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In the context of integrable difference equations on quad-graphs, we introduce the method of open boundary

reductions, as an alternative to the well-known periodic reductions, for constructing discrete integrable mappings and

their invariants. The mappings are obtained from well-posed initial value problems for quad and boundary equations

restricted to strips on Z
2-lattices. The invariants are constructed using Sklyanin’s double-row monodromy matrix. To

establish its properties, we use the discrete zero curvature condition and boundary zero curvature condition, showing

how the latter derives from the boundary consistency condition. We focus on the Adler-Bobenko-Suris classication and

associated integrable boundary equations. Examples are given for the H1 and Q1(δ = 0) equations, leading to novel

maps of the plane.

1 Introduction

Some of the early motivations for integrable ordinary and partial difference equations dealt with the space and/or
time discretization of integrable ordinary/partial differential equations with the view of exact numerical schemes.
This area is now a well-established field of its own with ramifications well beyond the original motivations, see for
instance the monographs [7, 14, 18]. The concept of commuting flows in the continuous world finds an analogue
in the discrete world known as multidimensional consistency (or consistency around the cube) [6, 28, 29] for a
certain class of partial difference equations formulated on quad-graphs. There is a deep connection between this
notion and that of the set-theoretical Yang-Baxter equation [15]. Many other important features of integrability,
such as Lax pairs and Bäcklund transformations, are shared between the continuous and discrete worlds.

More recently, the idea of a boundary consistency condition was introduced in [11], and emerged from the
introduction of the set-theoretical reflection equation [10, 12]. The latter is a companion of the set-theoretical
Yang-Baxter equation, and its solutions are called reflections maps, in analogy with Yang-Baxter maps [37].
Similarly, the boundary consistency condition is a companion to the multidimensional consistency condition for
quad equations, and is used to define associated discrete integrable boundary equations.

Integrable maps are the discrete analogues of integrable Hamiltonian flows, and are thus of central
importance, cf. [36]. They have been well studied and many examples have been constructed over the years, e.g.
the McMillan map [25] and the QRT maps [32, 33]. A systematic scheme to obtain higher-dimensional discrete
maps with (potentially) enough invariants to ensure (discrete) Liouville integrability [36] is the periodic reduction
method, also known as the staircase method [24, 30]. It relies on the possibility to define a well-posed initial
value problem for partial difference equations on quad-graphs [3, 22] (typically in the form of a staircase for the
Z
2-lattice case [21]), and to impose periodicity on this initial value problem. The construction in [30] employs

the Lax pair of the partial difference equation at hand. Invariant functions are obtained from the associated
monodromy matrix, which is a product of Lax-matrices along the staircase. The involutivity of the invariants
and complete integrability were proved later in [9].

In this paper, we present a new scheme to produce integrable maps as well as a generating function for
their invariants. It is based on the notion of integrable boundary conditions for partial difference equations on
quad-graphs with a boundary. The boundary on a quad-graph naturally consists of triangular faces on which
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one defines a boundary equation, as is shown in Figure 1. The boundary equations are said to be integrable if
the associated boundary consistency condition is satisfied [11].

Fig. 1: A quad-graph with a boundary consisting of triangular faces

A key tool in our construction of invariants is the double-row monodromy matrix, originally introduced
by Sklyanin [34, 35], whose properties depend on the representation of integrable boundary equations via the
discrete boundary zero curvature equation involving a boundary matrix.

We call the reductions obtained by our method open boundary reductions, in analogy, for instance, with
the open boundary problems for the Toda lattice [27] and quantum spin chains [35]. They are constructed from
a well-posed initial value problem on a quad-graph with boundary where integrable boundary equations are
imposed. Note that there exists another type of reduction called singular boundary reduction [4]. In contrast to
our construction, where boundary equations are formulated on triangles, the authors of [4] require the solutions
to be singular on the edges of the boundary of a quad-graph.

The paper is organized as follows: in Section 2, we review and clarify the relevant ingredients involved
in discrete integrable boundary conditions for equations on a quad-graph with a boundary. The key notion,
introduced in [11], is the boundary consistency condition for the boundary equation. We show how this condition
is related to a second (dual) boundary consistency condition and subsequently to a zero curvature condition
for the boundary equation. An important tool in doing so is the idea of folding explained in Section 2.3.
Special emphasis is given to the ABS list [2] and its associated boundary equations. In Section 3, we construct
non-autonomous and autonomous mappings as open boundary reductions of partial difference equations, from
well-posed initial value problems on the Z

2-lattice with two parallel boundaries. The boundary zero curvature
representation of the integrable boundary conditions ensures (under certain conditions) the (anti-)isospectral
property of the double-row monodromy matrix. This enables us to construct a generating function for (2-
)integrals of the mappings. More generally, our construction provides us with k-integrals for (k + 1)-dimensional
mappings, cf. [17]. In Section 4, we illustrate the results of Section 3 by explicitly computing some low-
dimensional mappings and their invariants. The 3-dimensional non-autonomous open reduction of the Q1(δ = 0)
equation gives rise to the following 2-parameter family of planar maps:

(x, y) 7→ (x+ y) (αx+ β(αx+ y + 1)y)
2

β (x+ (xβ + y + 1)y) ((α2 + β)xy2 + α(βx2 + y2)y + α(x+ y)2)

(
x (αx+ (αβx+ βy + α)y)

α (x+ (αx+ y + 1)y)
, y

)
.

(1)
It leaves invariant the pencil of cubic curves (of genus 0):

y2(1 + x+ y) + αx(
x

β
+ xy + y2) = Cxy. (2)

Interestingly, the map can be understood geometrically as a composition of two Manin-involutions γ = ιq ◦ ιp,
where one involution point, e.g. p, is a non-singular base point of the pencil, but the other involution point,
q = q(C), depends on the particular curve in the pencil, cf. [23]. Section 5 contains concluding remarks and
sketches examples of quad-graphs on a strip beyond the Z

2-lattice case.

2 Boundary equations, folding and discrete boundary zero curvature conditions

In this section, we first recall the notions of 3D consistency and boundary consistency that are the integrability
criteria for quad equations and their associated boundary equations respectively. Then, we introduce the notions
of dual boundary equation and dual boundary consistency condition. We show that the dual boundary consistency
condition gives rise to the discrete boundary zero curvature condition, which is the key structure in the open
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boundary reduction. This provides a systematic approach to deriving the boundary matrices appearing in the
discrete boundary zero curvature condition. Explicit examples for the H1 and Q1(δ = 0) equations from the
ABS list are provided.

2.1 3D-consistent quad equations and discrete zero curvature conditions

Consider a quad equation, which is a partial difference equation defined on an elementary quadrilateral, as in
Figure 2,

Q(u, ũ, û, ̂̃u;α, β) = 0 , (3)

where u is a discrete field defined on the underlying quad-graph. We employ the ˜,̂ notations to denote forward
shifts of u along two independent directions, and the lattice parameters α, β are associated to the ˜, ̂ directions
respectively. For instance, if the underlying graph is the Z

2-lattice,

u = u(n,m) , ũ = u(n+ 1,m), û = u(n,m+ 1) , · · · . (4)

u α ũ

û α ̂̃u

β β

Fig. 2: Elementary quadrilateral supporting the bulk equation.

The bulk dynamics on a quad-graph is determined by Q = 0 subject to well-posed initial data [3, 21]. A 3D
consistency condition was introduced as a defining criterion for the integrability of quad equations [6, 28, 29].
Namely, a quad equation (3) is said to be integrable if it can be consistently defined on a cube, see Figure 3.

Given the initial values u, ũ, û, v on a cube, the three possible ways to compute ̂̃v must give the same result.

β

λ

α

v ṽ

v̂ ̂̃v

u ũ

û ̂̃u

Fig. 3: 3D consistency: a quad equation can be imposed on the six faces of a cube. The black dots indicate the
initial values.

A classification of scalar 3D-consistent equations, known as the ABS list [2], was obtained under the following
assumptions:

1. D4-symmetry, i.e.

Q(u, ũ, û, ̂̃u;α, β) = ωQ(ũ, u, ̂̃u, û;α, β) = δ Q(u, û, ũ, ̂̃u;β, α) , ω = ±1, δ = ±1 . (5)

The case where ω = −1 is excluded, cf. [2].
2. Affine-linearity with respect to each of its fields.

