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Characterization of two photon excited fragment
spectroscopy (TPEFS) for HNO3 detection in
gas-phase kinetic experiments†

Damien Amedro, Arne J. C. Bunkan, Terry J. Dillon and John N. Crowley *

We have developed and tested two-photon excited fragment spectroscopy (TPEFS) for detecting HNO3

in pulsed laser photolysis kinetic experiments. Dispersed (220–330 nm) and time-dependent emission at

(310 � 5) nm following the 193 nm excitation of HNO3 in N2, air and He was recorded and analysed to

characterise the OH(A2
S) and NO(A2

S
+) electronic excited states involved. The limit of detection for

HNO3 using TPEFS was B5 � 109 molecule cm�3 (at 60 torr N2 and 180 ms integration time). Detection

of HNO3 using the emission at (310 � 5 nm) was orders of magnitude more sensitive than detection of

NO and NO2, especially in the presence of O2 which quenches NO(A2S+) more efficiently than OH(A2S).

While H2O2 (and possibly HO2) could also be detected by 193 nm TPEFS, the relative sensitivity

(compared to HNO3) was very low. The viability of real-time TPEFS detection of HNO3 using emission at

(310 � 5) nm was demonstrated by monitoring HNO3 formation in the reaction of OH + NO2 and

deriving the rate coefficient, k2. The value of k2 obtained at 293 K and pressures of 50–200 torr is

entirely consistent with that obtained by simultaneously measuring the OH decay and is in very good

agreement with the most recent literature values.

1. Introduction

HNO3 is an important atmospheric trace gas and its ultra-violet

photo-dissociation has been the subject of numerous studies.1

The photo-dissociation of HNO3 can be divided into three

channels, leading to formation of OH, O-atoms or H-atoms,

the relative importance of which depends on the wavelength.

HNO3 + hn (I)- OH(X) + NO2(X
2A1) (R1a)

- OH(X) + NO2(1
2B2) (R1b)

HNO3 + hn (II)- O(1D) + HONO(X1A0) (R1c)

- O(3P) + HONO(a3A00) (R1d)

- O(3P) + HONO(X1A0) (R1e)

HNO3 + hn (III)- H(2S) + NO3 (R1f)

At wavelengths (l) greater than 250 nm, the n–p* transition

(to the 1 1A00 electronic excited state) in HNO3 leads to photo-

dissociation into predominantly OH + NO2 (FI
250nm 4 0.97)

with a weak contribution fromO-atom formation (FII
250nm = 0.03).

The formation of NO3 and H photo-fragments (Channel III)

at these wavelengths has been assigned an upper limit of

FIII
250nm o 0.012.2

At lo 250 nm, HNO3 is excited to the 21A0 electronic excited

through an p–p* transition. At 193 nm, channel II becomes

the main photo-dissociation channel with quantum yields of

FII
193nm = 0.67 and FI

193nm = 0.33.2–5 OH fragments formed in

channel I are produced in their vibrational ground state with

little rotational excitation,6–9 whereas the NO2 co-fragment is

formed either in its ground state, or in its 12B2 electronically

excited state (yield o 1.0%). The ground state NO2 thus formed

is sufficiently energy rich to decompose to NO and O(3P).

Experimental determinations of the yield of O(1D) in

channel II vary between 0.54 and 0.28.2,5 At shorter wave-

lengths, l o 155 nm, OH can be formed in an electronically

excited state10,11 in a single photon process.

In a series of papers by Stuhl and co-workers studying the

excitation of HNO3 at 193 nm,12–14 it was shown that

electronically excited OH, OH(A), was produced in a sequential,

two-photon process. From experimental observations, spin

conservation and energy considerations the authors were able

to demonstrate that OH(A) was not formed directly but via the

photolysis of electronically excited HONO, probably in its

metastable lower triplet state (a3A00). They used these findings

to develop a new method (laser-photolysis fragment-

fluorescence, LPFF) for the measurement of HNO3 in the

atmosphere.15,16 Recently, Winiberg et al.17 reported results
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from the multi-photon photolysis of HNO3 at 193 and 248 nm

and reported dispersed OH and NO fluorescence spectra. They

demonstrated that OH emission from a 2-photon excitation of

HNO3 was not only observed upon excitation at 193 nm but also

at 248 nm. In a previous study18 from our group (on the

reaction between OH and HNO3), the TPEFS method was used

to check for HNO3 concentration gradients across the reactor at

low temperature (220 K o T o 250 K).

In this paper, we investigate the two-photon photodissocia-

tion of HNO3 at 193 nm and demonstrate the application of

two-photon excited fragment spectroscopy (TPEFS) detection of

HNO3 in real-time (flash photolysis) kinetic studies. For the

latter we re-measured the well-known rate coefficient19,20 of the

reaction between OH and NO2 (R2) by monitoring the HNO3

product by TPEFS and also by near-simultaneous detection of

OH via Laser Induced Fluorescence (LIF):

OH + NO2 + M- HNO3 + M (R2a)

- HOONO + M (R2b)

The three-body association reaction of OH with NO2 is known

to proceed via two product channels ((R2a) and (R2b)) forming

mainly nitric acid (HNO3) but with a contribution from

peroxynitrous-acid (HOONO).21,22 At room temperature and a

pressure of 100 mbar the rate coefficients of the two reactions

have been evaluated as: k2a = 3.0 � 10�12 cm3 molecule�1 s�1

and k2b = 2.0 � 10�13 cm3 molecule�1 s�1. 23 HOONO is

thermally unstable with a room-temperature lifetime w.r.t.

decomposition to OH + NO2 of E10 s. However, on the

milli-second timescale of our experiments it can be considered

a stable product. As the application of TPEFS in kinetic studies

of HNO3 will depend on its selectivity, we characterisd the

sensitivity of TPEFS at 193 nm for detection of several other

trace gases, including NO and NO2 which are often present

(as impurities or products) in reaction systems involving HNO3.

