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Abstract

We present a fast and scalable architecture

called Explicit Modular Decomposition

(EMD), in which we incorporate both

classification-based and extraction-based

methods and design four modules (for clas-

sification and sequence labelling) to jointly

extract dialogue states. Experimental results

based on the MultiWoz 2.0 dataset validates

the superiority of our proposed model in

terms of both complexity and scalability when

compared to the state-of-the-art methods,

especially in the scenario of multi-domain

dialogues entangled with many turns of

utterances.

1 Introduction

Dialogue state tracking (DST), responsible for ex-

tracting user goals/intentions from dialogues, is

a core component in task-oriented dialogue sys-

tems (Young et al., 2013). A dialogue state is

commonly represented as a (DOMAIN, SLOT TYPE,

SLOT VALUE) triplet, e.g., (hotel, people, 3). We

show an illustrated example of a multi-domain di-

alogue in Figure 1, which involves two domains,

i.e., TRAIN and HOTEL.

Previous approaches for DST usually fall into

the following four categories: (1) adopt encoder-

decoder models to generates states (Kim et al.,

2020; Ren et al., 2019; Li et al., 2019; Lee et al.,

2019; Wu et al., 2019) ; (2) cast DST as a multi-

label classification task when a full candidate-value

list is available (Shan et al., 2020; Ramadan et al.,

2018; Zhong et al., 2018; Ren et al., 2018); (3)

employ span-based methods to directly extract the

states (Chao and Lane, 2019; Gao et al., 2019);

and (4) combine both classification-based and span-

based methods to jointly complete the dialogue

state extraction (Zhang et al., 2019).

The most related work to ours is DS-DST (Zhang

et al., 2019), a joint model which highlights the

problem that using classification-based or span-

Figure 1: A multi-domain dialogue example extracted

from MultiWoz 2.0. The S-type slot values are marked

in bold and the arrow points to a pair of C-type slots

and its corresponding value. The domain discussed

changes from “train” to “hotel” at the fourth turn. Refer

to Section 2 for the definitions of C-type and S-type.

based approach alone is insufficient to cover all

cases of DST in the task-oriented dialogue. While

DS-DST has achieved some promising result on di-

alogue state tracking and demonstrated the utility of

combining these two types of methods, some prob-

lems still remain unaddressed. On one hand, since

the model is conditioned on domain-slot pairs, the

computational complexity is not constant and will

grow as the number of domains and slots involved

in dialogues increases. To be more specific, if there

are 1000 domain-slot pairs, the model needs to run

1000 times to obtain the expected dialogue states

for the current turn at each time, which is a huge

computational overhead. On the other hand, previ-

ous works usually directly concatenate the history

content and the current utterance as input, which

is difficult to scale in the multi-turn scenarios, es-

pecially when the number of turns of a dialogue

is large. Furthermore, we observe that generative

approaches may generate some domain outlier1

triplets due to lack of domain constraints.

To tackle these issues, we propose a fast and

1We refer a predicted result as “domain outlier” when slot
types are out of the domain pertaining to current utterances.
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scalable method called EMD, where we decom-

pose DST into three classification modules and one

sequence labeling module to jointly extract the di-

alogue states. The benefits of our approach are

summarised below:

• Efficient: Different to the previous work, we

employ a sequence labeling approach to directly

annotate the domain-slot values in the utterance

instead of iterating over all domain-slot pairs

one by one, and thus greatly reduce the model

complexity.

• Constrained output: To effectively model the

relationship between the predicted domain and

its associated slots, as well as to reduce the oc-

currence of domain outlier results, we propose

a list-wise global ranking approach which uses

Kullback-Leibler divergence to formulate the

training objective.

• Scalable: Based on turn-level utterances rather

than the whole history dialogue content, our pro-

posed model offers better scalability, especially

in tackling dialogues with multiple turns. Ad-

ditionally, we employ a correction module to

handle the changes of the states as the dialogue

proceeds.

2 Our Proposed Model

Formally, a multi-turn dialogue is represented as

T = {(s1, u1, d1), (s2, u2, d2), · · · , (sn, un, dn)},

di ∈ D, where si, ui and di refer to the system

utterance, the user utterance, and the domain at

turn i, respectively2, and D represents the set of

all domains in the training dataset. The overall

architecture of our model is shown in Figure 2.

In our proposed model, we choose MT-

DNN (Liu et al., 2019), pretrained model which has

the same architecture as BERT but trained on mul-

tiple GLUE tasks (Wang et al., 2019). MT-DNN

has been shown to be a better contextual feature ex-

tractor for downstream NLP tasks. Given dialogue

utterances as input, we represent the output of MT-

DNN as {H[CLS], H1, H2, · · · , Hn}, where n is

the length of the concatenation of the system and

user utterances. As a sentence-level representation,

H[CLS] is expected to encode the information of

the whole input sequence (Devlin et al., 2019; Liu

et al., 2019). Based on these contextual representa-

tions, we predict the domain (see §2.1) and belief

2We assume that the turn-level utterances only contain one
domain, and the Multiwoz 2.0 dataset we use in this paper
also conforms to this assumption.

states (see §2.2 and §2.3).

