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Latent Space Factorisation and Manipulation via Matrix Subspace Projection

Xiao Li 1 2 Chenghua Lin 2 Ruizhe Li 2 Chaozheng Wang 1 Frank Guerin 3

Abstract

We tackle the problem disentangling the latent

space of an autoencoder in order to separate la-

belled attribute information from other character-

istic information. This then allows us to change

selected attributes while preserving other informa-

tion. Our method, matrix subspace projection, is

much simpler than previous approaches to latent

space factorisation, for example not requiring mul-

tiple discriminators or a careful weighting among

their loss functions. Furthermore our new model

can be applied to autoencoders as a plugin, and

works across diverse domains such as images or

text. We demonstrate the utility of our method

for attribute manipulation in autoencoders trained

across varied domains, using both human eval-

uation and automated methods. The quality of

generation of our new model (e.g. reconstruction,

conditional generation) is highly competitive to a

number of strong baselines.

1. Introduction

We investigate the problem of manipulating multiple at-

tributes of data samples. This can be applied to image data,

for example to manipulate a picture of a face to add a beard,

change gender, or age. It can also be applied to text, for ex-

ample to change the style or sentiment of a text. We assume

that we have a training dataset where attributes are labelled.

However there is an unsupervised aspect because we do

not have samples of the same individual with different at-

tribute combinations, e.g., the same person with and without

a beard. Furthermore the training samples have some at-

tribute combinations that are highly correlated, while other

combinations are completely absent; e.g., in the CelebA

dataset blond hair and earrings are highly correlated with

female (Torfason et al., 2016), while a female with beard is
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absent. Nevertheless we would like our system to somehow

isolate the explanatory factors in pixel space, to understand,

e.g., that blond hair corresponds only to colour changes to

hair pixels, and no change elsewhere in the face.

This challenge of isolating multiple explanatory factors

poses interesting problems for generative models. In im-

ages of faces for example, even if the training data has no

bearded lady, a good generative model should be able to

‘imagine’ novel examples that combine attributes in ways

not present in training data. As noted by Higgins et al.

(2016) “Models are unable to generalise to data outside of

the convex hull of the training distribution . . . unless they

learn about the data generative factors and recombine them

in novel ways.” Ideally we should fully disentangle and

isolate the data generative factors, so that we can represent

the generative factors of a sample with a vector that has one

part labelled attribute information, and another part with

the other characteristic information of the sample. This is

in a small way part of a general trend to try to move deep

neural network research towards explanatory models of the

world (LeCun, 2013; Lake et al., 2016; Yuille & Liu, 2018),

which requires disentanglement. The problem is important

because isolating explanatory factors is a way to overcome

the combinatorial explosion of required training examples

if such factors are not isolated (Yuille & Liu, 2018).

A typical approach to the problem uses an autoencoder (AE)

which encodes a given input (e.g. picture, text, etc.) into a

latent vector, and then restores (decodes) the latent vector to

the given input (Lample et al., 2017; Hu et al., 2017; Xiao

et al., 2018; Li et al., 2019). The latent vector contains the

attribute information as well as other characteristic informa-

tion of the input. If one can change the attribute information

in the latent space, then one can generate examples with the

altered attributes. The difficulty here is twofold: (1) learn

a latent space representation which separates the attributes

from all other characteristic information, and (2) fully dis-

entangle the attributes. If we fail in the separation part,

then efforts to generate with specific attributes may conflict

with other information in the latent space (as in Kingma

et al. (2014) etc., see §2). If we fail in the second part then

examples generated with specified attributes will also be

contaminated with spurious attributes (see Fig. 1 Left).

Many recent approaches make use of auxiliary neural net-

ar
X

iv
:1

90
7.

12
38

5v
3 

 [
cs

.L
G

] 
 1

4 
A

ug
 2

02
0



Latent Space Factorisation and Manipulation via Matrix Subspace Projection

Figure 1. Left: from RelGAN (Wu et al., 2019), where the only

attribute changed is hair colour, but we see significant changes in

skin colour, eyebrows, eyes, and lips. Right: from Fader (Lample

et al., 2017), where female was changed to male, but female eye-

brows are retained above the male ones, due to skip connections.

work structures with adversarial training in the style of Gen-

erative Adversarial Networks (GANs). These new networks

can be used to remove attribute information from the latent

space (Lample et al., 2017), or to feedback a loss term to

impose the attributes they want to appear in the output (He

et al., 2019). These adversarial approaches have competing

loss terms (for example reconstruction loss, attribute clas-

sification loss, realistic output loss), and require a careful

choice of hyperparameters to weight these loss functions.