2. Experimental

All measurements were performed at 293 K on the PLP-LIF

apparatus shown in Fig. 1. Several features of the setup have

been described in detail elsewhere.24 The main modifications

to the present set-up are (1) the incorporation of a gated CCD

camera for dispersed fluorescence measurement and (2) an

additional (193 nm) excimer laser.

2.1 Radical generation, fluorescence excitation and detection

Laser-light is coupled in/out of the thermostatted, multi-axis

reaction cell (volume B500 cm3) via Brewster-angle quartz

windows. Pulsed (B20 ns) 248 nm light from a KrF-excimer

laser (Coherent COMPex 205F) provided a source of OH radicals

(e.g. via H2O2 photolysis, see later).

HNO3 was detected following excitation/dissociation at

193 nm using an ArF excimer laser (Coherent COMPex Pro

201F). A focal lens (f = 50 cm) was used to mildly focus the laser

in the middle of the reactor to enhance the HNO3 detection

sensitivity. Typical photon fluxes at 193 nm varied from

30 to 50 mJ cm�2 (measured at the exit of the photolysis cell).

OH was excited at 282 nm using a YAG-pumped Dye-Laser

(Quantel Brilliant B/Lambda-Physik ScanMate II). All three

lasers operated at 10 Hz. The PMT signal was accumulated

using either a box-car integrator (Stanford Research Systems,

SR 250) for kinetic measurements or a digital oscilloscope

(Tektronix TDS 3014C, 100 MHz) for recording time-resolved

fluorescence signals.

The fluorescing volume at the reactor centre was imaged via

a 5 cm diameter quartz lens on the major axis of the cell onto a

photomultiplier tube screened with a 280 nm long-pass filter

(BG26) and a (310 � 5) nm interference filter. A lens/optical

fibre set up on an orthogonal axis transmitted fluorescence

from the same volume to the entrance slit of a 0.5 m mono-

chromator (Acton Research 500) equipped with a gated,

intensified CCD camera (Roper Scientific, PMax) for measurement

of dispersed fluorescence. Spectra were recorded using gratings

with either 300 or 1200 lines mm�1 resulting in spectral ranges of

B80 nm (at B1.2 nm resolution) or B20 nm (at B0.4 nm

resolution), respectively. Spectral resolution determination and

wavelength calibration was carried out using a low pressure

Hg-lamp.

2.2 Reagent gas concentrations

The concentrations of reagent gases were monitored using

three different, on-line optical absorption set-ups. Absorption

by NO2 (400–450 nm) was measured in an absorption cell

(l = 110 cm) using a halogen lamp as light source and a 0.5 m

monochromator/diode array camera as detector. NO2 concentrations

Fig. 1 Schematic of the combined PLP-LIF and PLP-TPEFS set-up. PMT:

photomultiplier, IF: interference filter, AC1: absorption cell with l = 110 cm

(240–400 nm), AC2: absorption cell with l = 34.8 cm (213.86 nm): AC2:

absorption cell with l = 43.8 cm (184.95 nm). MC: monochromator with

diode-array detector. H4: Halogen lamp. 193, 248 and 282 nm pulses were

provided by excimer lasers and a YAG-pumped dye-laser, respectively.

Dispersed fluorescence was collected on an axis orthogonal to the page

using a lens/optical-fibre set-up. Dashed lines indicate direction of gas-

flow.
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were derived by least-squares fitting to a literature reference

spectrum degraded to the same resolution.25 The concentration

of H2O2 was determined from its optical absorption at

213.86 nm (low pressure Zn-lamp, l = 34.8 cm) using an absorp-

tion cross-section of s213.9(H2O2) = 3.3 � 10�19 cm2 molecule�1.26

The concentrations of HNO3 and H2Owere determined from their

optical absorption at 184.95 nm (low pressure Hg-lamp, l =

43.8 cm) using s184.95(HNO3) = 1.63� 10�17 cm2 molecule�1 18,27,28

and s184.95(H2O) = 7.14 � 10�20 cm2 molecule�1.29 In the same set-

up, the ozone concentration was measured at 253.65 nm using a

cross-section of 1.1 � 10�17 cm2 molecule�1.23

2.3 Chemicals

Bottled N2 (Westfalen, 5.0) was used without further purification.

H2O2 (AppliChem, 50 wt%) was concentrated by vacuum

distillation. NO2 was prepared by reacting B50 torr of NO with

a large excess of O2 in a dried glass bulb. The NO2 was then

condensed at liquid N2 temperature and excess O2 and NO were

removed by pumping. The resulting NO2 was stored as a mixture

of 5% NO2, 10% O2 and 85% N2. Anhydrous nitric acid was

prepared by mixing KNO3 (Sigma Aldrich, 99%) and H2SO4

(Roth, 98%), and condensing the HNO3 vapour into a liquid

nitrogen trap. Anhydrous nitric acid was kept at 252 K between

experiments.