3. The so-called tetrahedron property, i.e. ̂̃v does not depend on u, but only on v, ũ and û (and lattice
parameters).

3D consistency, together with the above properties, allows one to derive discrete zero curvature conditions
[6, 28]. It follows from Q(u, ũ, v, ṽ, α, λ) = 0 and the affine-linearity of Q that ṽ can be expressed as a Möbius
transformation acting on v:

ṽ =
l1 v + l2
l3 v + l4

= L [v] , L = L(ũ, u;α, λ) = µLc (6)
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where µ is a scalar function and the ‘core’ of the matrix L is Lc =

(
l1 l2
l3 l4

)
. Similarly, one has v̂ = M [v],

M = L(û, u;β, λ) = νMc. By composition of Möbius transformations, due to the 3D consistency, we get the
discrete zero curvature condition

L(̂̃u, ũ;β, λ)L(ũ, u;α, λ) [v] = L(̂̃u, û;α, λ)L(û, u;β, λ) [v], (7)

which holds when Q(u, ũ, û, ̂̃u;α, β) = 0. Note that since the lattice parameter α does not depend on the hat-shift

and the lattice parameter β does not depend on the tilde-shift, (7) can be written as M̃ L [v] = L̂M [v]. Here,
this zero curvature condition is formulated as a projective identity. The scalars µ, ν in the Lax matrices L,M
are irrelevant in the action of the Möbius transformations. In order to obtain a true matrix equation

M̃ L = L̂M, (8)

which holds when (3) is satisfied, one has to fix the scalars µ, ν appropriately. This is explained in detail in [8] for
several classes of 3D consistent equations. One option is to choose the normalisation so that the determinants of
the Lax matrices equal 1. However, this may introduce unnecessary (square) roots to deal with. For this reason
we allow more freedom. For equations from the ABS list, the normalization can be fixed such that

detL(u, ũ;α, λ) = ℓ(α, λ) L(u, ũ;α, λ)L(ũ, u;α, λ) = ±ℓ(α, λ)id , (9)

where ℓ is a function depending only on the parameters. With appropriate normalisation, one can introduce an

auxiliary vector Ψ on the elementary quadrilateral and interpret (8) as the compatibility condition,
̂̃
Ψ =

̂̃
Ψ, of

the discrete linear Lax system
Ψ̃ = LΨ, Ψ̂ = MΨ . (10)

To prepare the ground for the formulation of the boundary consistency condition in the next subsection,
it is convenient to recall the interplay between the graphical representations of the (quantum) Yang-Baxter
equation and the consistency around the cube depicted in Figure 3. The face representation of the usual line
representation of the Yang-Baxter equation produces the two sides of the relation as shown in Figure 4. For
more details, see for instance [31].

1

2

3

=

1

2

3

Fig. 4: Correspondence between the Yang-Baxter equation and the three-dimensional consistency. The Yang-
Baxter relation is represented by dotted lines, while the faces produce the face representation giving the two
sides of the cube supporting the 3D consistency.

2.2 Boundary consistency and integrable boundary equations

Inspired by [26], it was shown it [11] that by dualizing a cellular decomposition of a surface with boundary, one
naturally obtains a quad-graph where triangular faces represent the boundary. A boundary equation of the
form

q(x, y, z;α, β) = 0 , (11)

is required to hold on each elementary triangle, as in Figure 5, similarly to (3) holding on a quadrilateral. By
convention, the first and third arguments in q, i.e. x, z in (11), are the values of the field at the boundary vertices;
the second argument, i.e. y in (11), is a bulk value of the field. The parameters α, β are the lattice parameters
associated to edges connecting the bulk value y to the boundary values x and z respectively.

It is natural to require boundary equations q(x, y, z;α, β) = 0 to possess the following properties (i)-(iii):
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α

β

y

z

x

Fig. 5: Elementary triangle supporting a boundary equation. The thick line represents the boundary connecting
the boundary fields. This edge does not carry a parameter.

(i) Affine-linearity: q is affine-linear with respect to the boundary fields:

q(x, y, z;α, β) = m1xz +m2x+m3z +m4 = q1z + q2 = q3x+ q4 . (12)

where mi = mi(y;α, β), qi = qi(x, y;α, β) when i = 1, 2 and qi = qi(z, y;α, β) when i = 3, 4.
(ii) Nondegeneracy: qxzq − qxqz 6= 0. This amount to m1m4 −m2m3 6= 0, and ensures that q = 0 can be

solved to express x (resp. z) in terms of z (resp. x) and (possibly) y.

q(x, y, z;α, β) = 0 ⇒ x = −q4
q3

or z = −q2
q1

. (13)

(iii) Z2-symmetry: there exists a function h = h(α, β) such that q(x, y, z;α, β) = h(α, β)q(z, y, x;β, α). For
consistency, we have h(α, β)h(β, α) = 1.

In [11], a criterion, called boundary consistency, was introduced to select special boundary equations q = 0
yielding integrable boundary conditions for an integrable quad equation Q = 0. The criterion was not formalised
into a definition in [11] but we do so now in this work:

Definition 2.1. A boundary equation q = 0 is boundary consistent with an integrable quad equation Q = 0
if there is an involutive function σ between the parameters, β = σ(α) and η = σ(λ), such that the initial value
problem on the half rhombic dodecahedron in Figure 6 is well-posed, i.e. if the three ways of computing t
from initial values x, y, u yield the same result. A boundary equation which is boundary consistent is called
integrable.

x

y

zβ

α

r

s

t

β

α

u

λ

η
v

w

α

β

λ

η

λ

η

z x

t r

α = σ(β)

η = σ(λ)

β = σ(α)

λ = σ(η)

s

w u

y

β α

η

λ
αβ

λ

η

v

Fig. 6: Boundary consistency around half of a rhombic dodecahedron (left) and its planar projection (right),
where Q = 0 is imposed on 4 quadrilaterals and q = 0 is imposed on 4 triangles. The (closed) characteristic lines
(the dotted lines) are reflected at the boundary edges.

Explicitly, the three ways of computing t alluded to in the definition mean the following (see right figure in
Figure 6):
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• Given the three initial values x, y, u, the equations

Q(x, y, u, v;α, λ) = 0 , q(x, y, z;α, σ(α)) = 0 , q(x, u, r;λ, σ(λ)) = 0 ,

give the values of v, z and r respectively;
• Then, the equations

Q(u, v, r, s;α, σ(λ)) = 0 , Q(y, z, v, w;σ(α), λ) = 0 ,

give the values of s and w;
• Finally, the three equations

q(r, s, t;α, σ(α)) = 0 , q(z, w, t;λ, σ(λ)) = 0 , Q(v, w, s, t;σ(α), σ(λ)) = 0 ,

provide three ways of computing the value of t which we require to give the same answer.

A few comments are necessary for the reader unfamiliar with the historical development of the present ideas.
First, one of the reasons behind calling a boundary equation, which is boundary consistent in the sense of
Definition 2.1, integrable is that it ensures the possibility of constructing Bäcklund transformations as proved
in [11, Proposition 1] based solely on the content of Definition 2.1. In the present work, what we show is that
Definition 2.1 is the basis for the representation of integrable boundary equations in the form of a boundary
zero curvature condition. The latter aspect is more important for our purpose of constructing invariants for
mappings obtained by open boundary reductions, see Section 3.2.

Second, the origin of the half-rhombic dodecahedron as the natural structure to support the boundary
consistency follows from the same reasoning that leads to 3D consistency from the (quantum) Yang-Baxter
equation which we briefly recalled at the end of the previous subsection. We take the quantum reflection equation
[13, 35] as starting point, see Figure 7. It is established as the central object to characterize integrable boundaries
for quantum integrable systems and as the companion to the quantum Yang-Baxter equation in that context.
The main discovery of [12] is that it also appears naturally in the context of classical soliton theory and gives rise
to set-theoretical solutions of the reflection equation, just like one can obtain set-theoretical solution of the Yang-
Baxter equation from (vector) soliton collisions [1, 37]. From there we consider the face representation associated
to the line representation of the reflection equation (see Figure 8) and obtain the half rhombic dodecahedron as
the resulting structure supporting the two sides, see [10] for more details.

2

1

2

1

=

Fig. 7: Line representation of the reflection equation depicting the particle-particle interactions and particle-
boundary interactions for two particles 1, 2.

Finally, the origin of the involution σ, which might seem a bit ad hoc here, actually follows the same historical
development. Since the work of Cherednik and Sklyanin [13, 35], it has been known that the incorporation of
integrable boundary conditions can be achieved by considering an involution acting on the spectral parameter
(among other things). The precise map depends on the type of models (rational, trigonometric, etc.) but typical
examples are λ 7→ −λ or λ 7→ 1/λ. This is also what was obtained in [12] where the nonlinear mirror image
method was implemented for vector solitons on the half-line, which helped axiomatise the results into the
set-theoretical reflection equation. An involution acting on the spectral parameter naturally appeared in the
construction. In the present context, σ plays this role and it acts naturally on the lattice parameters in Figure 6
according to the rule of Definition 2.1. A relation β = σ(α) necessarily satisfies σ2 = id for characteristic lines
which are closed due to the reflection at the boundary.
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x

t
β

s

η

v

λ

y

α

η

w
β

λ

zβ

=

t
β

s

η

v

λ

y

α x

α r

η

u
α

λ

Fig. 8: Correspondence between the reflection equation and the boundary consistency. The reflection equation
is represented by dotted characteristic lines, while the boundary consistency is represented by black faces.
Combining the face representations of the reflection equation leads to a half rhombic dodecahedron.

A list of integrable boundary equations for Q belonging to the ABS list was obtained in [11], using the idea
of “folding the square into a triangle”. In a nutshell, the idea is to look for q in the form of Q with one of the
corner points eliminated in favour of two others via some unknown function. The ansatz is then inserted into
the equations for boundary consistency of Figure 6 in order to find the unknown function. More explicitly, one
considers

Q(x, y, k(x, y, α), z;α, σ(α)) , (14)

and looks for a function k (linear fractional in y) and an involution σ such that:

(a) The following factorization holds

Q(x, y, k(x, y, α), z;α, σ(α)) = f(x, y, α)q(x, y, z;α) , (15)

with q having properties (i)-(iii) above;
(b) The boundary consistency condition of Figure 6 hold.

