 864 
Extended Data Fig. 2 ǀ Effect of plot area, aggregation procedure and plot design on estimates of 865 
aboveground carbon stocks across the AfriMont plot network. (a) Relationship between 866 
aboveground carbon stocks and plot area of plots prior to aggregation. The red line shows the fit of a 867 
locally weighted regression model (span = 0.75) relating these variables, with dashed lines showing 868 
the standard errors. (b) Variation in aboveground carbon stocks using either all plots prior to 869 
aggregation (unaggregated), plots prior to aggregation but excluding those < 0.2 ha (unaggregated, > 870 
0.2 ha) or the aggregated plots used in the main analyses (aggregated). (c) Effects of plot design on 871 
aboveground carbon stocks (each site represents one dot). Sampling strategies include random or 872 
stratified random, plots positioned along transects, plots established within elevation bands, 873 
subjective measures such as choosing an area of forest considered representative of the wider area, 874 
and other strategies (one plot sampled per site or unclear strategy). Carbon stocks (log-transformed) 875 
did not differ significantly between sites with different sampling strategies (ANOVA: F4,39 = 0.432, P 876 
= 0.785). For specific site information see Table S5. 877 
 878 
Extended Data Fig. 3 ǀ Robustness of differences in tropical montane forest aboveground carbon 879 
(AGC) stocks among continents based on plot networks to differences in elevation. (a) Elevations 880 
of montane forests plots sampled in each continent. Violin plots show the distribution of data, with 881 
boxplots showing the median and interquartile range of elevation in each continent. (b) Effect of 882 
removing submontane plots (800-1,000 m asl) and high elevation plots (> 2,200 m asl, approximately 883 
the upper quartile of elevations for the African montane plot dataset) on AGC-stocks in montane 884 
forests sampled by plot networks in each continent. Mean AGC-stocks and 95% confidence intervals 885 
are shown as estimated by models using i) all data, ii) excluding plots 800-1,000 m, and iii) restricting 886 
plots to 1,000-2,200 m. Means for all plots differ from the analysis in Fig. 1 as literature plots without 887 
elevation data (plots in Colombia) were excluded from this analysis. Point symbols are proportional 888 
to square-root plot area. N = 324 plots.  889 
  890 
Extended Data Fig. 4 ǀ Relationship between aboveground carbon (AGC) stocks and elevation for 891 
tropical montane forests in each continent based on plot networks. Dashed lines show 892 
relationships from a linear mixed-effects model of log-transformed AGC-stocks as a function of 893 
elevation, continent and their interaction. Site was included as a random effect, and AGC-stock – 894 
elevation relationships allowed to vary among sites. Lines show fitted slopes across sites. Neither the 895 
overall relationship between elevation and AGC-stocks (slope = -0.039 [95% CI = -0.127 – 0.057], P = 896 
0.420) nor interactions between elevation and continent (Southeast Asia, change in slope = -0.074 [-897 
0.294 – 0.149], P = 0.503; Neotropics, change in slope = 0.006 [-0.132 – 0.149], P = 0.913) are 898 
statistically significant. N = 324 plots.  899 
 900 
Extended Data Fig. 5 ǀ Environmental drivers of aboveground carbon stocks across the AfriMont 901 
plot network. Coefficients are from a linear mixed-effects model with site as a random intercept. 902 



 

 

Results are following all-subsets regression and model averaging, in which variables that do not 903 
appear in well supported models are given coefficients of zero, leading to shrinkage in model 904 
coefficients. Statistically significant relationships (P < 0.05) are indicated with asterisks. TPI refers to 905 
topographic position index (positive values indicate higher than surroundings, negative values 906 
indicate lower than surroundings).  907 
 908 
Extended Data Fig. 6 ǀ Expected sampling effort if effort was distributed in proportion to the area 909 
of tropical montane forest biome in Africa. Data are summarised at 1-degree resolution. Upward 910 
triangles show grid-cells where AfriMont sampling effort is more than double expected effort, 911 
downward triangles show grid-cells where AfriMont sampling effort is less than half expected effort. 912 
Circles denote AfriMont sampling effort being between half and double expected effort. The extent 913 
of the tropical montane forest biome was defined as closed-canopy forests ≥ 800 m asl in December 914 
2018, extracted from ref.38 and clipped to ‘primary humid forest’ using ref.39. This grided map differs 915 
from Fig. 4 as numerous grids have very little tropical montane forest. 916 
 917 
Extended Data Fig. 7 ǀ Differences in the environmental conditions sampled by the AfriMont plot 918 
network and the tropical montane forest biome in Africa. The extent of the biome was defined as 919 
closed-canopy forests ≥ 800m asl in December 2018, extracted from ref.38 and clipped to ‘primary 920 
humid forest’ using ref.39. Environmental variables for the biome were extracted at ~1-km 921 
resolution. 922 
 923 
Extended Data Fig. 8 ǀ Differences in aboveground carbon (AGC) stocks in AfriMont plots located in 924 
montane forests with and without elephants. (a) Differences across all plots. AGC-stocks are 925 
statistically significantly lower in forests with elephants (t-test, t = 3.5, df=83.5, P = 0.001). (b) 926 
Differences in countries where elephants are present in at least one of the montane sites studied. 927 
Black squares show means in each country in forests with or without elephants – solid lines denote 928 
statistically significant differences (t-tests, P < 0.05). Elephant presence in 2019 was estimated by co-929 
authors (see Table S5).  930 
 931 
Extended Data Fig. 9 ǀ Relationship between aboveground carbon (AGC) stocks and 932 
Podocarpaceae. (a) Relationship between AGC-stocks and Podocarpaceae basal area across plots in 933 
the AfriMont network, expressed as a percentage of total plot basal area. These variables are not 934 
significantly correlated (rs = 0.083, n = 226, P = 0.212). (b) Distribution of plots with at least 20% 935 
basal area of Podocarpaceae (black points) in relation to elevation and AGC-stocks. AGC-stocks are 936 
not significantly related to elevation or Podocarpaceae basal area (Linear mixed effects model, P = 937 
0.152 and 0.132 respectively). 938 
 939 
Extended Data Fig. 10 ǀ Within country variation in aboveground carbon stocks based on the 940 
AfriMont plot network. Error bars show means and 95% confidence intervals estimated by linear 941 
mixed-effects models. Modelled means not shown for countries with fewer than five plots. Point size 942 
is proportional to plot area. 943 
 944 
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Primary Humid Tropical Forests

Lowland forest circa 2018

Montane (incl. submontane) forest

Countries with montane plot data

Bars: % montane versus lowland (left axis)

Points: % lost since 2000 (right axis)

AfriMont plot network
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