3. Results and discussion
3.1 Fluorescence from HNO3 at (310 � 5) nm in N2

Our TPEFS measurement of HNO3 monitors a fluorescence

signal that is transmitted through an interference filter

(310 � 5 nm) that biases detection to the strong OH (0,0)

emission lines. Fig. 2 (upper panel) displays the averaged

(500 laser pulses), time-resolved signal due to three different

concentrations of HNO3 (in a flow of N2 at a total pressure of

100 torr) which were quantified by absorption at 184.95 nm.

The integrated fluorescence signals are plotted against HNO3

concentration in the lower panel of Fig. 2 which indicates that,

for [HNO3] up to 2 � 1014 molecule cm�3 and under these

experimental settings (PMT voltage, focused 193 nm laser

light), the fluorescence signal is proportional to [HNO3]. At

60 torr N2, we achieved a limit of detection for HNO3 of

5 � 109 molecule cm�3 at 1s for 2 min of signal accumulation,

which results (at 10 Hz) in a total signal integration time of 180 ms.

The dependence of the TPEFS signal on the 193 nm laser

energy (E193nm, varied by changing the high-voltage of the

excimer laser or placing fine metal mesh in the beam at

the exit of the laser) is displayed in Fig. 3. The relative change

in energy was measured by splitting part of the laser-beam

to a photo-diode with a linear response in the range

measured.

The signal does not follow the expected quadratic dependence

on laser energy for a two-photon process, but varies linearly, with

a negative offset. This is a result of saturation of the first electronic

transition due to the focused 193 nm radiation and the large

absorption cross-section of HNO3. The apparent, negative offset is

Fig. 2 Upper panel: Time resolved fluorescence signal detected by the

PMT and (310 � 5) nm interference filter at 100 torr N2 and room

temperature (298 � 2 K). Lower panel: TPEFS signal (0–150 ns) versus

HNO3 concentration. The straight line is a linear regression to the data.

Fig. 3 TPEFS signal as a function of 193 nm laser energy. The solid line is a

linear regression. The experimental conditions were: 100 torr [N2] and

[HNO3] = 1.1 � 1013 molecule cm�3.
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a manifestation of non-linearity at low laser energy where the first

transition is not yet saturated. Our energy dependence contrasts

that reported by Winiberg et al.17 who observed a quadratic

dependence on laser fluence. This difference is likely related to

their use of much lower laser fluences (factor B15) and

(potentially) a less focused laser beam.

A series of auxiliary experiments was conducted to examine

the quenching of the fluorescence by N2. The fluorescence

signals, recorded for [HNO3] = 5.0 � 1012 molecule cm�3, at

N2 densities between 1.5 and 10 � 1017 molecule cm�3 (B4 and

B30 torr at 293 K), are displayed in the upper panel of Fig. 4.

Assuming that the fluorescence corresponds to the (0,0)

transition from the OH(A) state we can write:

d[OH(A)]/dt = kf + kq(N2)[N2] + kq(HNO3)[HNO3] (1)

where kf is the fluorescence decay rate constant (s
�1) and is the

inverse of the radiative lifetime, tf. kq(N2) is the quenching rate

constant for N2 bath gas, kq(HNO3) is the quenching rate

constant for HNO3 (kq in units of cm3 molecule�1 s�1),

[HNO3] and [N2] are the concentrations of HNO3 and N2 (both

in molecule cm�3). The fluorescence profiles in Fig. 4 were

fitted to eqn (E2), which is a convolution of a Gaussian function

and a simple exponential decay:

S ¼ S0 exp
a2

b2

� �

� t� t0ð Þ
b

� �

� 1� erf a2 � b� t� t0ð Þ
ffiffiffi

2
p

� a� t

� �� �

(2)

where S0 is the signal intensity, a (s) is the width of the

Gaussian function, b is the fluorescence decay lifetime in s

and thus the reciprocal of the decay constant (tf), t0 is the time

(s) at the onset of the signal rise and erf is the error function.

This equation allows us to account for the finite pulse width of

the 193 nm excimer laser (B20 ns), the response time for the

PMT (B20 ns) and the oscilloscope bandwidth (100 MHz)

which result in non-instantaneous build-up of signal. The slope

of the plot of tf versus [N2] (lower panel of Fig. 4), is the

quenching rate constant, here determined as kq(N2) = (1.1 �
0.1) � 10�11 cm3 molecule�1 s�1. This is in good agreement

with the value of (1.3 � 0.4) � 10�11 cm3 molecule�1 s�1

reported by Kenner et al.14 for collisional deactivation of rota-

tional levels N0 = 1–16 of the v0 = 0 state of OH(A) generated by

the 193 nm excitation of HNO3. It is approximately 3 times

smaller than those derived from experiments in which

OH(A, v0 = 0) was formed rotationally cold (N0
o 4)30,31 and

thus in qualitative agreement with previous observations that

the electronic quenching rate coefficient decreases as the

rotational level increases.32,33

At an HNO3 concentration of 5 � 1012 molecule cm�3 and

using the quenching rate constant reported by Kenner et al.14 of

kq(HNO3) = 5.9 � 10�10 cm3 molecule�1 s�1, we calculate

kq(HNO3)[HNO3]E 3000 s�1 which thus represents a negligible

contribution (o1%) to the intercept of (1.2 � 0.1) � 106 s�1.