In the case of Lample et al. (2017) a slowly increasing loss

was critical. These hyperparameters and training schedules

must be determined by trial and error, to avoid training

instability. Even after successful training we have found

that some models ignore the desired attributes and put too

much weight on reconstruction and realistic output (see §4).

This is partly because we push systems to the very difficult

setting of training for multiple attributes together (e.g. 40

attributes for CelebA). This is a very demanding setting

for disentanglement, e.g. to dissociate lipstick, make-up,

and blond hair from female, and to dissociate beard, bushy

eyebrows, and 5 o’clock shadow from male.

We propose a simple and generic method, Matrix Subspace

Projection (MSP), which directly separates the attribute

information from all other non-attribute information, with-

out relying on weighting loss terms from auxiliary neural

networks. Our variables representing attributes are fully

disentangled, with one isolated variable for each attribute

of the training set. Therefore, when we do conditional gen-

eration, we can assign pure attributes combined with other

latent data which does not conflict, so that the generated pic-

tures are of high quality and not contaminated with spurious

attributes. Meanwhile, our model is a universal plugin. In

theory, it can be applied to any existing AEs (if and only if

the AEs use a latent vector). If the AE is a generative model

(such as VAE), with our approach, it becomes a conditional

generative model that generates content based on the given

condition constraints. In the case of images, we add a Patch-

GAN at the end of our generator to sharpen the image, but

this is not connected with the attribute manipulation task

and is not core to our model; it could be replaced with any

super resolution and sharpening method.

Our plugin has two uses: (1) samples can be generated from

a random seed, but with given attributes; (2) a given sample

can be modified to have desired specified attributes. Our

key contributions are: (1) A simple and universal plugin

for conditional generation and content replacement, directly

applicable to any AE architectures (e.g., image or text).

(2) Strong performance on learning disentangled latent rep-

resentations of multiple (e.g. 40) attributes. (3) A principled

weighting strategy for combining loss terms for training.

The code for our model is available online1.

2. Related Work

The first approaches to control of generation by attributes

(conditional VAEs (Kingma et al., 2014; Sohn et al., 2015;

Yan et al., 2016)) simply added attribute information as an

extra input to the encoder or the decoder. These approaches

generate using a latent vector z and also an attribute vector

y, where the z often conflicts with y, because attribute

information has not been removed from z. With conflicting

inputs the best the VAE can do is to produce a blurry image.

Generative Adversarial Networks (GANs) can be aug-

mented with encoders. IcGAN trains separate encoders

for the y and z vectors, but does not try to remove poten-

tially conflicting information (Perarnau et al., 2016). The

IcGAN authors also note that it can fail to generate unusual

attribute combinations such as a woman with a moustache,

because the GAN discriminator discourages the generator

from generating samples outside the training distribution.

More recent work tackled the problem of separating the

attribute information from the latent vector, using a new

auxiliary network (like a GAN discriminator) (Lample et al.,

2017; Creswell et al., 2017; Klys et al., 2018), which at-

tempts to guess the attribute of the latent vector z, and

penalise the generator if attribute information remains. A

significant drawback of these adversarial approaches is that

great care must be taken in training so that the loss from

the discriminator (which is trying to remove attribute in-

formation) does not disturb the training to produce a good

reconstruction. In the case of Fader networks (Lample et al.,

2017) it was necessary to start with a discriminator loss

weight of zero, and linearly increase to 0.0001 over the first

500,000 iterations; the authors state “This scheduling turned

out to be critical in our experiments. Without it, we observed

that the encoder was too affected by the loss coming from

the discriminator, even for low values of [loss coefficient].”

While this adversarial approach can successfully remove

attribute information from z, there is nothing to stop the

1Code: https://xiao.ac/proj/msp
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(a) Moustache/facial hair

(b) Glasses and facial hair subspace

(c) Glasses subspace

(d) Glasses subspace

Figure 2. Figure showing the difficulty of disentangling attributes

for supervised ‘adversarial’ approaches. (a) from Creswell et al.

(2017) shows significant change in the eyebrows and eyes when

adding facial hair. (b,c,d) from Klys et al. (2018). (b) moving

across the glasses and facial hair subspace, from the female on the

left, brings significant changes in eyebrows and eyes, and the shape

of cheeks, making the face more masculine. (c) moving in glasses

subspace shows changes around the eyes and mouth, looking older.