The function k was a useful tool in [11] but its role was not fully exploited. In the next section, we elucidate
the role of k as originating from a dual boundary equation associated to q. We also separate more clearly step
(a), which contains no information about integrability but simply provides potential candidates for integrable
boundary equations, and step (b) which deals with finding integrable boundary equations. The notion of dual
boundary equation will enable us to formulate a novel (dual) boundary consistency condition.

2.3 Folding and dual boundary equations

We formalise the idea of folding as follows. Let an integrable quad equation Q = 0 be given. We will suppose
a boundary equation q = 0, where q satisfies properties (i)-(iii), is given such that if we use q(x, y, z;α, β) = 0
to express z as in (13) and eliminate z in Q(x, y, c, z;α, β), there exist a polynomial function χ(x, y;α, β) and a
polynomial p(y, x, c;α, β) satisfying properties (i)-(iii), with the following relation holding

q1(x, y;α, β)Q(x, y, c,−q2(x, y;α, β)

q1(x, y;α, β)
;α, β) = χ(x, y;α, β) p(y, x, c;α, β) . (16)

The situation is illustrated in Figure 9.
We need to address to what extent the folding procedure provides a map from q to p. Let us note that

if the factorization (16) exists then p and χ are unique up to an overall function of the parameters α, β only.
Therefore, strictly speaking to each q we associate an equivalence class [p] of boundary equations defined by
the relation p ∼ p∗ if and only p(y, x, c;α, β) = g(α, β) p∗(y, x, c;α, β) for some function g(α, β)‡. Of course, as
far as the boundary equation p = 0 is concerned any representative p in [p] yields the same relation on y, x, c.
In particular, the same holds true for q = 0 so it is more appropriate to think of the folding as mapping an
equivalence class [q] to an equivalence class [p]. In practice, we can use any representative we like. In the rest

‡Note that the corresponding relation on χ, χ∗ is χ∗(x, y;α, β) = g(α, β)χ(x, y;α, β).
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α

β

x y

c z

Q(x, y, c, z;α, β) = 0

α

β

x y

z

q(x, y, z;α, β) = 0

α

β

yx

c

−→

p(y, x, c;α, β) = 0

and

Fig. 9: Folding procedure: obtaining p from q and Q. We use q = 0 to eliminate z in Q (this elimination is shown
by the black dots). β is independent of α at this stage, it will become σ(α) when considering integrability.

of the paper, we will simply use the notation q and p as it should not lead to confusion whether we mean a
representative or the class. Also, we will omit multipliers and dependence on variables/parameters when these
are clear from the context, e.g. equation (16) can be shortly written as q1Q(x, y, c,− q2

q1
;α, β) ∝ p(y, x, c;α, β).

If the above folding occurs, then alternatively we could decide to use q(x, y, z;α, β) = 0 to eliminate x
instead of z. This will give rise to the same boundary equation p = 0, see Figure 10. Moreover, if one would use

α

β

x y

c z

Q(x, y, c, z;α, β) = 0

α

β

x y

z

q(x, y, z;α, β) = 0

β

α

y

zc

−→

p(c, z, y;α, β) = 0

and

Fig. 10: Folding procedure: obtaining p from q and Q by eliminating x instead of z.

the newly obtained boundary equation p = 0 to eliminate either c or y, one will get back the original boundary
equation q = 0.

Lemma 2.2 (Duality). Let Q = Q(x, y, c, z;α, β) be a multi-linear function with D4 symmetry, and let
the boundary equation (12) possess properties (i)-(iii). Suppose that p = p(y, x, c;α, β) is a divisor of
q1Q(x, y, c,− q2

q1
;α, β) and that p also possesses properties (i)-(iii), so that p can be written variously as

p(y, x, c;α, β) = p1(y, x;α, β)c+ p2(y, x;α, β) = p3(c, x;α, β)y + p4(c, x;α, β). (17)

Then, we have: a) q3Q(−q4
q3

, y, c, z;α, β) ∝ p(c, z, y;α, β),

b) p1Q(x, y,−p2
p1

, z;α, β) ∝ q(x, y, z;α, β),

c) p3Q(x,−p4
p3

, c, z;α, β) ∝ q(z, c, x;α, β).

Proof .

a) Because q has Z2 symmetry, apart from x = − q4(z,y;α,β)
q3(z,y;α,β)

, we also have x = − q2(z,y;β,α)
q1(z,y;β,α)

. Due to D4

symmetry we have

q3(z, y;α, β)Q(−q4(z, y;α, β)

q3(z, y;α, β)
, y, c, z;α, β) = h(α, β)q1(z, y;β, α)δQ(z, y, c,−q2(z, y;β, α)

q1(z, y;β, α)
;β, α) , (18)

which admits the divisor p(y, z, c;β, α) ∝ p(c, z, y;α, β).
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b) Since Q is a multivariate affine-linear polynomial, we write for convenience Q(x, y, c, z;α, β) = Q1cz +
Q2c+Q3z +Q4, where Qj = Qj(x, y;α, β), j = 1, . . . , 4 are multivariate affine-linear polynomials in x, y.
Substitution of z = − q2

q1
and multiplying by q1 gives

−(Q1c+Q3)q2 + (Q2c+Q4)q1 (19)

which vanishes when p(y, x, c;α, β) = p1c+ p2 = 0. Setting p = 0, expressing c in terms of x, y and
substituting in Q yields

p1Q(x, y,−p2
p1

, z, α, β) = −(Q1z +Q2)p2 + (Q3z +Q4)p1 , (20)

which is a multivariate polynomial in x, y, z and is linear in z. This polynomial vanishes for z = − q2
q1

in

view of (19) so it must be proportional to q1z + q2 = q(x, y, z;α, β).
c) This follows from b) using the D4 symmetry of Q and the Z2 symmetry of q, p.

Lemma 2.2 leads us to the following definition.

Definition 2.3. If Q, q, p satisfy the conditions in Lemma 2.2, then we say that p = 0 is the dual boundary
equation of q = 0 and vice versa. The quad equation Q = 0 is said to have a pair of dual boundary equations
p = 0, q = 0.

The duality property is illustrated in Figure 11: if Q is folded by either p = 0 or q = 0 then it is folded into
two copies of p through q = 0 and vice versa.

α

β

x y

c z

q(x, y, z;α, β) = 0

q(z, c, x;α, β) = 0

α

β

yx

zc

p(y, x, c;α, β) = 0

p(c, z, y;α, β) = 0

⇐⇒
Q(x, y, c, z;α, β) = 0

Fig. 11: Folding of Q along the two diagonals: p = 0 is the dual of q = 0, and vice versa.

It is important to note that the folding procedure explained here does not contain information about
integrability of the boundary equation q = 0. It is a first step towards selecting candidates for integrable q’s.
Going back to the original construction of [11] involving the function k as in (14), we see now that the latter
is nothing but −p2

p1

obtained when eliminating c using p = 0. This function plays a crucial role in defining the

boundary matrix K appearing in the the boundary zero curvature equation (see section 2.4). The notion of a
pair of dual boundary equations q = 0, p = 0 puts on firm ground the idea of folding of Q that was introduced
in [11]. It is a valuable notion for (at least) two reasons: 1) it provides the precise link between the boundary
consistency condition and the boundary zero curvature equation (see Proposition 2.5 below); 2) dual boundary
equations provide good candidates for integrable boundary equations. All the integrable boundary equations
found in [11] fall into this category. In fact, many more integrable boundary equations for the ABS list can be
obtained this way. This is left for future work.

2.4 Dual boundary consistency and the boundary zero curvature condition

A discrete boundary zero curvature condition, connecting a 3D-consistent equation and its integrable boundary
equations, was formulated in [11]. In this section we explain the connection between boundary consistency and
the discrete boundary zero curvature condition. Equipped with the notion of dual boundary equation, we now
proceed to formulate a different boundary consistency condition in terms of a dual pair (q, p).
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Definition 2.4. Let Q = 0 be an integrable quad equation, which admits a pair of dual boundary equations
q = 0, p = 0. The ordered pair (q, p) is said to be dual boundary consistent with Q = 0 if there is an
involutive function σ between the parameters, β = σ(α) and η = σ(λ), such that the initial value problem on
the 3D-stencil in Figure 12, where p = 0 is imposed on the top and bottom triangles and q = 0 is imposed on
the vertical triangle, is well-posed, i.e. the two ways of computing e from initial values x, y, u yield the same
value.

xy

c

λ

η

rs

e

u
v

d

β

α

Fig. 12: Dual boundary consistency: the equation q = 0 is imposed on the vertical triangle and its dual p = 0 is
imposed on the top and bottom triangles. The two ways of computing e from x, y, u lead to the same value.

For boundary equations which admit a dual boundary equation the above consistency condition turns out
to be equivalent to the original consistency condition.

Proposition 2.5. A boundary equation q = 0, with dual p = 0, is boundary consistent with Q = 0 according
to Definition 2.1, if and only if the ordered pair (q, p) is dual boundary consistent with Q = 0 according to
Definition 2.4.

Note that the proposition does not imply that p = 0 is boundary consistent if q = 0 is.

Proof . For convenience, when Q = 0 is used to express one variable in terms of the other three (and the
parameters), we will write for short (x, y, u) −→

Q
v. Similarly, with q = 0 we write for instance (x, u) −→

q
r.