The inercept can thus be equated to kf and results in a radiative

lifetime of about (840 � 90) ns (errors are 2s statistical). This

value is somewhat larger than the natural fluorescence lifetime

of (688 � 21) ns34 for the A2S(v0 = 0)- X2P(v00= 0) transition,

indicating that the nascent OH(A2S(v0 = 1,2)) formed from

193 nm, two-photo excitation of HNO3 undergoes vibrational

energy transfer down to A2S(v0 = 0) on the same timescale as the

fluorescence emission and the electronic quenching. This was

confirmed by the observation of an increase in the signal

intensity as the pressure was increased although [HNO3] was

kept constant.

3.2 Dispersed fluorescence spectrum of HNO3

In Fig. 5 we display the emission spectrum (220 to 330 nm)

obtained in the excitation of HNO3 at 193 nm in He bath gas at

90 torr. The individual spectra for each B20 nm wide spectral

region are the average of 2000 single spectra (obtained at 10 Hz)

with a gate width (i.e. CCD exposure time) of 1 ms and were

recorded 45 ns after the 193 nm laser pulse. The features are

assigned to emission from excited OH and NO. Note that the

final spectrum is not corrected for the wavelength dependent

sensitivity of the detector or wavelength dependent transmission

Fig. 4 Upper panel: Time resolved fluorescence signal detected by the

PMT through the (310 � 5) nm interference filter following the 193 nm

excitation of HNO3. The black, solid lines correspond to fits using (E2).

Lower panel: Fluorescence decay constant (tf) versus bath gas (N2)

concentration. The black solid line corresponds to a linear regression used

for fitting tf. Error bars are 2s statistical only.
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of either the monochromator or the optical fibre used. This will

result in a positive bias to longer wavelength fluorescence and

thus features such as the NO emission lines between 225 and

280 nm are stronger (relative to the OH(A) lines) than depicted in

this figure. Under these experimental conditions, we were able to

observe the OH(0,0) emission centred at 310 nm and emissions

of vibrationally excited OH at B282 nm OH(1,0), B287 nm

OH(2,1) and B315 nm OH(1,1).

Using LIFBASE35 we could approximately reproduce the

measured OH fluorescence spectra with a vibrational temperature

(Tvib) of B3200 K and a rotational temperature (Trot) of B700 K.

The former value is in qualitative agreement with Kenner et al.14

who also observed a high degree of vibrational excitation in OH

and reported a vibrational temperature of 375 K.

The NO emission lines have been observed previously in the

193 nm excitation of HNO3 and were thought to be the result of

the excitation of NO2, which was present as an impurity in the

experiments of Papenbrock et al.12 However, our measurement

of the NO* fluorescence emission resulting from the excitation

of NO2 at 193 nm (see Fig. 6) showed that the intensities of the

NO emission lines are much smaller than those observed in the

excitation of similar amounts of HNO3, which leads us to

conclude that NO* is formed via 193 nm excitation of HNO3

and not from NO2 impurity.

Indeed, this additional channel, in which the co-product

would be OH in its electronic ground state, is energetically

feasible and has been proposed previously.36 Recent work by

Winiberg et al.17 also showed that NO(A) was observed from the

two photon photolysis of HNO3 at 248 nm.

3.3 TPEFS detection of selected NOX and HOX trace gases

In this section we discuss the relative detection sensitivity of

TPEFS to HNO3, NO and NO2. The results are summarised in

Table 1. As described above, the NO(A) emission lines seen

when exciting HNO3 samples at 193 nm may arise from the

presence of impurities such as NO or NO2. Here, we examine

the relative detection sensitivity for NO and NO2, identify the

origin of these lines and assess the potential interference of NO

and NO2 whilst monitoring HNO3 as OH(A).

Fig. 5 Fluorescence emission spectrum (black line) following excitation

of 7 � 1013 molecule cm�3 HNO3 in 90 torr He at 193 nm. The inset has an

expanded y-scale showing NO fluorescence emission lines from 220 to

280 nm. The red line is a simulation (LIFBASE35) of the relative line

intensities for the OH A2
S(v0 = 0,1,2) - X2P(v00= 0,1,2) transition using

Tvib = 3200 K and Trot = 700 K.

Fig. 6 Upper panel: NO fluorescence emission spectrum following

193 nm excitation of NO with assignment to vibrational transitions from

the A to X electronic states. Lower panel: As upper panel but following

193 nm NO2 excitation. Experiments were carried out at B298 K and a

bath gas-pressure of 60 torr (N2) with [NO] = 3.0 � 1015 molecule cm�3 or

[NO2] = 2.4 � 1015 molecule cm�3. The 310 nm interference filter

transmission curve (used for selective detection of emission from OH(A))

is represented by the dashed line.

Table 1 TPEFS sensitivity (S) to NO, NO2, HO2 and H2O2

HNO3 NO NO2 H2O2 HO2

sa 110023 o0.001 2937 6123 39038

S (N2) 10 000 (30 � 10) (50 � 20) — o(3 � 1)
S (air) 10 000 (5 � 1) — (0.6 � 0.2)
S (He) 10 000 o1 — —

a s is the single-photon absorption cross-section at 193 nm (units of
10�20 cm2 molecule�1). Detection sensitivity is relative to HNO3.
Uncertainties are 2s statistical only.
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For both NO and NO2, we performed a series of experiments

in different bath gases (N2 and He) and with and without O2 in

order to assess the excitation mechanism at the origin of

emission around 310 nm. To minimize HNO3 interference

from NO and NO2 excitation spectra, we coated the gas line

leading to the reactor with NaHCO3. The removal of HNO3 was

confirmed by the non-observation of OH emission lines.