(d) also moving in glasses subspace shows a narrower smile and a

more masculine lower face. Note all of the pictures are generated

by VAE, none are original photographs.

decoder (generator) from associating other spurious infor-

mation with the attribute. For example the decoder might

associate the attribute intended to be for ‘glasses’ with an

older or more masculine face. This is what we see in the

results of two of the adversarial approaches (see Fig. 2).

Most of the results in Creswell et al. (2017) focus on the at-

tribute ‘smiling’ (not reproduced here), and this is very well

disentangled. It is only when the training dataset associates

other attributes with the trained attribute that entanglement

will arise. In Creswell et al. (2017) the attribute vector is a

single binary variable so that the system can only be trained

to control (or classify) one attribute. It is not unexpected

that a generator will associate spurious information with an

attribute if the association is present in the training data and

the system has been trained only on examples labelling a

single attribute, e.g., glasses. The system cannot know that

it should isolate ‘wearing glasses’, and not ‘wearing glasses

and older’. Fader Networks (Lample et al., 2017) can train

for multiple attributes together, however He et al. (2019)

state that “Although Fader Networks is capable for multi-

ple attribute editing with one model, in practice, multiple

attribute setting makes the results blurry.”

The most recent works (2018-19) are GAN-based. They do

not try to remove attribute information from the latent space,

but instead add an additional attribute classifier after genera-

tion, and impose an attribute classification loss. This is in

addition to a typical GAN discriminator for realistic images.

AttGAN (He et al., 2019) uses an endoder, decoder (genera-

tor), and the attribute classifier and discriminator applied to

the output of the generator. StarGAN (Choi et al., 2018) and

RelGAN (Wu et al., 2019) use no encoder, but use a singe

generator twice, in a cycle; the first direction alters attributes

like a conditional GAN, the second one attempts to recon-

struct the image (using original attributes), and so requires

that non-attribute information has been preserved. StarGAN

uses a discriminator and attribute classifier, like AttGAN,

while RelGAN adds a third network for interpolation.

All the works cited from 2017 to 2019 have an adversar-

ial component (in the style of a GAN); they train auxiliary

classifiers to feed back loss terms, to ensure they remove

undesirable attributes, or enforce desired ones. They need a

careful weighting among loss terms, but there is no princi-

pled method for determining these weighting hyperparame-

ters. Our work does not rely on an adversarial component

to manipulate attributes; we use a more direct method of

matrix projection onto subspaces, in order to factorise the

latent representation and separate attributes from other in-

formation. Furthermore, unlike the above works2 we do not

use any skip connections. Skip connections can introduce

errors when a region of the source and target image is quite

different, we illustrate this further in Fig. 1 Right.

In addition to the above works using labelled attributes there

is also work on the more difficult problem of unsupervised

learning of disentangled generative factors of data (Chen

et al., 2016; Higgins et al., 2017; Kumar et al., 2018). How-

ever the supervised (labelled) approaches generate much

clearer samples of selected attributes, and superior disentan-

glement. An alternative approach to controlled generation is

to simply train a deep convolutional network and do linear

interpolation in deep feature space (Upchurch et al., 2017).

This shows surprisingly good results, but in changing an

attribute that should only affect a local area it can affect

more image regions, and can produce unrealistic results for

more rare face poses.

3. Method

3.1. Problem Formulation

We are interested in factorising and manipulating multiple

attributes from a latent representation learned by an arbi-

trary Autoencoder (AE). Suppose we are given a dataset

D of elements (x,y) with x ∈ R
n and y ∈ Y = {0, 1}k

representing k attributes of x.

Let an arbitrary AE be represented by z = F (x) and

x′ = G(z), where F (·) is the encoder, G(·) is the decoder, z

is the latent vector encoding x, and x′ is the reconstruction

of x (see Fig. 3). Note that when x′ is a good approx-

imation of x (i.e., x′ ≈ x), the attribute information of

x represented in y will also be captured in the latent en-

coding z. Attribute manipulation means that we replace

the attributes y captured by z with new attributes yn. Let

2Not mentioned in the Fader networks paper, but in the pub-
lished code: https://github.com/facebookresearch/FaderNetworks
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Figure 3. (a) The general architecture of our model (MSP); (b) the

simplified architecture of MSP.

K(·) be a replacement function, then we have new latent

space zn = K(z,yn) and xn = G(K(z,yn)), where the

attribute information encoded in yn can be predicted from

xn and the non-attribute information of x will be preserved.