Figure 1 shows a typical multi-domain dialogue

example, from which we can observe that some

slot values can be directly found from utterances

(e.g. cambridge and london), while other slot

values are implicit which are more challenging

to discover, e.g., requiring classification to infer

the values (e.g. internet:Yes). We divide

slots into two categories that are handled by two

two separate modules: S-type slots whose values

could be extracted from dialogue utterances, and

C-type slots whose values do not appear in utter-

ances and are chosen from one of the three values

{yes, no, don’t care}.

2.1 Domain Prediction Module (DPM)

In a multi-domain dialogue, the target domain may

change as the dialogue proceeds. Different from

some previous works (Chen et al., 2019; Castel-

lucci et al., 2019), which directly use the first

hidden state (H[CLS]), in our model, apart from

H[CLS], we additionally incorporate Dl, the do-

main result of the last turn into the our domain

prediction module. The rationale behind is that

when the domain of current utterances is not ex-

plicit, Dl can provide useful reference information

for domain identification. Formally, the domain is

predicted as:

yd = softmax(W d[H[CLS];E(Dl)]) (1)

Dc = argmax(yd), Dc ∈ D (2)

where ; denotes the concatenation operation and

E(·) embeds a word into a distributed representa-

tion using fixed MT-DNN (Liu et al., 2019). Dc is

the predicted domain result.

2.2 S-type Slots Tagging Module (SSTM)

Domain-slot-matching constraints R To pre-

vent our model from predicting some slots not be-

longing to the current domain, we generate a do-

main constrained contextual record R ∈ R
1×(s+1),

where s is number of S-type slots of all domains3.

Concretely speaking, R is a distribution over all

S-type slots and [EMPTY] using

R = softmax(WR[H[CLS];E(Dl]) (3)

3We add a [EMPTY], the value of which is expected to be
1 when there is no slot needed to be predicted. In particular,
we consider the “don’t care” as a special case in which the
corresponding slot is considered not to be predicted.
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Figure 2: Our neural model architecture, which includes DPM for the domain prediction, whose output is the

predicted domain, Dc. Dl denotes the domain at the previous turn. CSCM for the three classification of the

domain-associated C-type slots, in which cDc

i denotes one of C-type slots in Dc, and SSTM for tagging S-type

slots in the given input, where tagging results are in IOB format; DSCM is for deciding whether to remove outdated

states from the history state set. ypi ∈ {yes, no}, yci ∈ {yes, no, don’t care} and ysi ∈ {O}
⋃

{all S-type slots}.

In particular, LR, the loss for R is defined as

the Kullback-Leibler (KL) divergence between

Div(Rreal||R), where distribution Rreal from the

ground truth is computed as follows:

• If there is no slot required to be predicted,

Rreal
[EMPTY ] receives a probability mass of 1 for

the special slot [EMPTY].

• If the number of slots needed to be predicted

is k(≥ 1), then corresponding k slot positions

receive an equal probability mass of 1/k.

Next, we employ a sequence labeling approach

to directly annotate the domain-slot values in the

utterance instead of iterating over all domain-slot

pairs one by one. Specifically, to tag S-type slots

of the given input, we feed the final hidden states

of H1, H2, · · · , Hn into a softmax layer to classify

all the S-type slots,

ysi = softmax(W sHi), i ∈ [1, 2, · · · , N ] (4)

Instead of directly predicting S-type slot results

based on ysi , we introduce a domain-slot-matching

constraint R, which helps avoid generating S-type

slots that do not belong to the predicted domain.

The multiplication operation is given below,

ŷsi = R⊙ ysi (5)

where ⊙ is the element-wise multiplication.

2.3 C-type Slots Classification

Module (CSCM)

Given the currently predicted domain result Dc,

we build a set CDc
which contains all C-type slots

from all domains D. If CDc
is empty, it indicates

that there is no C-type slot needed to be predicted

in the current domain. Otherwise, we classify each

slot cDc

i in CD into one of the following follow-

ing categories, i.e., {yes, no, don’t care}, with the

classification function below.

yc = softmax(W c[E(cDc

i );E(Dl);H[CLS]]) (6)

2.4 Dialogue State Correction

Module (DSCM)

Previous models such as TRADE (Wu et al., 2019)

and COMER (Ren et al., 2019) requires that all

dialogue states need to be predicted from scratch

at each turn, including those dialogue states that

have already been predicted at previous turns. This

poses a big challenge to the model in terms of scala-

bility, especially when the number of dialogue turns

increases. Conversely, the input of our model con-

sists of the system utterance and the user utterance

at the current turn, so our model only outputs the

estimates of the dialogue states for the current turn,

and the previous dialogues are directly included

where no re-prediction is needed.