In experiments designed to investigate the kinetics of HNO3

formation via the reaction between OH and NO2 (Section 3.4)

we used H2O2 as the photolytic source of OH. In these experiments,

HO2 was also formed and we therefore report the sensitivity

(relative to HNO3) of TPEFS to both HO2 and H2O2.

The experiments on NO, NO2, HO2 and H2O2 are described

in Sections 3.3.1–3.3.4, the results are summarized in Table 1.

3.3.1 NO emission spectrum. In Fig. 6 (upper panel), we

present the dispersed NO fluorescence emission (recorded

45 ns after the 193 nm laser pulse) observed upon 193 nm

excitation of NO in N2. Vibronic transitions were assigned using

LIFBASE.35 In Fig. S1 (ESI†) we present absorption cross-

sections (185–230 nm) of NO obtained at a spectral resolution

of 0.16 nm (as derived from the measured full width (at half

maximum) of the 253.65 nm line from a low-pressure Hg lamp).

The spectrum was recorded at 19 torr of N2 with [NO] = 3.1 �
1016 molecule cm�3 using a 10 cm absorption cell. In this

wavelength range, the NO spectrum shows discrete transitions

from the ground state to the A, B, C and D electronic states

which were assigned using LIFBASE.35 In Fig. S1 (ESI†), we also

indicate the position of the 193 nm ArF laser pulse which lies

between the NO absorption features centered aroundB191 nm

and B195 nm, thus highlighting the lack of NO absorption

at the excitation wavelength. At 193 nm, the single-photon

absorption cross-section of NO is very low (see Table 1).

Shibuya and Stuhl39 and Hack et al.40measured the dispersed

fluorescence from a few mTorr of pure NO upon excitation with

an ArF laser and reported that the emission (in the 200 to

300 nm range) arose mainly from the B2P(v0 = 7) state, but

identified weaker features from the adjacent A(v0 = 3) and

C(v0 = 0) states. Shibuya and Stuhl hypothesized that at

193 nm the absorption arose from the transition from high

rotational states (R11, P11, Q11, R22 and P22) of the ground state

(X2P, v00 = 0) to the B2 P(v0 = 7) state.

Additionally, we measured the dependence of the NO

fluorescence signal (as measured through the (310 � 5) nm

interference filter and PMT) as a function of the 193 nm laser

energy, which is displayed in Fig. S2 (ESI†). There is a strictly

proportional dependence of the NO fluorescence signal as a

function of E193nm, which (given the weak absorption of NO at

this wavelength) may indicate that the process leading to NO

fluorescence involves one photon.

In Fig. S3 (ESI†), we display a series of spectra showing the

effect of changing bath gas (He to N2) and of adding O2 on the

distribution of the NO emission lines upon 193 nm excitation

of either NO or NO2. All spectra were recorded at a total

pressure of 65 torr with similar concentrations of either NO

or NO2 ([NO] = 2.6 � 1015 molecule cm�3, [NO2] = 2.1 � 1015

molecule cm�3) and [O2] = 4.0 � 1016 molecule cm�3.

In Fig. S3a (ESI†) (NO2 excitation) we observed that the

fluorescence emission is B5 times more intense in He than

in N2 for the A(v0 = 0)- X vibrational series. For NO (Fig. S3b,

ESI†), we also observed a stronger quenching effect of He

relative to N2 but observed that in He fluorescence was mainly

from the A(v0 = 3) electronic state while in N2 it was from the

A(v0 = 0) state.

The relative intensity of the emission lines indicates that

85% of the vibrational population was located in the A(v0 = 3)

state. The replacement of He with N2 leads to the depopulation,

through vibrational energy transfer, of the A(v0 = 3) electronic

state to form A(v0 = 0, 1, 2). We did not observe any evidence of

emission down from the B2P(v0 = 7) state as reported

previously39,40 however it appears that under our pressure

and bath gas conditions that the B2P(v0 = 7) is quenched down

to the observed A2S(v0 = 3) state in agreement with Hack et al.40

We note that the quenching rate constants were reported to be

larger for N2 (see Settersen et al.41 and references therein) than

for He.42,43

In Fig. S3c to f (ESI†), we present spectra highlighting the

strong O2 quenching effect on NO fluorescence from both NO2

and NO excitation.

We also examined the quenching of NO fluorescence

(as measured by the PMT through the (310� 5) nm interference

filter) by O2. As shown in Fig. 6, in this wavelength window, NO

fluorescence arises from NO A(v0 = 0, 1, 2, 3) emission to the

ground state. In Fig. S4 (ESI†) we show the relative change in

fluorescence intensity while the concentration of O2 was varied

from 0 to 4 � 1017 molecule cm�3 (in N2 bath gas at a total

pressure of 60 torr). From this we derive a quenching rate

constant for O2 of (1.5 � 0.1) � 10�10 cm3 molecule�1 s�1,

where the uncertainty is 2s statistical only (more details in ESI†).

This result is in excellent agreement with previous measurements

which reported a quenching rate constant for O2 of 1.5 �
10�10 cm3 molecule�1 s�1 (see Nee et al.42 and references

therein) for NO (A, v 0 = 0). Quenching rate constants

were reported as being only weakly dependent on the vibra-

tional level of the A state, with values of kq within 30% for

(A, v 0 = 0, 1, 2, 3) for N2 and O2.
42 Our experiments indicate

that the numerous quenching rate constant determinations

reported in the literature can reproduce our observations

at 310 nm.