To give a concrete example, given an image of a face, x,

we wish to manipulate x w.r.t. the presence or absence of a

set of desired attributes encoded in yn (e.g., a face with or

without smiles, wearing or not wearing glasses), producing

the manipulated image xn, without changing the identify of

the face (i.e., preserving the non-attribute information of x).

3.2. Learning Disentangled Latent Representations via

Matrix Subspace Projection

To tackle the problem formulated in §3.1, we propose a

generic method to factor out the information about attributes

y from z based on the idea of performing orthogonal matrix

projection onto subspaces. Our model works as a universal

plugin and in theory, it can be applied to any existing AEs.

The general architecture of the proposed MSP model is

depicted in Fig. 3 (a). Given a latent vector z encoding x

and an arbitrarily complex invertible function H(·), H(·)
transforms z to a new linear space (ẑ = H(z)) such that

one can find a matrix M where (a) the projection of ẑ on

M (denoted by ŷ) approaches y (i.e., ŷ captures attribute

information),

M · ẑ = ŷ; ŷ → y (1)

and (b) there is an orthogonal matrix U ≡ [M;N], where

N is the null space of M (i.e., M ⊥ N) and the projection

of ẑ on N (denoted by ŝ) captures non-attribute information.

As U is orthogonal, we also have UT ≡ U−1.

Fig. 3 (b) presents a simplified architecture of our MSP

model, which is equivalent to the general architecture. This

simplification exists because as explained earlier H(·) is

invertible. So when the encoder and decoder of an AE have

enough capacity, they can essentially absorb H and H−1.

In other words, rather than fitting F and G, the encoder and

decoder will fit H · F (·) and G · H−1(·) instead. As M

itself is an incomplete orthogonal matrix, similar operations

cannot be applied to M.

Our main learning objective, in addition to the original

AE objective (i.e. reconstruction loss LAE ; see §3.3 and

Eq. 8), is then to estimate M which is nontrivial. We turn

the problem of finding an optimal solution for M into an

optimisation problem, in which we need to (1) enforce ŷ

to be as close to y (i.e., the vector encoding the ground

truth attributes) as possible; and (2) minimise ||̂s||2 so that

ŝ contains as little information from ẑ as possible. This can

be formulated into the following loss function

LMSP = L1 + L2 (2)

L1 = ||ŷ − y||2 = ||M · ẑ− y||2 (3)

L2 = ||̂s||2 (4)

Here L1 and L2 encode the above two constraints, respec-

tively, and ŷ is the predicted attributes. Given that the AE

relies on the information of ẑ to reconstruct x, the optimi-

sation constraints of LAE and L2 essentially introduce an

adversarial process: on the one hand, it discourages any

information of ẑ to be stored in ŝ due to the penalty from

L2; on the other hand, the AE requires information from ẑ

to reconstruct x. So, the best solution is to only restore the

essential information for reconstruction (except the attribute

information) in ŝ. By optimising LMSP , we cause ẑ to be

factorised, with the attribute information stored in ŷ, while

ŝ only retains non-attribute information.

The first part of our loss function L1 is relatively straight-

forward. The main obstacle here is to compute L2 as ŝ is

unknown. We develop a strategy to compute ||̂s||2 indirectly.

According to the definition of ŷ and ŝ we can derive:

L2 =||̂s||2 = ||̂s− 0||2

=||[ŷ; ŝ]− [ŷ;0]||2 Identical deformation

=||U · ẑ− [ŷ;0]||2 (5)

where the square brackets represent the vector concatenation.

Because U is orthogonal, we have

L2 =||U · ẑ− [ŷ;0]||2

=||U−1 · (U · ẑ− [ŷ;0])||2

=||ẑ−U−1 · [ŷ;0]||2 = ||ẑ−UT · [ŷ;0]||2

=||ẑ− [M;N]T · [ŷ;0]||2

=||ẑ−MT · ŷ||2 ≈ ||ẑ−MT · y||2 (6)

With Eq. 6 (which makes use of the properties of orthogo-

nal matrices), we avoid computing ŝ and N directly when

minimising ||̂s||2, and turn the minimisation problem into

optimising M instead. Finally, we have:

LMSP = L1 + L2

= ||M · ẑ− y||2 + ||ẑ−MT · ŷ||2

≈ ||M · ẑ− y||2 + ||ẑ−MT · y||2
(7)
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The loss function in Eq. 7 also guarantees that after training,

the solution for M will be part of the orthogonal matrix U

(see §4.5). When LMSP is small, the transposition of M

becomes the inverse of M.