Recall that β = σ(α) and η = σ(λ).

⇒ Consider the figure on the left in Figure 13 which represents the boundary consistency where q = 0 is
imposed on the four boundary triangles and Q = 0 is imposed on the four quadrilaterals. The values of the
vertices z, v, w, r, s, t are consistently defined. We embed it into the middle figure by adding the vertices
c, d, e which are defined as follows: (x, y, z) −→

Q
c, (u, v, w) −→

Q
d and (r, s, t) −→

Q
e. The equation Q = 0

is imposed on the added quadrilaterals (xcdu), (czwd), (uder) and (dwte). The 3D consistency of Q = 0
ensures that d and e are defined uniquely and consistently. Finally, we move to the figure on the right by
noting that on the bottom quadrilateral, we now have q(x, y, z;λ, η) = 0 and Q(x, y, c, z;λ, η) = 0 so that
by the duality property, we have p(y, x, c;λ, η) = 0. This is indicated by the change of the dashed diagonal
line from (xz) to (yc). Similarly, on the top quadrilateral, we have p(s, r, e;λ, η) = 0.
From the point of view of the initial value problem, we can determine e consistently from y, x, u as follows:

(x, y, u) −→
Q

v , (x, u) −→
q

r , (u, v, r) −→
Q

s , (s, r) −→
p

e ,

or

(x, y) −→
p

c , (c, x, u) −→
Q

d , (x, u) −→
q

r , (d, u, r) −→
Q

e .

It remains to delete the vertices z, w, t to obtain precisely the dual boundary consistency of (q, p) with Q
illustrated in Figure 12.
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xy

z

λ

η

rs

t

u
v

w
β

α

xy

z
c

λ

η
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t e

u
v

w
d

β

α

xy

z
c

λ

η
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t e
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v

w
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β

α

Fig. 13: Equivalence of boundary consistency and dual boundary consistency through the duality property.

⇐ Starting from the dual boundary consistency diagram 12 and adding the vertices z, w and t by using
Q as before, we obtain the figure on the right-hand in Figure 13 where all the vertices are consistently
defined from x, y, u. The factorisation of Q implies we have p(y, z, c; η, λ) = p(s, t, e; η, λ) = 0 and the dual
boundary consistency of (q, p) with Q = 0 implies that q(z, w, t;α, β) = 0. We can switch the diagonals on
the top and bottom faces due to the duality property between p and q. Lastly, we delete the vertices c, d, e
to obtain the boundary consistency condition between q and Q, i.e. the figure on the left-hand side, as
desired.

The significance of Proposition 2.5 is that, through the dual object p, we can relate the boundary consistency
for q and Q with a discrete boundary zero curvature condition involving a boundary matrix K, in the same way
as one can relate the 3D consistency of Q with the zero curvature condition (7).

Since integrable boundary equations only depend on one parameter, as the second parameter η = σ(λ) is
related to the first by the involution σ, in the sequel we write q = q(x, y, z;λ), and similarly for p. As explained
in Section 2.1, we can associate a Lax matrix L to Q. Similarly, we can associate a boundary matrix K to
p(y, x, c;λ) = 0, by expressing c as a Möbius transformation acting on y:

c =
k1(x;λ)y + k2(x;λ)

k3(x;λ)y + k4(x;λ)
= K [y] , K = K(x;λ) = κKc (21)

where κ is a scalar function and Kc =

(
k1 k2
k3 k4

)
is the ‘core’ of the boundary matrix K. The Z2 symmetry

of p implies that Kc(x;λ)Kc(x;σ(λ)) is proportional to the identity matrix.
Using Figure 12, by composition of Möbius transformations, we get the following projective discrete

boundary zero curvature condition showing the two ways of expressing e from y

Lc(r, u, σ(α), σ(λ))Lc(u, x, α, σ(λ))Kc(x, λ) [y] = Kc(r;λ)Lc(r, u;σ(α), λ)Lc(u, x;α, λ) [y], (22)

which holds when q(x, u, r;α) = 0, with β = σ(α), cf. property (iv) for q. As was the case for the bulk equation
Q = 0, we want to write the boundary zero curvature condition as a matrix equation which should hold on

q = 0. Letting u = x̃ and r = ̂̃x, and

L = L(x̃, x;α, λ), M = L(x̂, x;σ(α), λ), (23)

then equation (22) can be written as M̃ LK [y] =
̂̃
K M̃ L [y], whose matrix version reads

M̃ LK =
̂̃
K M̃ L . (24)

Taking determinants, using normalisation (9) and setting for convenience ρ =
√
detK = κ

√
detKc, we obtain

the following condition relating the normalisation of L and that of K,

(
̂̃ρ
ρ

)2

=
ℓ(σ(α), σ(λ)) ℓ(α, σ(λ))

ℓ(σ(α), λ) ℓ(α, λ)
. (25)
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Note that the left-hand side is independent of α so can be evaluated at α = α0 where α0 is a fixed point of σ.
This implies that

̂̃ρ
ρ
= ǫ

ℓ(α0, σ(λ))

ℓ(α0, λ)
, ǫ2 = 1 . (26)

We can now re-scale L by a function of λ as

L(u, x; a, λ) → L(u, x; a, λ)√
ℓ(α0, λ)

, ℓ(α, λ) → ℓ(α, λ)

ℓ(α0, λ)
, (27)

to obtain
̂̃ρ = ǫρ, ǫ2 = 1 . (28)

This suggests that K should be normalised such that ρ does not depend on the field x as otherwise (28) could
lead to a relation between x and r which is incompatible with q(x, u, r;α) = 0. In practice, we normalise the
matrix K such that

K(x;λ)K(x;σ(λ)) = id . (29)

The reason for not scaling L to have determinant 1 is to avoid unnecessary square roots which are hard to
deal with in a computer algebra environment. Allowing ǫ to be ±1 is necessary for (24) to be equivalent to the
boundary equation in general. Indeed, in some examples (see below), it can happen that ǫ = −1 is required.
With this in mind, and summarising our account, we will take

L(r, u;σ(α), σ(λ))L(u, x;α, σ(λ))K(x;λ) = ǫK(r;λ)L(r, u;σ(α), λ)L(u, x;α, λ) , ǫ = ±1 , (30)

as the boundary zero curvature representation of the integrable boundary equation q(x, u, r;α) = 0 in the rest
of this paper, with the understanding that L is normalised by applying the rescaling (27) to (9) and K is
normalised as in (29), with a determinant independent of the field.

In general, both L and K may involve square roots of the parameters and/or fields in their expressions,
which makes it difficult to extract invariants. However, in certain cases the freedom we have exploited here
makes it possible to deal with this. This will be made clear in the examples below.

2.5 Examples of integrable boundary equations and boundary matrices

We provide integrable boundary equations and their boundary matrices for the H1 and Q1(δ = 0) equations
from the ABS list. These examples will be used in Section 4 in the construction of integrable mappings by the
open reduction method. Note that for all integrable boundary equations obtained in [11], the involution σ is
either in an “additive” form:

σ(α) = −α+ 2µ , (31)

or in a “multiplicative” form:

σ(α) =
µ2

α
, (32)

where µ is a free parameter in both cases (µ 6= 0 in the multiplicative case). In each case, α0 = µ is a fixed point
of σ which we use to implement (27).

In order to illustrate the procedure of normalization for the boundary zero curvature equation, for each
example we provide the Lax matrix L corresponding to Q = 0, with the normalization obtained in [8] and
the corresponding function ℓ(α, λ). Also, the determinants of the boundary matrices K are constant, and it is
understood that, given σ as in (31) or (32), one should perform the rescaling (27).

2.5.1 H1, case of additive σ

The equation reads

(u− ̂̃u)(ũ− û) + β − α = 0 , (33)

and has Lax matrix

L(ũ, u;α, λ) =

(
u α− λ− uũ
1 −ũ

)
, ℓ(α, λ) = λ− α , (34)

Table 1 gives the required elements to obtain the boundary zero curvature representation of each equation
q = 0. Here, σ(α) = −α+ 2µ, with µ being a free parameter appearing also in one of the integrable boundary
equations.
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boundary equation dual boundary equation boundary matrix
q(x, y, z;α) = 0 p(y, x, c, λ) = 0 ǫ K(x;λ)

y(z − x) + α− µ = 0 y + c = 0 1

(
−1 0
0 1

)

x+ z = 0 x(y − c) + µ− a = 0 −1

(
1 µ−λ

x
0 1

)

Table 1: Integrable boundary equations for H1.

2.5.2 Q1(δ = 0), case of additive σ

The equation reads

α(u− û)(ũ− ̂̃u)− β(u− ũ)(û− ̂̃u) = 0 , (35)

with Lax matrix

L(ũ, u;α, λ) =
1

ũ− u

(
λ(ũ− u)− αũ αũu

−α λ(ũ− u) + αu

)
, ℓ(α, λ) = λ(λ− α) . (36)

Table 2 gives the required elements to obtain the boundary zero curvature representation of q = 0 for each
example. Here, σ(α) = −α+ 2µ.

boundary equation dual boundary equation boundary matrix
q(x, y, z;α) = 0 p(y, x, c, λ) = 0 ǫ K(x;λ)

α(xz − y2)− µ(x− y)(y + z) = 0 y + c = 0 1

(
−1 0
0 1

)

x+ z = 0 a(x2 − cy) + µ(c+ x)(y − x) = 0 −1 1
λ(2µ−λ)

(
µ (λ− µ)x

(λ−µ)
x µ

)

Table 2: Examples of integrable boundary equations for Q1(δ = 0) under additive σ.