3.3.2 NO2 emission spectrum. At 193 nm, the single-photon

absorption cross-section of NO2 is not accurately known with

reported values ranging from 2.7 to 5.4� 10�19 cm2molecule�1,44

the most recent measurement reported a cross-section of

(2.9 � 1.2) � 10�19 cm2 molecule�1 at this wavelength.45

Excitation of NO2 at 193 nm (6.42 eV) leads to its photo-

dissociation to vibrationally excited, electronic ground-state

NO(X 2
P) and both O(1D) and O(3P)37,46 as well as N(4S) and

O2.
47 As shown in Fig. 6 (lower panel), upon excitation of NO2 at

193 nm, we observed fluorescence emission from NO(A2S+), as

previously reported.48

The energy thresholds for the formation of NO A2S+ and NO

B2P are 8.60 and 8.75 eV respectively.49–51 Welge52 reported the

formation of NO(A2S+ and B2P) after exciting NO2 to Rydberg
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states at 116.5 nm (10.64 eV), 123.6 nm (10.03 eV) and 129.5 nm

(9.57 eV) but not at 147 nm (8.43 eV). This indicates that single-

photon processes at 193 nm cannot explain the formation of

NO(A2S+). On the other hand, simultaneous absorption of

two-photons at 193 nm (12.84 eV) appears unlikely to be the

source of NO(A2S+) as the ionization energy threshold for the

formation of NO+ is only 12.38 eV.51 We conclude that a

sequential, two-photon absorption mechanism involving a

sufficiently long-lived intermediate state (i.e. similar to the

formation of excited OH in the 2-photon photolysis of HNO3)

might be at the origin of the observed NO(A2S+) in NO2

photolysis at 193 nm.

3.3.3 Relative TPEFS sensitivity of NO, NO2 and HNO3.

Initial experiments indicated that the TPEFS detection of

HNO3 around 310 nm (i.e. non-dispersed fluorescence) was

orders of magnitude more sensitive than for NO or NO2.

In order to extend the dynamic range to measure relative

signals from NO, NO2 and HNO3 under the same settings

(i.e. PMT voltage) we reduced the sensitivity (by a factor of

5.4) when monitoring signals from HNO3 by adding a BG26

optical filter in front of the PMT and using concentrations of

HNO3 that were roughly 10 times smaller than those of NO and

NO2: [HNO3] = 0.2–1.2 � 1013 molecule cm�3, [NO] = 2.1–9.9 �
1013 molecule cm�3, [NO2] = 2.1–8.5 � 1013 molecule cm�3.

Under these conditions, saturation of the signal at the PMT was

avoided when using HNO3 although the TPEFS signals

observed were still roughly 100 times larger for HNO3 than

for NO and NO2.

In Fig. 7, we present calibration curves in which TPEFS

signals are plotted as a function of NO, NO2 and HNO3

concentrations.

Note that the right y-axis (for NO and NO2 detection) is

scaled by a factor 0.01 compared to that for HNO3 (left y-axis).

Concentrations of NO2 and HNO3 were obtained by in situ

optical absorption (Section 2.2), whereas the concentration of

NO was derived from the mixing ratio in the storage bulb, its

dilution in bath gas and the total pressure. The solid-line fits to

the data indicate a sensitivity for detection of NO relative to

HNO3 of (3 � 1) � 10�3 in N2. The values obtained in air and

He were (5 � 1) � 10�4 and o10�4, respectively.

The lower relative sensitivity in air compared to N2 is

readily explained by the more efficient quenching of O2 on

NO fluorescence than on OH fluorescence. It is also amplified by

the very low quenching rate constant of NO fluorescence by N2.
41

In He, the TPEFS sensitivity to HNO3 increased (compared to

N2) much more than it did for NO or NO2. This forced us to

reduce the PMT-voltage when monitoring HNO3 whereby

usable signals from NO and NO2 were only obtained by adding

much larger concentrations for which fluorescence self-

quenching was an issue. In He we were thus unable to extend

the dynamic range of the experiment to measure signals from

HNO3 and NO or NO2 under the same conditions and we only

report a lower limit of 10�4 to the relative sensivity.

In order to perform similar experiments on NO2, we initially

used diluted NO2 samples. However, we found that a small but

variable fraction (around 0.1–1%) of the NO2 was converted to

HNO3 on the inlet and reactor surfaces. We therefore generated

NO2 in situ in a pre-reactor by reacting NO with O3. The latter, at

a concentration of 1.0 � 1013 molecule cm�3, was generated by

the photolysis of O2 at 185 nm using a Hg lamp.

The conversion of NO to NO2 was 92 to 95%. We thus

obtained a relative detection efficiency (in N2) of NO2 compared

to HNO3 of (5 � 3) � 10�3.

3.3.4 Detection of H2O2. The single-photon cross-section of

H2O2 at 193 nm is 6.1 � 10�19 cm2 molecule�1. 23 In a series of

experiments in 50 torr N2 at B298 K we observed a linear

dependence of the TPEFS signal on the H2O2 concentration

(varied from 0.11 to 1.1 � 1016 molecule cm�3) as shown in

Fig. S5 (ESI†). The TPEFS detection sensitivity of H2O2 relative

to that of HNO3 of was found to be (6 � 2) � 10�5, where the

uncertainty is 2s statistical only.

Previous studies on the VUV photolysis of H2O2
53–56 indicate

that OH, H and O-atoms are formed:

H2O2 + hn- 2 OH(X2P) (R3a)

- OH(X2P) + OH(X2 P, v00 4 0) (R3b)

- H(2S) + HO2 (R3c)

- H2O + O(3P) (R3d)

- H2O + O(1D) (R3e)

- H2O + O(1S) (R3f)

At l o 198 nm excitation, the main dissociation pathways lead

to two OH (R5a and R5b) and to H(2S) atom and HO2 (R5c).