3.3. Applying the Matrix Subspace Projection

Framework to an AE

To apply our matrix subspace projection (MSP) framework

to an existing AE, one only needs to derive a final loss

function by combining the loss of the AE and the loss of our

MSP framework.

L = LAE + αLMSP (8)

where α is the weight for LMSP . As illustrated in Fig. 3

(a) and (b), one should note that applying our framework

will not change the structure of the AE, where our MSP

component simply takes the latent vector ẑ of the AE as

input. LAE hopes that ŝ can store more information to

reconstruct x, but LMSP wants ŝ to contain less information.

When α is small, the model becomes a standard AE. When

α is too large, the non-attribute information in ẑ is reduced

excessively, resulting in the generated products tending to

the average of the training samples. Therefore, another

challenge we face is how to set α appropriately.

We propose a principled strategy for effectively determining

the value of α (this strategy is used in all experiments in

this paper). Since LAE and LMSP essentially represent a

competing relationship for ẑ resources, we specify that LAE

and LMSP have the same influence on updating ŝ. We use

α to represent the “intensity” with which the AE updates

ẑ during each back-propagation process. This intensity de-

pends on the structure of the model and the loss function

used by the model. For example, suppose an AE (for picture

generation) uses a CNN decoder and L2-loss. During the

training process, the error of each pixel between the gener-

ated picture and the true picture is backpropagated to ẑ as

the gradients of ẑ. The sum of these gradients is the final

gradient of ẑ (i.e., corresponding to LAE ). For a picture

with h×w pixels and c colour channels, there are h×w× c

parts of gradients accumulated, so the intensity is h×w× c.

The intensity of ŷ for updating ẑ is the total amount of

attributes (i.e. the dimension of ŷ), because the error for

each attribute is propagated back to ẑ and accumulated (i.e.,

corresponding to LMSP ). Therefore, in order to balance the

influence of LAE and LMSP on updating ẑ during training,

we have:

α ≈
h× w × c

size(attribute) + size(ẑ)
(9)

When using the cross-entropy-loss (or NLL loss etc.), which

is usually for textual generative models (e.g. the seq2seq

model), each generated word produces only one intensity,

regardless of the word embedding size. Meanwhile, loss

values returned by the cross-entropy-loss are proportional

to the error, but the loss values returned by the MSP loss

(which is a MSE loss) are proportional to the error’s square.

Therefore, for a sentence of length k, the intensity of the

entire sentence to ẑ is k2, so that for cross-entropy-loss,

α ≈
k2

size(attribute) + size(ẑ)
(10)

3.4. Content Replacement and Conditional Generation

After MSP is trained (i.e., M is estimated), there are two

ways to perform content replacement or change of attributes.

One way is to derive the orthogonal matrix U = [M;N]
by solving the null space N of M (i.e., the null space is

constituted of all the specific solutions for n w.r.t. equation

M · n = 0, where n is an independent variable). Given an

input x, we first encode it as ẑ. We then use U to obtain

the attribute vector ŷ of x and the non-attribute information

vector ŝ as follows.

[ŷ; ŝ] = [M;N] · ẑ = U · ẑ = U · encoder(x) (11)

At this point, we can directly replace [ŷ; ŝ] with [yn; ŝ],
where yn is the new attribute vector. With [yn; ŝ] and UT

(note that UT approaches U−1 during training), we can

derive the new latent code zn and then decode it into xn,

which ultimately captures the desired new attributes.

xn = decoder(zn) = decoder(UT · [yn; ŝ]) (12)

Alternatively, we can avoid explicitly calculating matrix N

(i.e. avoid calculating ŝ), for content replacement. Accord-

ing to Eqs.11 and 12, we define d as the distance between ẑ

and zn.

d = ẑ− zn = UT · [ŷ; ŝ]−UT · [yn; ŝ]

= UT · ([ŷ; ŝ]− [yn; ŝ]) = UT · [ŷ − yn;0]

= [M;N]T · [ŷ − yn;0]

= MT · (ŷ − yn) = MT · (M · ẑ− yn) (13)

It should be noted that here ẑ 6= MT · M · ẑ because the

reconstruction loss does not allows ŝ to be zero. Thus, we

have:

zn = ẑ− d = ẑ−MT · (M · ẑ− yn) (14)

xn = decoder(ẑ−MT · (M · ẑ− yn)) (15)

If the AE itself is a generative model (such as VAE), then

the AE+MSP structure becomes a conditional generative

model. Given a randomly sampled sr and an attribute vector

yr, the model can generate new sample xr with the desired

attributes with Eq.12.
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Figure 4. Examples of image attributes transformations using MSP (our model), Fader Networks and AttGAN.