2.5.3 Q1(δ = 0), case of multiplicative σ

For convenience, let us consider another form of Q1(δ = 0)

1

α2
(u− û)(ũ− ̂̃u)− 1

β2
(u− ũ)(û− ̂̃u) = 0 , (37)

which has Lax matrix

L(ũ, u;α, λ) =
1

α2(ũ− u)

(
α2(ũ− u)− λ2ũ λ2ũu

−λ2 α2(ũ− u) + λ2u

)
, ℓ(α, λ) = 1− λ2

α2
. (38)

Here, σ(α) = µ2/α.

3 Integrable mappings from open boundary reductions

We introduce the idea of open boundary reductions of quad equations on quad-graphs with two parallel
boundaries as a new means to construct integrable mappings. The key ingredients are the well-posedness of
the initial data as well as the boundary zero curvature conditions. A generating function for the invariants of
these mappings will be obtained.
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boundary equation dual boundary equation boundary matrix
q(x, y, z;α) = 0 p(y, x, c, λ) = 0 ǫ K(x;λ)

α2(x− y) + µ2(y − z) = 0 a2(y − x)− µ2(x− c) = 0 1

(
−λ

µ
(λ2+µ2)x

λµ

0 µ
λ

)

α2(x− y)− µ2(y − z) = 0 a2(y − x) + µ2(x− c) = 0 −1

(
λ
µ

(µ2−λ2)x
λµ

0 µ
λ

)

α2(x− y)z + µ2(y − z)x = 0 a2(y − x)c− µ2(x− c)y = 0 1

(
−µ

λ 0

−λ2+µ2

λµx
λ
µ

)

α2(x− y)z − µ2(y − z)x = 0 a2(y − x)c+ µ2(x− c)y = 0 −1

(
µ
λ 0

µ2−λ2

λµx
λ
µ

)

Table 3: Examples of integrable boundary equations for Q1(δ = 0) as in (37) with a multiplicative σ.

3.1 Open boundary reductions on the Z
2-lattice

We consider quad-graphs with two parallel boundaries as depicted in Figure 14. On the “left” boundary (fields

with index 1), we impose boundary conditions associated to q− = 0, while on the “right” boundary (fields

with index n), we impose boundary conditions associated to q+ = 0. Given a 3D consistent quad equation

Q = 0 imposed on the bulk (composed of quadrilaterals), q− = 0 and q+ = 0 can be different solutions to the

boundary consistency condition but under the same σ. In order to describe the map, we denote the solution of

Q(u, ũ, û, ˆ̃u, α, β) = 0 with respect to ˆ̃u by ˆ̃u = F (u, ũ, û, α, β), and the solution of q±(x, y, z, α) = 0 with respect

to z by z = f±(x, y, α). In the simplest initial value problem we consider here, the initial data x1, . . . , xn and

α1, . . . , αn−1 will evolve to x′
1, . . . , x

′
n and α′

1, . . . , α
′
n−1 by one-step discrete “time”, and eventually propagate

to infinity. This corresponds to a collective move of the fields and parameters from lattice site (n,m) to

(n+ 1,m+ 1) within the strip, following the notations of (4).

First, we take the lattice parameters to be α on horizontal edges and σ(α) on vertical edges. The so-

constructed maps are autonomous, as the parameters remain unchanged after one-step of evolution. In the

x1 x2

x3 x4

xn−3

xn−2 xn−1

xn

x′
1

x′
2

x′
3

x′
4

x′
n−3

x′
n−2

x′
n−1

x′
n

α
β

α

β

α
β

x1 x2

x3 x4

xn−2

xn−1 xn

x′
1

x′
2

x′
3

x′
4

x′
n−2

x′
n−1 x′

n

α
β

α

β

α

Fig. 14: A well-posed initial-boundary-value problem on Z
2-lattice on a strip: here β = σ(α), and x1, . . . , xn

(black dots) are the initial-boundary data.

graph on the left we have an odd number, n = 2k + 1, of variables. The upward evolution (north-east direction
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in our figures) is given by





x′
1 = f−(x1, x2, α) ,

x′
2i+1 = F (x2i+1, x2i+2, x2i, α, σ(α)) , 1 ≤ i < k ,

x′
n = f+(xn, xn−1, σ(α)) ,

x′
2i = F (x2i, x

′
2i+1, x

′
2i−1, α, σ(α)) , 1 ≤ i ≤ k .

(39)

In the graph on the right we have an even number, n = 2k + 2, of variables. The evolution upwards is given by




x′
1 = f−(x1, x2, α) ,

x′
2i+1 = F (x2i+1, x2i+2, x2i, α, σ(α)) , 1 ≤ i ≤ k ,

x′
2i = F (x2i, x

′
2i+1, x

′
2i−1, α, σ(α)) , 1 ≤ i ≤ k ,

x′
n = f+(xn, x

′
n−1, σ(α)) .

(40)

The inverses of these maps, i.e. the downward evolution (south-west direction) can be written down in a similar
fashion.

We can consider similar initial-boundary value problems, but with general lattice parameters along the
staircase. Here the maps need to be accompanied by an action on the parameters, and hence become non-
autonomous. As this action is cyclic, one can consider the (n− 1)-th power of this map, which is again
autonomous. With general lattice parameters (see Figure 15), we have the following maps. The two-dimensional

x1 x2

x3 x4

xn−3

xn−2 xn−1

xn

α1

α2

α3

αn−3

αn−2

αn−1

x′
1

x′
2

x′
3

x′
4

x′
n−3

x′
n−2

x′
n−1

x′
n

x1 x2

x3 x4

xn−2

xn−1 xn

α1

α2

α3

αn−2

αn−1

x′
1

x′
2

x′
3

x′
4

x′
n−2

x′
n−1 x′

n

Fig. 15: More general case with n− 1 lattice parameters.

map is the same as (40). The three-dimensional map is




x′
1 = f−(x1, x2, α1) ,

x′
3 = f+(x3, x2, α2) ,

x′
2 = F (x2, x

′
3, x

′
1, σ(α2), σ(α1)) ,

(41)

with
(α1, α2) → (σ(α2), σ(α1)) . (42)

The odd-dimensional map with n = 2k + 1, k > 1 is




x′
1 = f−(x1, x2, α1) ,

x′
2i+1 = F (x2i+1, x2i+2, x2i, α2i+1, α2i) , 1 ≤ i < k − 1 ,

x′
n = f+(xn, xn−1, α2k) ,

x′
2 = F (x2, x

′
3, x

′
1, α3, σ(α1)) ,

x′
2i = F (x2i, x

′
2i+1, x

′
2i−1, α2i+1, α2i−2) , 1 < i < k ,

x′
n−1 = F (xn−1, x

′
n, x

′
n−2, σ(α2k), α2k−2) ,

(43)
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with 



α2 → α′
2 = σ(α1) ,

α2i−1 → α′
2i−1 = α2i+1 , 1 ≤ i < k ,

α2i+2 → α′
2i+2 = α2i , 1 ≤ i < k ,

α2k−1 → α′
2k−1 = σ(α2k) .

(44)

The even-dimensional map with n = 2k + 2, k > 0 is





x′
1 = f−(x1, x2, α1) ,

x′
2i+1 = F (x2i+1, x2i+2, x2i, α2i+1, α2i) , 1 ≤ i ≤ k ,

x′
2 = F (x2, x3, x1, α3, σ(α1)) ,

x′
2i = F (x2i, x

′
2i+1, x

′
2i−1, α2i+1, α2i−2) , 1 < i ≤ k ,

x′
n = f+(xn, x

′
n−1, α2k)) ,

(45)

with 



α2 → α′
2 = σ(α1) ,

α2i−1 → α′
2i−1 = α2i+1 , 1 ≤ i < k ,

α2i+2 → α′
2i+2 = α2i , 1 ≤ i < k ,

α2k+1 → α′
2k+1 = σ(α2k) .

(46)

Of course, the case with general lattice parameters contains the situation of Figure 14 as a particular case where
α2i+1 = α and α2i = σ(α).