At 193 nm, the yields for the OH + OH channel (R5a) and the

H + HO2 (R5c) are 0.8 and 0.2, respectively and an upper limit of

0.15 was given for the formation of vibrationally excited

OH(X2 P, v00 4 0) (R5b).54 The yields of O-atoms are very low

with upper limits of 0.001 for O(3P) + O(1D) and 0.02 for O(1S)

channels. OH(A) is formed at wavelength below 172 nm.57

Fig. 7 HNO3 TPEFS signal (left y-axis) and NO and NO2 TPEFS signal

(right y-axis) as a function of concentration. These results were obtained in

N2 (62 torr) and at room temperature (298 � 2 K).
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Formation of OH(A), has however been observed in the

two-photon excitation of H2O2 at 193 nm58,59 which, via

analysis of the state resolved internal distribution of OH(A),

was demonstrated to originate from a resonant, 2-photon

sequential absorption process.

3.3.5 Detection of HO2. HO2 was formed in the 248 nm

photolysis of H2O2 whereby the initially formed OH radicals

were converted to HO2 in (R4).

OH + H2O2- HO2 + H2O (R4)

The sensitivity for detection of HO2 at 193 nm was examined

in 60 torr of N2 with [H2O2] = 2.4 � 1015 molecule cm�3.

The photon density at 248 nm was measured using a calibrated

Joulemeter as 6.8 � 1016 photon cm�2. Under these conditions,

B1.6 � 1013 molecule cm�3 of HO2 were generated.

The observed TPEFS signal was modelled as the sum of the

signals originating directly from H2O2 and from HO2 formed in

R4. The kinetic model included R4 and R5 with diffusion

coefficients for OH and HO2 set to 30 s�1. In Fig. S6 (ESI†),

we show the signal expected when assuming that HO2 was not

detected. The slight depletion in signal at time = zero is

explained by the loss of H2O2 by photolysis (B1.5%) and in

the subsequent OH + H2O2 reaction. From this data we were

only able to report an upper limit HO2 detection sensitivity

(relative to HNO3) of (3.2 � 1.2) � 10�4 (2s statistical only,

including a 15% uncertainty on the photon density).

3.4 Rate coefficient for the OH + NO2 reaction

Rate coefficients for OH + NO2 were measured by both

conventional pulsed laser photolytic formation of OH with its

detection in real time by laser induced fluorescence (PLP-LIF,

with 282 nm excitation of OH and PLP-TPEFS with 193 nm

excitation for detection of the HNO3 product).

OH radicals were generated either in the 248 nm photolysis

of H2O2 (R5) or by the 248 nm photolysis of O3 in the presence

of H2O (R6 and R7).

H2O2 + hv- 2 OH (R5)

O3 + hv- O(1D) + O2 (R6)

O(1D) + H2O- 2 OH (R7)

The concentrations used were [H2O2] B1 � 1014 molecule cm�3,

[O3] = (2–7) � 1013 molecule cm�3 and [H2O] = (1.5–6.0) �
1016 molecule cm�3 (corresponding to a mixing ratio of

B4.2% at the total pressure of 50 to 200 torr, see Table 2).

Using a laser-fluence ofB50 mJ cm�2, 1–3 � 1012 molecule cm�3

[OH] were generated per pulse such that the experiments

were conducted under pseudo-first order conditions

(i.e. [NO2] c [OH]).

We observed that small amounts of NO2 (o0.1%) were

converted into HNO3 on the surfaces of the reactor adding a

background signal to the kinetics profile. The effect became

more pronounced when water vapour was added to the reactor

where as much as a few percent of NO2 were converted to

HNO3. We note that the build-up of background HNO3

occurred on a longer time scale (B2–3 hours) than the time

necessary to gather the data necessary to derive a rate constant

for one particular set of conditions. However, it did prevent

conducting a long-time series of measurements (e.g. over the

course of a day) as the background became too large and the

reactor cell needed to be flushed with dry N2 for several

hours to return to favourable conditions. The use of NaHCO3

to coat the surface was impractical in these experiments as its

efficiency to remove HNO3 also changed over time.

In both schemes, OH is generated quasi-instantaneously

compared to its loss rate and the time profiles for OH loss

and HNO3/HOONO production in the cell are then given by:

[OH]t = [OH]0 exp(�[k2[NO2] + dOH]t) (3)

[HNO3]t = aC(exp(�dHNO3
t) � exp(�[k2[NO2] + dOH]t))

(4)

[HOONO]t = (1 � a)C(exp(�dHOONOt) � exp(�[k2[NO2] + dOH]t))

(5)

where k2 is the rate coefficient for reaction (R2), dOH and dHNO3

are first-order rate constants (s�1) for the diffusive loss of OH

and HNO3 from the reaction volume, respectively and C is equal

to [OH]0(k2[NO2] + dOH)/(k2[NO2] + dOH + dHNO3
). We do not

know if TPEFS detects HOONO but note that, to a very good

approximation, the first-order constant for formation of

HOONO will be the same as for HNO3 as both are very long-

lived compared to the time-scale of the decay of OH. Only the

absolute concentrations of HNO3 and HOONO are defined by

the branching ratio and thus the kinetic parameters would not

be impacted whether HOONO is detected or not.