4. Evaluation

Here we evaluate the ability to disentangle. We also evaluate

the orthogonality of M as it is an important indicator of how

well our algorithm can approximate M.

4.1. Matrix Subspace Projection in VAE

We apply our model on a vanilla VAE (Kingma & Welling,

2013) with the standard CNN encoder and decoder (the ar-

chitectures are same as Lample et al. (2017)). We used the
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Seq2seq VAE VAE+GAN

Better quality 34.5% 12.6% 17.9%

with AE only

Better quality 37.6% 12.0% 15.2%

with AE+MSP

both similar quality 27.9% 75.4% 66.9%

Table 1. Evaluation results of generation quality. Numbers in the

table denote percentage of participants under the column heading

who felt images were better with or without MSP.

MSP(ours) Fader AttGAN

male x beard 0.78 0.42 0.45
female x beard 0.52 0.03 0.41
male x no-beard 0.86 0.40 0.42
female x no-beard 0.90 0.61 0.63
male x makeup 0.52 0.02 0.35
male x no-makeup 0.89 0.50 0.47
female x makeup 0.87 0.63 0.52
female x no-makeup 0.67 0.42 0.47
smile x open-mouth 0.89 0.59 0.63
no-smile x open-mouth 0.66 0.11 0.29
smile x calm-mouth 0.95 0.34 0.33
no-smile x calm-mouth 0.76 0.43 0.38
male x bald 0.78 0.10 0.29
male x bangs 0.56 0.05 0.19
female x bald 0.29 0.01 0.17
female x bangs 0.68 0.21 0.20
no-glasses x black-hair 0.74 0.38 0.53
no-glasses x golden-hair 0.86 0.36 0.79
glasses x black-hair 0.82 0.21 0.32
glasses x golden-hair 0.77 0.19 0.33

Table 2. The classification accuracy (ResNet-CNN classifier) of

generated images using MSP, Fader Networks and AttGAN.

ADAM optimiser with learning rate = 0.0002, mini-batch

size of 256, and images are upsampled to 256 × 256. We

add an additional PatchGAN (Li & Wand, 2016) to make the

produced images sharp. The architecture of the PatchGAN

discriminator also adopts the version of Lample et al. (2017).

Our baselines are Fader networks (Lample et al., 2017) and

AttGAN (He et al., 2019), based on their published code

and settings. We did not compare StarGAN (Choi et al.,

2018) because we feel it is superseded by AttGAN, which

demonstrated better performance. We did not compare Rel-

GAN (Wu et al., 2019) as it does not disentangle attributes

(see Fig. 1 (left), also RelGAN cannot add a moustache or

beard to a female face, instead it will transform it to a male

face with beard).

We evaluated on the CelebA dataset (Liu et al., 2015)

(202,600 images) and trained one model on all 40 labelled

attributes. The generated examples are shown in Fig. 4.

Qualitatively we see clear examples of what Fader networks

and AttGan cannot do: For the woman with glasses (mid-

dle) FaderNetwork and AttGan show complete inability to

Target Influence on MSP Fader AttGAN

attribute

changed

other attributes (ours)

gender beard 0.01 0.28 0.09

beard gender 0.07 0.11 0.02

gender makeup 0.02 0.07 0.05

makeup gender 0.05 0.09 0.14

smile mouth-open 0.01 0.20 0.07

mouth-open smile 0.02 0.07 0.09

Table 3. Quantitative evaluation of disentanglement (using ResNet-

CNN classifier).

mouth open / smiling attributes morphing

Fader

Network

AttGAN VAE+GAN

MSP (ours)

perfect 36.7% 47.5% 68.3%

recognizable 20.8% 15.3% 4.9%

unreco/unchang 42.5% 37.2% 26.8%

male / beard attributes morphing

Fader

Network

AttGAN VAE+GAN

MSP (ours)

perfect 38.3% 55.9% 74.4%

recognizable 8.3% 11.2% 11.6%

unreco/unchang 53.3% 32.9% 14.0%

Table 4. Manual evaluation results of disentanglement. Numbers

in the table denote percentage of participants under the column

heading who felt the images represented the specified attribute (e.g.

smiling) in a way that was perfect, recognisable, or unrecognis-

able/unchanged.

remove the glasses; FaderNetwork completely fails to add

glasses to the other two faces, and AttGan can only manage

weak rims on the final woman (bottom). FaderNetwork in

general struggles to change attributes, especially for the two

women, while AttGan does better, but struggles with certain

attributes, e.g. mostly it fails to change the final woman to

male, and struggles to remove makeup.

