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Infinities of stable periodic orbits in systems of coupled oscillators
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We consider the dynamical behavior of coupled oscillators with robust heteroclinic cycles between saddles
that may be periodic or chaotic. We differentiate attracting cycles into types that weheadl resetting and
free running depending on whether the cycle approaches a given saddle along one or many trajectories. At loss
of stability of attracting cycling, we show in a phase-resetting example the existence of an infinite family of
stable periodic orbits that accumulate on the cycling, whereas for a free-running example loss of stability of the
cycling gives rise to a single quasiperiodic or chaotic attractor.
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Physical systems where an invariant subspace, or set ofse not to periodic orbits but to a chaotic attractor with av-
subspaces, are preserved because of symmetry or other carage cycling chaos, or to quasiperiodicity that is intermittent
straint give rise to a number of new types of robust behaviofstuck on to the cycling chaos.

(i.e., behavior that is robust to perturbations that preserve the In this note, we aim to reconcile these differences by char-
structurg that would be highly degenerate for systems with-acterizing them as examples of qualitatively different types
out the symmetry or constraint. There is an extensive litera0f cycling. For what we call “phase-resetting” cycling, there
ture discussing theory and examples of this for a variety ofS only one approach trajectory towards each saddle within
physical problem$1]. the cycle, while in “free-running” cycling, there are multiple

Structurally stable heteroclinic cycles between equilibria@Pproaches to a single saddle.
are well documented in ordinary differential equations with ~We consider two systems of coupled iterated maps where
symmetries. Examples have been found in many application#€ attraction of the cycling is determined by the strength of
such as rotating convection and popu|ati0n dynanﬁkjs the Coup|lng. The%e mapS can be l’e|ated to ﬂOWS n the Usual
where the system repeatedly spends long periods of tim&ay via a Poincareeturn map, noting that equilibria and
near one equilibrium state, then rapidly switches to anotheReriodic points for a map both correspond to periodic orbits
Heteroclinic cycles between chaotic saddles are also robué@r a flow.
in systems with symmetry; these have been found in coupled At the resonance bifurcation, for the phase-resetting case
Osci||at0rs[3] and models of p|anar magnetoconvect[dﬂl we .fln.d.a plethora of stable hlgh.-p(.ErIOd perIOdIC Orblt§ with
the |atter examp|e being a Cyc|e a|ternating between equ”iban |nf|n|te number Of Stable perIOdIC OI’bItS accumula“ng at
ria and chaotic saddles. This kind of behavior arises in manyesonance. For the free-running case the branching attractors
symmetric physical systems of sufficient complexity. Inare typically unique and quasiperiodic or chaotic. We ob-
coupled oscillator examples, initially one oscillator is activeS€rve no other scenarios for these models but believe there
(it could be periodic or chaoticwhile the others are sup- Will be other scenarios for problems with higher dimensional
pressed; later, one of these becomes active and quenches fi##ldles and connections.
original active oscillator, and so on. This phenomenon is the Model | is a map of 0,1]° with Z; symmetry given by
counterpart of synchronization.

By analogy with cycles between equilibria for flows, (Xn+1:Yn+1-Zn+1) =F1(Xn,YnZn).
whether such cycling between periodic orbits or chaotic
saddles is an attractor or not can be determined by examining,re
the ratios of Lyapunov exponents at the sadd®$§]. The
cycling loses stability at a bifurcation which occurs when _ 2 Cx oy
rates of linear expansion and contraction become eual Filxy,2)=(f(x)e" "% f(y)e" " f(z)e” "),
resonance of Lyapunov exponenis Numerical simulations
in Ref. [4] suggest that such a resonance creates a largendf(x)=rx(1—x) denotes the logistic map with parameter
number of periodic attractors that branch from the cyclingr. This map clearly preserves the coordinate plargs
chaos. By contrast, for the skew-product example of cycling=0. In each variable three distinct types of evolutions are
chaos examined in Reff5] the resonance was found to give possible. For example, considerif z<1 andx<1 thenx

grows approximately linearly—the growing phase. For
<1 and x~0O(1), x evolves according to logistic map