The pseudo-first-order loss rate coefficient for OH is:

k2
0 = k2[NO2] + dOH (6)

Experiments to derive k2 were carried out at room temperature

and at a number of different pressures of air (50–200 torr) using

the two different OH precursors described above. We worked in

air rather than in N2 as this improves the relative sensitivity to

HNO3 compared to NO2.

Fig. 8 shows time profiles for both OH decay (upper panel)

and HNO3 production (lower panel) obtained for the same

chemical system using H2O2 as a precursor. The HNO3 TPEFS

signals displayed were accumulated for 40 scans (B10 min)

while OH LIF signal were accumulated for 25 scans (B5 min).

The profiles were obtained by computer-controlled variation of

Table 2 Determination of k2 in air

Pressure (torr) H2O (%) k2 (10
�12 cm3 molecule�1 s�1)

O3/H2O as OH precursor
50 4.5 (3.2� 0.7)
100 4.1 (4.5� 0.4)
150 3.8 (5.7� 0.8)
200 4.5 (6.6� 0.3)
H2O2 as OH precursor
50 0 (2.3� 0.3)
100 0 (3.9� 0.3)
100 0 (4.0� 0.1)a

a OH LIF measurement. Errors are 2s statistical only.
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the delay-time between the 248 nm excimer laser pulse

(generating OH at time zero) and either the 282 nm laser

exciting OH or the 193 nm excimer-laser exciting HNO3.

The pseudo first-order rate coefficients, k2
0, were obtained by

fitting the observed time profiles to eqn (3) and (4) for OH loss

and HNO3 production, respectively. The bimolecular rate

coefficients were then obtained by plotting k2
0 against [NO2]

as shown in Fig. 9, which displays data from an experiment at a

total pressure of 100 torr of air whereby [NO2] was varied

between 0.5 and 3 � 1014 molecule cm�3.

The values of k2 obtained from the slopes of least-squares

fits to these datasets are (4.0 � 0.1) and (3.9 � 0.3) � 10�12 cm3

molecule�1 s�1, respectively.

Fig. 10 shows the measured rate coefficients as a function of

pressure along with fall-off expression (see the ESI†) used to

parameterize data recently measured in this laboratory.19,20

The results displayed in the upper panel of Fig. 10 indicate

that the rate coefficients obtained using detection of HNO3

Fig. 8 Time dependent signals from OH (upper panel, LIF) and HNO3

(lower panel, TPEFS) obtained in measurements at 100 torr of air using

H2O2 as a OH precursor. The solid lines are fits to the OH (eqn (3)) and

HNO3 signals (eqn (4)). The reaction time for the HNO3 formation datasets

was adjusted (i.e. shorter at high [NO2]) to get sufficient datapoints in the

early part of the profile.

Fig. 9 Plot of k 02 versus [NO2] for the reaction (R2) of OH with NO2 at 100

torr of air using H2O2 as OH precursor. The solid lines represent a linear

regression returning k2 = (4.0 � 0.1) � 10�12 cm3 molecule�1 s�1 using OH

detection by LIF (red line) and k2 = (3.9 � 0.3) � 10�12 cm3 molecule�1 s�1

using HNO3 detection by TPEFS (black line). Error bars are 2s statistical

only.

Fig. 10 Upper panel: Measurement of k2 for the OH reaction with NO2 in

air using 248 nm photolysis of H2O2 as a OH precursor and either TPEFS

detection of HNO3 or conventional LIF detection of OH. The solid red line

is a fall-off parameterisation (see ESI†). Lower panel: Measurement of k2
for the OH reaction with NO2 in air using 248 nm photolysis of O3–H2O to

generate OH. The solid red line is a fall-off parameterization (see the ESI†)

using a mixing ratio for H2O of 4.2% while the solid black line corresponds

to the same parametrisation in dry air.
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using TPEFS are in excellent agreement (better than 10%) with

that obtained using OH-LIF and also with the parameterisation

presented in our previous, comprehensive study (using

OH-LIF). The lower panel indicates that larger rate coefficients

are obtained when using O3/H2O as OH-precursor. This observation

is entirely consistent with the enhancement of k2 in the

presence of H2O described in detail by Amedro et al.19 and

the parameterisation of k2 presented by those authors (red

line). Note that the overall aim of the kinetic investigations

described in Section 3.4 was not to strengthen the database on

the OH + NO2 reaction, but to show that time resolved detection

of HNO3 by TPEFS can be used to derive accurate rate

coefficients. For more details about the OH reaction with NO2

rate constants measurements, including an extended comparison

with previous works and a newly developed parametrization, we

invite the interested reader to view our previous studies.19,20

We are unaware of any reason why TPEFS detection of HNO3 could

not be extended to kinetic studies at e.g. different temperatures.

4. Conclusions

We have characterized the detection of HNO3 using TPEFS as

part of a study to assess its viability for detection of HNO3 in real-

time (e.g. pulsed laser) kinetic studies. We have shown that

detection of HNO3 (via OH(A) emission at B310 nm is orders of

magnitude more sensitive than detection NO or NO2 (via NO*

emission) at the same wavelength, especially in air where the

quenching of NO fluorescence is most efficient owing to the

presence of O2. As a test case, we have used TPEFS for real-time

detection of HNO3 in the reaction between OH and NO2. The rate

constant obtained (293 K, 50–200 torr) is entirely consistent with

that obtained by simultaneously measuring the OH decay and is

in very good agreement with the most recent literature values.
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