3.2 Generating function for the invariants

Consider the maps defined above with general lattice parameters (see Figure 15). Let us first recall the bulk
monodromy matrix T (λ) from x1 to xn as the following ordered product of Lax matrices L associated to the
bulk equation Q = 0

T (λ) =

x∏

j=1,··· ,n−1

L(xj+1, xj ;αj , λ) = Ln,n−1(λ) . . . L2,1(λ) . (47)

Here, the notation Lj+1,j(λ) = L(xj+1, xj ;αj , λ) is understood. Note that T (λ) depends on all the xj ’s and αj ’s
but we do not show this dependence explicitly for conciseness. The updated values of T (λ), i.e. its value at x′

j

and α′
j , will be simply denoted by T ′(λ). Similarly, let Ť denote the reverse-ordered monodromy matrix from

xn to x1

Ť (λ) =

y∏

j=1,··· ,n−1

L(xj , xj+1;αj , λ) = L1,2(λ) . . . Ln−1,n(λ) . (48)

Now let n = 2k + 2 for even n, and n = 2k + 1 for odd n. Inspired by Sklyanin’s construction [34, 35], we now
define the so-called double-row monodromy matrix T (λ) in the form

T (λ) = K−(x1;σ(λ)) Ť (σ(λ))K+(xn;λ)T (λ) , (49)

where K− satisfies

L1′,2(λ)L2,1(λ)K−(x1, σ(λ)) = ǫ−K−(x
′
1, σ(λ))L1′,2(σ(λ))L2,1(σ(λ)) , ǫ− = ±1 , (50)

corresponding to q−(x1, x2, x
′
1;α1) = 0, and K+ satisfies

Ln′,n−1(σ(λ))Ln−1,n(σ(λ))K+(xn, λ) = ǫ+K+(x
′
n, λ)Ln′,n−1(λ)Ln−1,n(λ) , ǫ+ = ±1 , (51)

corresponding to q+(xn, xn−1, x
′
n;α2k) = 0 if n is odd, i.e. n = 2k + 1 or

Ln′,n−1′(σ(λ))Ln−1′,n(σ(λ))K+(xn, λ) = ǫ+K+(x
′
n, λ)Ln′,n−1′(λ)Ln−1′,n(λ) , ǫ+ = ±1 , (52)

corresponding to q+(xn, x
′
n−1, x

′
n;α2k) = 0 if n is even, i.e. n = 2k + 2. We have the following result.
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Theorem 3.1. Let L be the Lax matrix associated to Q = 0 from the ABS list, and K− and K+ be the
boundary matrices associated to the integrable boundary equation q− = 0 and q+ = 0, normalised as explained
in Section 2.4 i.e. such that the boundary zero curvature conditions (50) and (51) (for odd n = 2k + 1) or (52)
(for even n = 2k + 2) hold. Then, the monodromy matrix T (λ) defined in (49) and its updated version T ′(λ)
are related by∗

T ′(λ)E = ǫ− ǫ+
ℓ(σ(α1), λ)ℓ(σ(α2k), σ(λ))

ℓ(α1, σ(λ))ℓ(α2k, λ)
E T (λ) , (53)

where

E = L(x′
1, x2;σ(α1), λ)L(x2, x1;α1, λ). (54)

Proof . Let us consider the odd case n = 2k + 1. The even case n = 2k + 2 is completely analogous. For
simplicity, we use the notations Lj+1,j(λ) = L(xj+1, xj ;αj , λ), Lj+1,j′(λ) = L(xj+1, x

′
j ;αj , λ), etc., by dropping

the dependence of the lattice parameter as it is always associated to the edge connecting the two adjacent
vertices. It follows from (9) that

T (λ) = γ L2k+1,2k(λ)L2k,2k+1′(λ)L2k+1′,2k(λ)




x∏

j=2,··· ,2k−1

Lj+1,j(λ)


L2,1′(λ)L1′,2(λ)L2,1(λ) , (55)

where

γ =
1

ℓ(σ(α1), λ)ℓ(σ(α2k), λ)
. (56)

Using the bulk zero curvature conditions

L2j,2j−1(λ)L2j−1,2j−2(λ) = L2j,2j−1′(λ)L2j−1′,2j−2(λ) , (57)

for j = 2, . . . , k, and then

L2j+1′,2j(λ)L2j,2j−1′(λ) = L2j+1′,2j′(λ)L2j′,2j−1′(λ) , (58)

for j = 1, . . . , k, we find

T (λ) = γ L2k+1,2k(λ)L2k,2k+1′(λ)T
′(λ)L1′,2(λ)L2,1(λ) . (59)

Similarly for Ť (η), one has

Ť (σ(λ)) = γ̌ L1,2(σ(λ))L2,1′(σ(λ)) Ť
′(σ(λ))L2k+1′,2k(σ(λ))L2k,2k+1(σ(λ)) , (60)

where

γ̌ =
1

ℓ(σ(α1), σ(λ))ℓ(σ(α2k), σ(λ))
(61)

Therefore

ET (λ) = γγ̌ [L1′,2(λ)L2,1(λ)K−(x1;σ(λ))L1,2(σ(λ))L2,1′(σ(λ))] Ť
′(σ(λ))

× [L2k+1′,2k(σ(λ))L2k,2k+1(σ(λ))K+(x2k+1, λ)L2k+1,2k(λ)L2k,2k+1′(λ)]T
′(λ) E . (62)

Taking (50) and (51) into account, the terms in square brackets can be reduced to

L1′,2(λ)L2,1(λ)K−(x1;σ(λ))L1,2(σ(λ))L2,1′(σ(λ)) = ℓ(α1, σ(λ))ℓ(σ(α1), σ(λ))ǫ−K−(x
′
1;σ(λ)) , (63)

L2k+1′,2k(σ(λ))L2k,2k+1(σ(λ))K+(x2k+1, λ)L2k+1,2k(λ)L2k,2k+1′(λ) = ℓ(σ(α2k), λ)ℓ(α2k, λ)ǫ+K+(x
′
2k+1, λ) .

(64)

Matching all the factors completes the proof.

∗We stress that here ℓ(α, λ) is the normalisation of L taking (27) into account.
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Corollary 3.2. In the case of autonomous maps (39-40), or, in the non-autonomous case, if ℓ(α, λ) is such that
ℓ(α, σ(λ))/ℓ(σ(α), λ) = 1, then function t(λ) = Tr T (λ) satisfies

t
′(λ) = ǫ−ǫ+ t(λ) , (65)

and thus can be taken as a generating function for the invariants of the corresponding map. In the case ǫ−ǫ+ = 1,
this is automatic. In the case ǫ−ǫ+ = −1, a quantity I extracted from t(λ) is a 2-integral. To obtain an invariant,
it suffices to take I2 for instance.

Proof . In the autonomous case, we have α1 = α = σ(α2k), hence

ℓ(σ(α1), λ)ℓ(σ(α2k), σ(λ))

ℓ(α1, σ(λ))ℓ(α2k, λ)
= 1 . (66)

The latter is also true in the non-autonomous case if ℓ(α, σ(λ))/ℓ(σ(α), λ) = 1. Therefore, in both cases (53)
reduces to

T ′(λ)E = ǫ− ǫ+ E T (λ) , (67)

and the result follows.

With general lattice parameters along the staircase, the maps (45) and (43) are non-autonomous. However,
the (n− 1)-st power of these maps are autonomous, and we obtain results similar to Corollary 3.2. The double-
row monodromy matrix provides k-integrals for the non-autonomous maps, where k = n− 1 or k = 2(n− 1)
when n even and ǫ−ǫ+ = −1 (k-integrals were introduced in [17]).

Corollary 3.3. Let T (n−1) denote the monodromy matrix as defined in (49) after the (n− 1)-st iterate of the
map. Then T satisfies

T (n−1)En = (ǫ−ǫ+)
n−1EnT , (68)

where
En = E(n−2)E(n−3) . . . E(1)E , (69)

and
E(j) = L(x

(j+1)
1 , x

(j)
2 ;σ(α

(j)
1 ), λ)L(x

(j)
2 , x

(j)
1 ;α

(j)
1 , λ) , 1 ≤ j ≤ n− 2 , (70)

with the superscript j denoting a j-step evolution of the associated fields and parameters.

Proof . It suffices to show that

ℓ(σ(α
(n−2)
1 ), λ)ℓ(σ(α

(n−2)
2k ), σ(λ))

ℓ(α
(n−2)
1 , σ(λ))ℓ(α

(n−2)
2k , λ)

ℓ(σ(α
(n−1)
1 ), λ)ℓ(σ(α

(n−1)
2k ), σ(λ))

ℓ(α
(n−1)
1 , σ(λ))ℓ(α

(n−1)
2k , λ)

. . .
ℓ(σ(α1), λ)ℓ(σ(α2k), σ(λ))

ℓ(α1, σ(λ))ℓ(α2k, λ)
= 1 . (71)

Then (68) follows directly from (53) and its updates. The above equality involves parameters α1, α2k and
their updates. Let us consider the odd case n = 2k + 1. There are 2k parameters along the staircase, namely,
α1, α2, . . . , α2k. One could make the following identification between α1, α2k and their updates:

α
(1)
1 = α3 , α

(2)
1 = α5 , . . . , α

(k−1)
1 = α2k−1 , α

(k)
1 = σ(α2k) , α

(k+1)
1 = σ(α2k−2) , . . . , α

(2k−1)
1 = σ(α2) ,

α
(1)
2k = α2k−2 , α

(2)
2k = α2k−4 , . . . , α

(k−1)
2k = α2 , α

(k)
2k = σ(α1) , α

(k+1)
2k = σ(α3) , . . . , α

(2k−1)
2k = σ(α2k−1) .

The equality (71) follows from the above identifications. The even case can be proved in a similar way.

In general, the operation of extracting invariants from t(λ) has to be done carefully as it assumes that there
is a natural way to expand t(λ) in λ. The normalization of L and K as well as their dependence on λ play a
role as they could lead to t(λ) not being a Laurent polynomial in λ for instance (which is the simplest case for
extraction). We will illustrate the procedure on examples for which this can be done relatively easily.