*Email address: P.Ashwin@ex.ac.uk dynamics—the active phase. Finallyzf~O(1) the dynam-
"Email address: A.M.Rucklidge@leeds.ac.uk ics in thex direction is suppressed by the coupling term—the
*Email address: rsturman@amsta.leeds.ac.uk decaying phase.
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FIG. 1. Atracting cycling chaos, with=4.0, y=6.0. Model | FIG. 2. The critical value ofy at which loss of stability of

iTQ' iterated andx.,y,z plotj[ed.(in Iogarithmig .coor.dinate).sagainst cycling chaos occurs for Models | and Il. Above the line, the cy-
twn_e. The chaotic behavior ©(.1) and_ is visible in the ms_et. The c?i/ng i an attractor; below the line the cycling persists but is zo
trajectory cycles through growing, active, and then decaying phasq%nger an attractor.
for each variable, with the length of phase increasing approximately
geometrically. The same behavior is found for Model II.
sively between periodic orbits and then chaotic saddles.

Model Il is identical to Model | except that the logistic Since numerical simulations of this system need to resolve a
neighborhood of the invariant subspaces very clearly, we use
logarithmic coordinate§4]. The time series in Fig. 1 is for
parameters that produce attracting cycling chaos; Model I
=12 o produces similar behavior at this parameter value.

fe)=n xnelefe)]. Suppose that cycling chaos loses stability on decreaging
, , , , through a critical valuey,. We can compute/. analytically,
Each time a growing variable rezaches the intefal(e)]  gjither from a resonance condition of Lyapunov exponents, or
(Vl\lle usee=10"7), itis set toy=T1"(e). From this point on, @s follows. Suppose that a switch has just occurred and the
all trjectories thep .evolvg in an identical way. Thg Interva growing variable is, soz<1, xis O(1) andy is decaying.
[e,f(€)] is of sufficient size to ensure that all trajectorles_l_h luti i db ~ 1— W
visiting x,< € in the growing phase are reset in this way. The € evolution ofz 1S governec Dyzn. 1 rzn(_ Zn)e .
effect of the resetting is to force trajectories leaving oneand this can be approximated by»rz._Start.mg al a,SW'tCh
saddle to approach the next one close to a single trajector§t 2= Zo, SUppOSse that thﬁ number of iterations until the next
This is observed in cycling that alternates between equilibri&Witch is N. Then zy~=r"z,, and sincezy is O(1) at a
and chaos for flow$4]. To ensure that<f(e) we taker ~ SWitch, N~—Inz/Inr. While z is growing,y is decaying,
e[1/(1—¢),4]. and for criticaly we requireyy=z,. We approximatsyy in

For both models the coupling is trivial when=0. When @ similar way, withy, an O(1) number. Throughout the
the coupling parametey is sufficiently strong both the mod- decay phasg <1 but it is forced by the active variabbe
els exhibit robust cycling between invariant sets. In this statetiere we approximate by—rye™ ", and replacex by its
each variable alternates cyclically between gnewing, the  long-term averagé..[ = Iimmﬂx(llm)E{“;Olf'(xo)] for each
active, and thedecaying phases. We term a change in the of the N iterations, givingyy~rNe™ ™A= Then substituting
phases a “switch.” More precisely, we say a switch occursour expression for N, we have Inyy~-Ingz
when the growing variable exceedsrly. Figure 1 shows a +(yInzA.)/(Inr). The critical value ofy occurs whenyy
time series for Model | of the three variables cycling, illus- =z,, giving v.=2 Inr/A,. The averagd\, is easy to com-
trating the three possible phases and the switches betwe@ate numerically, and so we obtain a curve of critical
them. As in Ref.[4], for both the models, the number of shown in Fig. 2. The criticay for Model Il can be found as
iterations between switches increases geometrically as trajefor Model | because the dynamics in the invariant subspace
tories approach the invariant subspaces, and this rate of iry=z=0 and its linearization about that subspace is identical
crease depends on the coupling The rate of increase of to Model I.
switching times approaches zerojaspproaches some criti- One of the questions raised in Ré¢#l] is what sort of
cal value from above, which forms the limit of the stability attractors branch from cycling chaos at resonance. In that
of cycling chaos. Referring to Fig. 1, decreasipgwould  paper, numerical evidence was presented suggesting that the
result in a slower rate of increase in the number of iterationgycling chaos gives way to families of long-period periodic
between switches, and the line formed by connecting therbits made up of repeated segments of a single chaotic tra-
local minima would become more horizontal. jectory. In Model | this does not occur; fop<y. we find