However, there is an issue with direct inclusion

of previously predicted results in that some states

may need to be updated or removed as the dialogue

proceeds. For example, a user firstly looks for a

hotel located in the center area, then a state (hotel,

area, center) is estimated. Subsequently, the user

utters a specified hotel name, e.g. “I wanna the

King House”, then the previous state (hotel, area,

center) is outdated and should be removed. To

this end, we design the dialogue state correction

module to update previously predicted results in
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order to improve the precision of the outputted

dialogues states at each turn. Similar to the C-

type classification module, we cast this situation

as a classification task, and for each triple tuple p
from the previous dialogue states, the classifier is

formulated as

yp = sigmoid(W p[p̂;E(Dl);H[CLS]]) (7)

Here each item in p is embedded using E(·) and p̂
is the embedding sum of the three items in p.

During training, we use cross entropy loss for yd,

yc, ys and yp, which are represented as Lyd , Lyc ,

Lys and Lyp , respectively. The loss for R (denoted

as LR) is defined as Kullback-Leibler (KL) diver-

gence between Rreal and R (i.e, KL(Rreal||R)).
All parameters are jointly trained by minimizing

the weighted-sum of five losses (α, β, γ, θ, ǫ are

hyper-parameters),

Loss = αLyd + βLyc + γLys + θLyp + ǫLR (8)

2.5 Analysis of model complexity

Table 1 reports the Inference Time Complex-

ity (ITC) proposed by (Ren et al., 2019), which is

used to measure the model complexity. ITC calcu-

lates how many times inference must be performed

to complete a prediction of the belief state in a di-

alogue turn. By comparison, we can observe that

our model achieves the lowest complexity, O(1),
attributed to the modular decomposition and the

usage of the sequence label based model.

Model ITC

DS-DST (Zhang et al., 2019) O(n)
SOM-DST (Kim et al., 2020) O(n)
SUMBT (Lee et al., 2019) O(mn)
GLAD (Zhong et al., 2018) O(mn)
COMER (Ren et al., 2019)n O(n)
TRADE (Wu et al., 2019) O(n)
EMD O(1)

Table 1: Inference Time Complexity (ITC) proposed

in (Ren et al., 2019), m is the number of values in a

pre-defined ontology list and n is the number of slots.

Note that the ITC reported refers to the worst scenarios.

3 Experimental Setup

3.1 Setup

Dataset We evaluate our model performance

based on the MultiWoZ 2.0 dataset (Budzianowski

et al., 2018), which contains 10, 000 dialogues of 7
domains and 35 domain-slot pairs. Detailed dataset

statistics is summarised in Table 2.

Evaluation metrics We utilize joint goal accu-

racy (JGA) (Henderson et al., 2014) to evaluate

the model performance. Joint goal accuracy is the

accuracy of the dialogue state of each turn and a

dialogue state is regarded as correct only if all the

values of slots are correctly predicted.

Implementation details The hyper-parameters

of our model go as follows: both the embedding

and the hidden size is 1024; we used a learning

rate of 0.0001 with a gradient clip of 2.0, mini-

batch SGD with a batch size of 32, and Adam

optimizer (Kingma and Ba, 2014) for 50 epoch

training. We set a value of 1 to the five weighted

hyper-parameters: α, β, γ, θ, ǫ.

Metric Train Dev Test

# of multi-domain dialogs 5,459 796 777
# of single-domain dialogs 2,979 204 223
# of total dialogs 8,438 1,000 1,000
Avg. # turns by dialog 6.7 7.4 7.3

Table 2: The statistics of the MultiWoZ2.0.

3.2 Results

Overall comparison We compare our models

against six strong baselines on the multi-domain

dataset MultiWoz. Results are reported in Table 3

based on joint goal accuracy (JGA). Our model

achieves the best performance of 50.18% in the

multi-domain testset, while the accuracy achieved

in the single-domain is on par with the state-of-the-

art results, which demonstrates the superiority of

our model.

Model JGAs JGAm JGA

SOM-DST (Kim et al., 2020) - - 51.72

COMER (Ren et al., 2019) 48.62 41.21 45.72

SUMBT (Lee et al., 2019) 46.99 39.68 42.40

DS-DST (Zhang et al., 2019) 51.99 48.69 51.01

GLAD (Zhong et al., 2018) 37.19 33.76 35.58

TRADE (Wu et al., 2019) 49.57 47.01 48.62

EMD 51.92 50.18 51.03

Table 3: Experimental results. JGAs represents the

accuracy calculated in all single domain dialogues and

JGAm refers to all multi-domain dialogues.