4 Examples of open boundary reductions for the H1 and Q1(δ = 0) equations

Following the construction of open boundary reductions on a strip of the Z
2-lattice, we provide some explicit

maps of dimension n ≤ 4 for the H1 and Q1(δ = 0) equations from the ABS list (see Section 2.5 for their explicit
forms and their Lax and boundary matrices). The invariants of these maps are obtained by taking the trace
of the double-row monodromy matrix defined in (49). Each map we compute here possesses enough invariants,
which suggest that they are integrable.
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4.1 H1 additive case with two different boundary equations

Consider the case where q− and q+ are different. We use

q−(x, y, z;α) = x+ z , q+(x, y, z;α) = y (z − x) + α− µ , (72)

with σ(α) = −α+ 2µ (see Table 1). First we consider the maps (39), (40) with lattice parameters α, σ(α).
However, a more convenient parameter is c = 2(µ− α).

The 2-dimensional map (40)

(x1, x2) 7→
(
−x1, x2 +

c

2x1

)
(73)

is an involution.
The 3-dimensional map (39) is given by

(x1, x2, x3) 7→
(
−x1, x2 +

2cx2

2x1x2 + 2x2x3 − c
, x3 −

c

2x2

)
. (74)

There is an obvious invariant given by x2
1. Another independent invariant is obtained using our construction.

Using

L(x, y;α, λ) =
1√

λ− µ

(
y α− λ− xy
1 −x

)
, K−(x, λ) =

(
1 µ−λ

x
0 1

)
, K+(x, λ) =

(
−1 0
0 1

)
, (75)

we find

t(λ) =
I

λ− µ
, I1 =

(x1 + x3)(2x2(x1 − x3) + c)

x1
. (76)

Recall that ǫ− = −1 = −ǫ+ here, hence we know that I ′1 = −I1, which indeed can be checked directly. This
means that I1 is a 2-integral. In order to obtain an invariant of the map, one can multiply I1 by x1 which is
also a 2-integral. In particular, we do not need to consider I21 for instance. Therefore, we have the following two
invariants for the map (74)

x2
1 , (x1 + x3)(2x2(x1 − x3) + c) . (77)

In terms of variables y1 = x3, y2 = x3 − c
2 x2

, y3 = x1, each map in the one-parameter family of maps (74) is
equivalent to

γ : (y1, y2, y3) 7→
(
y2,

y1y2 − y1y3 + 2 y2y3
y3 + 2 y1 − y2

,−y3

)
, (78)

and the preserved integral is

J(y) =
(y2 − y3) (y1 + y3)

y1 − y2
. (79)

The map (78) is understood geometrically as γ = s ◦ ι where s : (y1, y2, y3) → (y2, y1,−y3) is an anti-symmetry
switch and ι : (y1, y2, y3) → (y′1, y2, y3) is an anti-horizontal switch, cf. [14], i.e.

J(s(y)) = −J(y), J(ι(y)) = −J(y) . (80)

For fixed y3 each curve J(y) = j intersects horizontal (and vertical) lines once, ι maps y on J(y) = j to the
unique point y′ on J(y) = −j that has the same y2, y3, and ι being an anti-symmetry switch means that the
reflection in the line y1 = y2 of the line J(y) = j with y3 fixed equals the line J(y) = −j at −y3.

The four dimensional map equals

(x1, x2, x3, x4) →
(
−x1, x2 +

c (x2 − x4)

(x2 − x4) (x1 + x3)− c
, x3 +

c

x4 − x2
, x4 +

c(x2 − x4)

2x3(x4 − x2) + 2c

)
. (81)

With (75), we find

t(λ) =
I2

(λ− µ)2
, I2 =

(x1 + x3)(2x3(x4 − x2) + c)((x2 − x4)(x1 − x3) + c)

x1
. (82)

We have an obvious invariant x2
1 and another one easily constructed from I2, which satisfies I ′2 = −I2 (since

ǫ−ǫ+ = −1), by multiplying it by x1. In terms of the variables y1 = x3, y2 = x3 − c
x2−x4

, y3 = x1, the map can
be written as s ◦ ι, where s(y) = (y2, y1,−y3) and ι(y) = (y′1, y2, y3) with

y′1 = y2

(
−1 +

4 y2(y1 + y3)

3y1y2 + y1y3 − y22 + y2y3

)
(83)
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are two involutions which leave
(y2 − y3) (y1 + y3) (y1 + y2)

(y1 − y2)
2 (84)

invariant.
Let us now consider the non-autonomous 3-dimensional map (41) with general parameters, with q− = 0 on

the left boundary and q+ = 0 on the right boundary as before. In that case, the map reads

(x1, x2, x3;α1, α2) 7→
(
−x1, x2 +

x2(α2 − α1)

x2 (x1 + x3) + µ− α2
, x3 +

µ− α2

x2
;σ(α2), σ(α1)

)
. (85)

With (75), we have

L(x, y, α, λ)L(y, x, α, λ) = ℓ(α, λ)id , ℓ(α, λ) =
α− λ

λ− µ
. (86)

Hence, here ℓ(α, λ) satisfies
ℓ(α, σ(λ))

ℓ(σ(α), λ)
= 1 , (87)

thus ensuring that the ratio in (53) is one. As in the autonomous case we find that t(λ) provides us with a
2-integral:

t(λ) =
I3

2(λ− µ)
, I3 =

x2(x1
2 − x3

2) + µ(x1 − x3)− α1x1 + α2x3

x1
, (88)

and a direct calculation gives I ′3 = −I3. With the same reasoning as before, we get the following two invariants

x2
1 , x2(x1

2 − x3
2) + µ(x1 − x3)− α1x1 + α2x3.

The square of this map leaves x1, α1, α2 invariant, and its action on x2, x3 is

(
x2

x3

)
7→
(

(x1x2+x2x3+µ−α1)(x1
2x2

2−x2
2x3

2+µx1x2−µx2x3−α1x1x2+α1x2x3+µα1−µα2−α1α2+α2
2)

(x1
2x2−x2x3

2+µx1−µx3−2α1x1+α2x1+α2x3)(x1x2+x2x3+µ−α2)

x3 +
(x1+x3)(α1−α2)
x1x2+x2x3+µ−α1

)
. (89)

In terms of variables y1 = x3, y2 = x3 +
(x1+x3)(α1−α2)
x1x2+x2x3+µ−α1

this map reads

δ : (y1, y2) 7→
(
y2,−

x1
2y1 − 2x1

2y2 + y1y2
2

x1
2 − 2 y1y2 + y22

)
(90)

which leaves invariant the ratio

R =
x1

2 − y1y2
y1 − y2

. (91)

The map (90) is similar to the map (78), it can be written as δ = s ◦ ι where s : (y1, y2) → (y2, y1) is an anti-
symmetry switch for R and ι : (y1, y2) → (y′1, y2) is the anti-horizontal switch. We note that the degree growth
of these maps is linear, which indicates that they are linearisable.

Invariants can be calculated using computer algebra for n-dimensional maps with n ≤ 7 quite easily. For
H1 with two different boundary equations, as in (72), we found ⌊(n+ 1)/2⌋ functionally independent integrals.

The occurrence of “anti-switches” seems to be new, at least they do not arise when taking periodic
reductions. For comparison, the 3-dimensional (2,1)-periodic reduction of H1 is

(x1, x2, x3) →
(
x2, x3, x1 +

α− β

x3 − x2

)
.

In terms of u = x2 − x1, v = x3 − x2, the map reduces to

γ : (u, v) →
(
v,−u− v +

α− β

v

)
,

which is a root of a QRT mapping, as it can be written as γ = σ ◦ ι1 = ι2 ◦ σ in terms of the symmetry
switch σ(u, v) = (v, u) and the horizontal and vertical switches, ι1, ι2, preserving the biquadratic product
(u+ v)(uv − α+ β). The 4-dimensional (3,1)-periodic reduction of H1 is linearisable, see [20, Section 3.3].
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4.2 Q1(δ = 0) multiplicative case with two different boundary equations

Consider the Q1(δ = 0) equation in the form (37) with two different boundary equations taken from Table 3.

We use the following q± under the multiplicative involution σ(α) = µ2

α :

q−(x, y, z, α) = α2(x− y) + µ2(y − z) , q+(x, y, z, α) = α2(x− y)z + µ2(y − z)x . (92)

We use the general lattice parameters in this example. The 2-dimensional map reads

(x1, x2) 7→
(
x1 + (−1 + c2)x2

c2
, x2

(x1 + (−1 + c2)x2)

c2x1

)
, (93)

where c = µ
α . An N -step iteration of the map yields

(x1, x2) 7→
(
x1y

N , x2y
N
)
, y =

x1 + (c2 − 1)x2

c2x1
. (94)

By taking the trace of the monodromy matrix, one obtains one invariant x1/x2 which can be easily checked by
the above general expression of the maps.