The behavior in the active phase is governed bkorr irregular cycling in which the number of iterations between
<3 the cycles are between period one points;rds in-  switches behaves erratically. Model I, like Model I, exhibits
creased(after period doublingwe obtain cycles progres- attracting cycling above the resonance valye However,

mapf during agrowing phase is replaced byf,

_ f(Xp), X< € OF Xy f(€)
f(Xn)
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FIG. 3. Schematic diagram of a periodic orbit of periad 8r T 100 120 140

Model II; one third of a period is shown. This is a periodic orbit as
the final and initial phases match up as shown. The itdcateows

where the phases switch. FIG. 4. Predicted and actual periodN3orbits for r=3.1, y

=3.495 for Model Il. The squares indicate the location of periodic

for y<y. we find existence of many periodic orbits, consist- orbits, the line is the improved approxima_tion Zi*f—li it it lies in
Y=Y yp the band[ e,r e] we predict that the resetting will lead to a stable

Ing Of. cycles bet.Ween either periodic points or Chaouc.tra_periodic orbit. The inset shows the hyperbolgdotted as lines
jectories(depending on the value o). We argue that this dicted by the rough estimate, with actual periodic ortpitstted
multistability of long-period orbits is caused by, and is typi- predic Y g —’ P
cal for, cycling with phase-resetting approach to chaotic®® points lying between themA4=2.8).
saddles. ) ) )
For the remainder of this note, we investigate these peritominators in these expressions equal zero when
odic orbits by carefully considering the evolution of the vari- =2 Inr/A..= .. Such a pair of hyperbolas can be seen in the
ables over one third of a periodic orbit as shown in Fig. 3.inset of Fig. 4.
(Throughout, the period of the orbit will behN8) We assume This estimate works well for the case in which the active
thatx has just reset t&,= 5 atn=0, so thaty is the active ~Phase of the maps is a period one point—i.e. rfar3. Nu-
variable andz is in the decay phase_ For a periodic orbit of merica”y located periOdiC orbits lie within the predicted hy'
period A to be possible, we require thay= 7—i.e., that perbolas. In particular, for a givepwe obtain aﬂperiods for
Zy_1€€,f(€)]. We takey,=a, where « is either some N betweenN; andN, with a suitable choice oA. For more
O(1) numberA (for a rough estimafe or more precisely qomplicated behavior within_thg invariant subspape; this es-
takes the valudN () [sinceyy=xy~fN(7)]. There fol-  timate works less well. As is increased the logistic map
low N iterates of forced decay. We approximate this byundergoes period doubling. For valuesrah this region the
yna=rVy e ™8, where 8 approximates the suppressing Numerically located periodic orbits still lie roughly between
effect of the forcing. Again, for a rough estimate, we tgke the predicted hyperbolas. However, we no longer find all
to be the long-term averagk.,, but for a more accurate Periods forNin[Ny,N,]: some are not present nefsy and

estimate we take S to be the N average Ay 2 ) )
:UNEiN:—Olf.[fk( 7)]. Since this is a periodic orbityy Asr increases further, the saddles become chaotic and the

bifurcation diagram of periodic orbits gets more compli-
cated. In this case we use the improved estimate with
=fN*K(5), B=Ay. This gives the estimate

=z.=rNae ™A, Finally we have N—k—1) iterations of
growth, approximated byz—rz. This gives zy_4
=r2N=k=14e~ "B Taking logarithms, this estimate predicts

that a periodic orbit will exist when
ZN,1:r2N7k71fN+k( n)enyAN. (1)