For a quantitative evaluation we trained a classifier (ResNet-

CNN) to measure the accuracy with which attributes are

changed. Table 2 shows that our MSP approach outper-

forms the competitors. Finally we calculated the average

Fréchet Inception Distance (FID) (Heusel et al., 2017) for

each method: MSP=35.0, Fader=26.3, AttGAN=7.3 (lower

is better, 0 is the best). The FID score tries to calculate the

similarity of original images and generated images. Clearly

AttGAN is a winner for quality while our MSP is a winner

for accuracy of attribute modification. When AttGAN can-

not handle the attribute modification it generates unchanged

images and can get lower FID scores.

The results of attribute manipulation (both qualitative and

quantitative) are surprisingly bad for Fader networks and
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AttGAN, especially relative to the examples displayed in

their original papers. The primary reason for this is that

we trained those models on all 40 attributes together. Fader

networks works best when trained on a single attribute, as

noted in Sec. 2. The original AttGAN paper trained on 13 at-

tributes, and indeed it performs better at attribute manipula-

tion than Fader in our pictures. For the 40-attribute-together

version, when any attribute is changed all others must be

unchanged. For example, when we transition from male

to female (Fig. 4 left), it is implicit that the female should

keep no make-up or lipstick, etc. In the direction from fe-

male to male the male should keep no bushy eyebrows or 5

o’clock shadow. The original Fader network paper displays

a beautiful example of interpolating between male and fe-

male, but the female does have make-up and lipstick and the

male does have bushy eyebrows and 5 o’clock shadow. Our

difficult 40-attribute setting is central to our aims, as stated

in our introduction: we want to fully disentangle multiple

attributes, because this gives a generative model the ability

to ‘imagine’ novel examples that combine attributes in ways

not present in training data.

4.2. Human Evaluation of Generated Example Quality

We evaluated whether our MSP model reduces the quality

of generated examples, using human evaluation via Amazon

Mechanical Turk (hiring 150 participants in total).

For each model, we randomly generated 1,000 example

pairs. Each pair contains a reconstructed example (from

AE) and an example generated by AE+MSP with one or two

random attribute modification (attributes were changed to

−1 if they were originally > 0, or changed to 1 if they were

< 0)3. The participants were shown the examples pair-by-

pair in the blind test, and they were asked to please choose

the one with better text/image quality, or choose both if you

think they perform similarly. The participants were told

that the text quality means the fluency, semantic accuracy,

and syntactic accuracy, and the image quality means the

clarity and (face) recognisability. The results are shown in

Table 1. We treat the scores (i.e. participants’ choices) of

the result as a Likert scale, and we set our null hypothesis to

be H0: generation quality of AE+MSP is worse than using

the AE only, and, H1: generation quality of AE+MSP is

equal or higher than using the AE only. The hypotheses

are tested by a discrete Mann-Whitney U-test, rejecting H0

with p < 0.03.

4.3. Evaluation of Disentanglement

Disentanglement is also an important feature of our model.

It means that when an attribute is modified, other at-

3The generated examples were automatically filtered to pre-
vent conflict attributes; e.g. images of woman with beard are not
provided to the participants in this experiment.

tributes remain unchanged. We make the three models

(VAE+GAN+MSP, AttGAN, and Fader Networks) generate

images by manipulating two groups of highly correlated

attributes, openness of mouth / smiling, and male / beard.

For the two groups, the three models should respectively

generate the images with closed mouth × no smiling, closed

mouth × smiling, opened mouth × no smiling, opened

mouth × smiling, female × no beard, female × beard, male

× no beard, and male × beard. We hired 50 participants in

Amazon Mechanical Turk; each of them was given 40 image

blocks. A block contains four images, which were from the

mouth / smiling group or the male / beard group, and which

were generated by one of the three models. The participants

were told which image should represent which attributes,

and the participants evaluated whether it did for each im-

age in the block by using a 3-level Likert scale (perfect,

recognisable, and unrecognisable/unchanged). The results

are shown in Table 4. It shows that our model performs

significantly better than the baseline. (p < 0.0001).