Analysis of model scalability We select 200
samples from the testing dataset, in which each

dialogue has more than 8 turns of utterances be-

tween the system and the user. Then, taking the

turn number 6 as a threshold, we divide the dia-

logue content into two categories, i.e., COLD and
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Turn Previous States Domain Target states
Predicted states for the current turn

COMMER TRADER EMD

1 { } Hotel (hotel, internet, yes) (hotel, internet, yes) (hotel,  internet, yes) (hotel, internet, yes)

… … … … … … …

3 (hotel, internet, yes)

(hotel, name, holiday inn)

Taxi (hotel, internet, yes)

(hotel, name,  holiday inn)

(taxi, destination, holiday inn)

(hotel, internet, yes)

(hotel, name, holiday inn)

(train, destination, holiday inn)

(hotel, internet, yes)

(hotel, name, holiday inn)

(taxi, destination, holiday inn)

(hotel, internet, yes)

(hotel, name, holiday inn)

(taxi, destination, holiday inn)

… ... … … … … …

8 (hotel,  internet, yes)

(hotel,  name,  holiday inn) 

(taxi, destination, holiday inn)

Taxi (hotel, internet, yes),

(hotel,  name, holiday inn),

(taxi, destination, holiday inn)

(hotel, internet, yes)

(hotel, name, holiday inn) 

(train, destination, holiday inn)

(hotel,  internet, no)

(hotel, name, holiday inn)

(taxi, destination, holiday inn)

(hotel, internet, yes)

(hotel, name, holiday inn)

(taxi, destination, holiday inn)

Figure 3: Case study of predicated states by our model and two baselines. Erroneous states are highlighted in red.

HOT. Utterances with turn numbers lower than 6
are assigned to the COLD category and those above

6 to the HOT category.

Model
JGA

COLD HOT

SOM-DST (Kim et al., 2020) 52.21 48.92
COMER (Ren et al., 2019) 46.01 40.72
SUMBT (Lee et al., 2019) 42.51 33.99
TRADE (Wu et al., 2019) 47.98 46.12

EMD 51.89 51.01

Table 4: Experimental results for the analysis of model

scalabitiy. The sample size is 200.

From Table 4, we observe that the model perfor-

mance has a big drop for the four baseline mod-

els, but our model achieves a relatively stable per-

formance, achieving 51.01% in HOT and 51.89%
in COLD, respectively. This demonstrates that

our model is not only fast in terms of inference

speed (cf. §2.5), but also has a good scalability

which can maintain a high accuracy even when the

dialogue proceeds into more turns and the input

length becomes larger.

Ablation study We conduct two ablation experi-

ments to investigate the impacts of Dl and R. We

introduce a metric, called outlierslot ratio (OSR),

denoting the proportion of slots predicted by our

model that do not belong to the current domain.

From Table 5, we notice that adding Dl improves

the domain accuracy, where one possible reason is

that some utterances may not have a clear domain

attribute, and thus the incorporated previous do-

main is believed to provide useful guiding informa-

tion in domain prediction. Besides, by comparing

OSR with and without using R, we can observe that

using R reduces the proportion of generating slots

that do not align to the predicted domain, which

further improves the model performance.

Case study To evaluate our proposed model qual-

Model Domain Acc. OSR JGA

EMD 95.23 44.62 51.03
- Dl 91.83 45.62 48.62
- R 93.19 54.83 47.23

Table 5: Ablation study results.

itatively, we show an exemplary dialogue and il-

lustrate some generated results by EMD and two

baseline models in Figure 3. At turn 3 when the dia-

logue domain change from hotel to taxi, COMMER

fails to capture the domain information and gener-

ates a domain outlier, “train”, which does not con-

form to the current context. Conversely, dialogue

generated by our model always conforms to the

domain at the current turn, which may benefit from

the incorporation of the domain constrained con-

textual record R. Besides, another observation is

that as the dialogue proceeds to the turn 8 when the

history dialogue content accumulates, TRADER

makes an incorrect prediction in the hotel-internet

slot, which is correctly identified at the turn 1. One

possible reason is that it becomes more challeng-

ing for the model to correctly predict all dialogue

state from scratch when both the history dialogue

content and states involved increase. Instead of

repeatedly generating those previously predicted

states at each turn, our model only outputs the states

for the current turn, and updates previous dialogue

states with a separate module.

4 Conclusion

In this paper, we propose to decompose DST into

multiple submodules to jointly estimate dialogue

states. Experimental results based on the Multi-

Woz 2.0 dataset show that our model not only re-

duces the model complexity, but also gives high

scalability in coping with multi-domain and long

task-oriented dialogue scenarios.
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