Ine<(2N—k—1)Inr+Ina—yNB<Ine+Inr,

. ) — For fixedr, vy, €, and#n, zy_ is a function only ofN and
that is, for the rough estimate=A, B=A.., for there are no free parameters. Figure 4 plots this estimate of
In z\_4 for differentN for r=3.1, and shows how it success-
fully predicts periodic orbits when the line falls within the
2Inr=yA. 2 Inr—yA. |’ band defined byIn €,In e+Inr]. The squares on the diagram
— represent actual periodic orbits. The inset shows the hyper-
wherea=In e—In A+ (k+1)Inr. This defines a pair of hyper- polas from the simple approximation.
bolas between whichN must lie for a periOdiC orbit to eXiSt, For values ofr that give chaotic dynamics within invari-
and suggests that @l e [N;,N] should be present. Both  ant subspaces, the situation is more complicated, but the im-
andr are fixed, andk (the number of iterations from the proved approximation still does a good JOb of predicting pe-
resetting point to the next switgtan be calculated. To es- rjodic orbits. The approximation far,_, is plotted in Fig. 5
timate the latter, we consider the number of iterations to takegr r = 3.75 andy=4.01. Figure 6 is a bifurcation diagram of
Xo= 7 t0 X,>Inr/y under the approximatior,. 1 =rx, giv-  periodic orbits present for the chaotic case3.75, together
ing k=[In(Inr/yxy)JInr. In other words, the hyperbolas are wijth the predicted envelope. The actual periodic orbits fit
governed by a single fitting paramet&r Note that the de- well inside the prediction, with the exception of some longer-

a a+Inr
N €[Ny,N,]=

035201-3



RAPID COMMUNICATIONS

PETER ASHWIN, ALASTAIR M. RUCKLIDGE, AND ROB STURMAN PHYSICAL REVIEW B56, 035201R) (2002
10000 | ]
1000 - __
2,

100 | -

20500 1000 1500 3000 2500 10 ! !

N 3.75 3.95 405

FIG. 5. Predicted and actual periodic orbits for3.75, y FIG. 6. Period 3 stable periodic orbits for Model Il with

=4.01 for Model II. As in Fig. 4, squares represent stable periodic_ 3 75 are marked by dots. The lines show the predicted envelope
orbits and the line is the approximation 7. on varying the parametey. The period of the periodic orbits ap-
proaches infinity ag approaches =4.061 167.
period orbits lying above the envelope. These tend to be
orbits that just fail to join up and make a periotl ®rbit, but  nections. Another difference is that the stable periodic orbits
instead become periodic afterNgiterations. Using this in this case are easy to locate numerically and indeed there
method to create an envelope not only gives a good way t@ppear to be no other attractors nearby. The mechanism that
predict the location of periodic orbits, but again makes cleagreates the periodic orbits in Model Il resembles that found
that upon approaching. we expect to find periodic orbits of by Chawanyd 7] near a robust heteroclinic network contain-
increasing period. Foly= vy, the chaotic curve of la,_1  ing connections to a heteroclinic cycle. Model Il is artificial
againstN neither increases nor decreases on avefelg€ig.  in that it has a discontinuity at the phase resetting step. This
5), but the fluctuations, driven by tHe¢Ay term in Eq.(1),  means that the periodic orbits typically bifurcate from this
can be expected to increase. Hence we expect periodic orbighscontinuity in a degenerate way. However, one can clearly
of arbitrarily high period as the curve repeatedly crosses theemove this problem by smoothing out the discontinuity.
band[€,re]. For y close toy, (above or belowthe fluctua- In summary, we have demonstrated how the absence
tions for N large lead to possible long-periodic orbits, but (Model 1) or presencgModel 1) of phase resetting in the
eventually the linear average behavior leads the curve awagbnnections between saddles of a cyclifigbust hetero-
from the band. clinic) attractor can cause qualitatively different behaviors at
In the phase-resetting ca@dodel 1), the qualitative dy- loss of stability of the attractor by resonance of Lyapunov
namics is independent of the valuepf The presence of the exponents, even though the behaviors for attraction are simi-
multiplicity of periodic orbits presents an intriguing parallel lar. These models are instructive in that they are simple
between this model and the persistent phenomenon afnough to allow a precise estimation of the location of peri-
“Newhouse sinks” in a neighborhood of a homoclinic tan- odic orbits while having what we believe are the main fea-
gency[6]. One difference is that even in the simpler case oftures of robust types of dynamical behavior in flows.
robust cycling between periodic points in Model Il, the tan-
gency between unstable and stable manifolds will be degen- The research of P.A., A.R., and R.S. is supported by
erate owing to the invariant manifolds containing the con-EPSRC Grant No. GR/N14408.
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