In addition to human evaluation, we also conducted a quan-

titative evaluation to test how well a model can change an

attribute in isolation. For some selected highly correlated

attributes we change one target attribute, and measure the

change in another non-target attribute. For instance (the row

of gender/beard in Table 3), when the gender attribute is

changed manually, we measure the amount by which the

beard attribute is consequently changed. The results are

shown in Table 3. Note that, the scores show how much the

non-target attributes are affected, but not whether the target

attributes are correctly changed in the generated pictures.

Therefore the scores need to be read in conjunction with

Table 2. According to both Table 2 and Table 3, we can

conclude that in both of the aspects of the manipulation of

attributes and avoiding influence on non-target attributes,

the performance of our model exceeds the baselines.

4.4. Matrix Subspace Projection in Seq2seq

We apply our model to a classic seq2seq model for textual

content replacement, in order to determine if we can replace

words according to the given attributes and keep other words

unchanged. In this task, we adopt the E2E corpus (Dušek

et al., 2019), which contains 50k+ reviews of restaurants

(E2E dataset is developed for Natural Language Generation,

but here we use it for content replacement). Each review is

a single sentence that is labelled by the attribute-value pairs,

for example, “name=[The Eagle]”, “food=[French]”, and

“customerRating=[3/5]”. We regard each attribute-value pair

as a unique label. All the attributes constitute y whose

entries are 1 or 0 to represent each value (the correct texts

of the attribute name or value are NOT used).

Both the encoder and decoder of the seq2seq model are

formed by two-layer LSTMs. The model is trained for 1000
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Example 1 Example 2

Orig-attribute eatType[pub], customer-rating[5-out-of-5],

name[Blue-Spice], near[Crowne-Plaza-Hotel]

familyFriendly[yes], area[city-centre], eatType[pub],

food[Japanese], near[Express-by-Holiday-Inn],

name[Green-Man]

Orig-text the blue spice pub , near crowne plaza hotel ,

has a customer rating of 5 out of 5 .

near the express by holiday inn in the city centre is

green man . it is a japanese pub that is

family-friendly .

New-attribute eatType[coffee-shop], customer-rating[5-out-

of-5], name[Blue-Spice], near[Avalon]

familyFriendly[no], area[riverside],

eatType[coffee-shop], food[French],

near[The-Six-Bells], name[Green-Man]

New-text the blue spice coffee shop , near avalon has a

customer rating of 5 out of 5 .

near the six bells in the riverside area is a green man .

it is a french coffee shop that is not family-friendly .

Table 5. Results of changing attributes in E2E corpus.
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Figure 5. Measuring orthogonality: Heat map of MT
·M and U

T
·U for Seq2seq+MSP (a,b), and VAE+GAN+MSP (c,d)

epochs (on a Tesla T4 around 12 hours). After training, we

reconstruct the review sentences with randomly replaced

attributes, for example replacing “name=[The Eagle]” by

“name=[Burger King]”, “customerRating=[3/5]” by “cus-

tomerRating=[1/5]”. 50% of attributes are changed in each

sentence. The outcomes are shown in Table 5.

4.5. Orthogonality Evaluation

The ability to disentangle attributes is ensured by the or-

thogonality of M in our model. Instead of directly using an

orthogonal matrix, we train M to be orthogonal. Thus, we

evaluate how close M is to the orthogonal matrix. Fig. 5

shows the heat map of MT · M and UT · U, which indi-

cates that the production is fairly close to a unit matrix. It

visualises MT · M in the seq2seq version of our model

(Fig. 5 (a)) and in the VAE version (Fig. 5 (c)). The matrix

UT · U (U is formed by M concatenating its null space)

is also visualised (in Fig. 5 (b) and (d)). It is clear that

when the matrices are multiplied by their transposes, the

products do approximate the unit matrix. Although Fig. 5

(c) shows that a small number of attributes remain slightly

entangled (by the green and deep purple pixels), this is

mainly caused by the few conflicting attributes in CelebA,

for example the receding-hairline × bald × bangs, and the

straight-hair × wavy-hair. Thus, M is indeed trained to be

a (partial) orthogonal matrix.

5. Conclusion

We propose a matrix projection plugin that can be attached

to various autoencoders (e.g. Seq2seq, VAE) to make the

latent space factorised and disentangled, based on labelled

attribute information, which ensures that manipulation in

the latent space is much easier. We test the attribute manip-

ulation ability of our model on an image dataset and text

corpus, obtaining results that show clean disentanglement.

In addition our model involves a simpler training process

than adversarial approaches which need a long training with

a very low weight on the loss coming from the discrimina-

tor that removes attribute information, to avoid the encoder

being too affected by this loss term (Lample et al., 2017).
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