The 3-dimensional map with generic parameters α1, α2 is

(x1, x2, x3) 7→
(
c21(x1 − x2) + x2, x2

x2
2 + c21(x1 − x2)(x2 − x3) + x1x3 − 2x2x3

x2
2 + c22(x1 − x2)(x2 − x3) + x1x3 − 2x2x3

,
x2x3

c22(x2 − x3) + x3

)
, (95)

where cj =
αj

µ , j = 1, 2 and the change of parameters (α1, α2) 7→ (σ(α2), σ(α1)), i.e. (c1, c2) 7→ (1/c2, 1/c1), is
understood. The boundary matrices are given in Table 3,

K−(x, λ) =

(
−λ

µ
(λ2+µ2)x

λµ

0 µ
λ

)
, K+(x, λ) =

(
−µ

λ 0

−λ2+µ2

λµx
λ
µ

)
. (96)

The Lax matrix (38) with scaling (27) yields

L(x, y;α, λ) =
µ

α2(x− y)
√

λ2 − µ2

(
α2(x− y)− λ2x λ2xy

−λ2 α2(x− y) + λ2y

)
, (97)

which satisfies L(x, y;α, λ)L(y, x;α, λ) = ℓ(α, λ)id with ℓ(α, λ) = µ2(α2−λ2)
α2(λ2−µ2) . This implies that

ℓ(α, σ(λ))

ℓ(σ(α), λ)
=

µ2

α2
, (98)

and hence that the ratio in (53) is non-trivial. In this example, it is possible to further re-scale L → ζ(α)L = L,
by a function of α only, without changing the bulk zero curvature or the boundary zero curvature equations.
We introduce

L(x, y;α, λ) =
√
αL(x, y;α, λ) . (99)

This gives L(x, y;α, λ)L(y, x;α, λ) = ℓ∗(α, λ)id where ℓ∗(α, λ) = µ2(α2−λ2)
α(λ2−µ2) now satisfies

ℓ∗(α, σ(λ))

ℓ∗(σ(α), λ)
= 1 , (100)

as desired. Equipped with this L and K±, the trace of the double-row monodromy matrix is invariant (recall
that ǫ−ǫ+ = 1 here). We find

t(λ) =
µ2

(λ2 − µ2)2

(
(λ2 + µ2)2C + 2λ2µ2 (c

2
1 + 1)(c22 + 1)

c1c2

)
, (101)

where

C =
c22x1(x2 − x3)

2 + c21(x1 − x2)(c
2
2(x1 − x3)(x2 − x3) + (x1 − x2)x3)

c1c2(x1 − x2)(x2 − x3)x3
. (102)
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The non-autonomous 3-dimensional map can be reduced to a non-autonomous 2-dimensional map. Using reduced
variables, z1 = (x1 − x2)/x3, z2 = x2/x3 − 1, we get

(z1, z2, c1, c2) 7→
(
z1(1 + c22z2)(c

2
2z2(1 + z2) + c21(z1 + c22z1z2))

(1 + z2)(z1 + z2 + c22z1z2 + z22)
,
z2(c

2
2z2(1 + z2) + c21(z1 + c22z1z2))

z1 + z2 + c22z1z2 + z22
,
1

c2
,
1

c1

)
,

(103)
and a reduced invariant

C =
c22z

2
2(1 + z1 + z2) + c21z1(z1 + c22z1z2 + c22z

2
2)

c22z1z2
. (104)

The square of (103) is an autonomous map of the plane, which is written in terms of x = z1, y = z2, α =
c21, β = c22 as

γ : (x, y) 7→ (x+ y) (αx+ β(αx+ y + 1)y)
2

β (x+ (xβ + y + 1)y) ((α2 + β)xy2 + α(βx2 + y2)y + α(x+ y)2)

(
x (αx+ (αβx+ βy + α)y)

α (x+ (αx+ y + 1)y)
, y

)
.

(105)
It leaves invariant the pencil of curves of genus 0, cf. expression (104),

y2(1 + x+ y) + αx(
x

β
+ xy + y2) = Cxy, (106)

where C is now a parameter distinguishing the curves in the pencil. The map γ can be understood geometrically
as the composition of two so-called p-switches (see [23] where this terminology was introduced),

γ = ιq ◦ ιp. (107)

A p-switch ιp maps a point r on a curve of the pencil to the third point in the intersection of the curve with the
line through r and the involution point p. The pencil (106) has 5 base points, in homogeneous coordinates:

(0 : 0 : 1), (0 : −1 : 1), (1 : 0 : 0), (1 : −1 : 0), (1 : −c21 : 0) , (108)

of which the first one is singular (with multiplicity 2). In formula (107) exactly one of p or q should be a non-
singular base point of the pencil. The other point lies on an involution curve, i.e. the involution point depends
on the curve in the pencil. For example: if we take p = (0,−1) (the second base point in the above list), then q
is given by

q =

( (
Cα− Cβ + α2 − β2

)
α

(−Cα2 + Cαβ − 2α3 + 2α2β + C2 + 4Cα+ 4α2)β
,− α (α+ β + C)

β (−α2 + αβ + C + 2α)

)
, (109)

which is a parametrisation of the dotted curve in Figure 16.

Fig. 16: One of the involution points, q = (−3850/69789,−154/541), lies on an involution curve (dotted), which
is given by (xyα2 + y2)β2 + (x+ y)α2 = 0. We have taken α = 1/4, β = 1 and C = 337/100.

If we choose p to be the base point at (∞, 0) (the third base point in the above list), then ιp is the so-called
horizontal shift, usually denoted by ι1. We have γ = ιr ◦ ι1, where

r =

(
− C2 + Cα+ 3Cβ + 2αβ + 2β2

Cα2 − Cαβ + 2α2β − 2αβ2 + α2 − 2αβ + β2
,− α+ β + C

Cα+ 2αβ + α− β

)
. (110)
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More details on these and other involutions with involution curves are provided in [19].
The maps we have obtained in this section are more sophisticated than maps obtained by periodic reduction.

The 3-dimensional (2,1)-periodic reduction of Q1(δ = 0) is

(x1, x2, x3) →
(
x2, x3,

x2 (x1 − x3) a− x3 (x1 − x2) b

(x1 − x3) a− (x1 − x2) b

)
.

Introducing z = (x2 − x1)/(x3 − x2) this map reduces to a 1-dimensional fractional linear map,

z → bz

a(z + 1)
− 1.

The 4-dimensional (3,1)-periodic reduction of Q1(δ = 0) is

(x1, x2, x3, x4) →
(
x2, x3, x4,

x2 (x1 − x4) a− x4 (x1 − x2) b

(x1 − x4) a− (x1 − x2) b

)
.

In terms of dimension reducing variables u = (x2 − x1)/(x3 − x2), v = (x1 − x4)/(x3 − x4), we obtain

(u, v) →
(
v − 1

u− 1
,
bu(v − 1)

av(u− 1)

)
. (111)

The monodromy matrix provides us with a biquadratic invariant, which in terms of u, v equals B = (av2 +
bu2)/(uv). We note that the curves in the invariant pencil defined by B are reducible (products of lines through
0). Although (111) leaves invariant a biquadratic, the map is not of QRT type.† The map (111) can be written
as a composition of a scaling (s denotes the map (u, v) → (su, sv)) and a p-switch as follows:

ι−1,b/a ◦
b(y − 1)

ay2 + bx

and
y − 1

x(x+ 1)
◦ ι−1,1.

In terms of w = u/v the map becomes w → a/(bw), which leaves a/w + bw invariant.

5 Concluding remarks

We introduced the notion of open boundary reductions as a new scheme to construct mappings from integrable
initial value problems for quad-graph systems on a strip. This represents an alternative to the well-known
periodic reductions. One key ingredient is the idea of dual boundary equations and dual boundary consistency.
This allowed us to formulate a boundary zero curvature representation, and hence prove that the discrete time
evolution of the double-row monodromy matrix is an isospectral deformation (after sufficiently many iterations).
The spectral functions obtained by taking the trace of the double-row monodromy matrix are invariants or k-
invariants of the discrete n-dimensional mappings, where k is either 2, n− 1, or 2(n− 1). In contrast with
periodic reductions where the underlying graph forms a cylinder, open boundary reductions are built on a strip.
The effect of the boundary conditions, for instance via the boundary parameter µ, can be seen explicitly in the
maps obtained. Our method leads to different types of maps compared to the periodic reduction method.

There are several natural continuations of the present work. Two pressing questions would be, on the
one hand, to investigate discrete Liouville integrability of our maps by introducing an appropriate Poisson
structure and, on the other hand, to construct solutions of open boundary discrete problems using the Bäcklund
transformations described in [11]. In the continuous realm, the latter point has been successfully carried out
by using a nonlinear version of the mirror image method [5, 16]. The nonlinear superposition principle is
implemented with Bäcklund transformations and is then used in conjunction with the inverse scattering method
to construct solutions. Whether it is possible to obtain such a mapping to a full line problem for a problem on
the interval, as a solution method, remains an open problem. In the present discrete context, the appearance
of the double-row monodromy matrix suggests that a similar construction should be possible in principle by
mapping the problem on a strip (or at least on the half lattice) to a problem on the full lattice. This is a
completely open topic. The problem of classifying integrable boundary equations for the ABS equations is still

†The QRT map which leaves B invariant scales (u, v) by av2/(bu2). Any scaling leaves B invariant.
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pending, but the duality property seems to be a promising avenue. More generally, classifying, or at least finding,
integrable boundary consistency for quad equations beyond the ABS-list (e.g. Boussinesq-type quad equations)
is a tantalising prospect. It would also be desirable to investigate more thoroughly the maps we obtained, as
well as producing more examples, and to establish a more precise connection with some known examples, for
instance, the discrete Painlevé type equations. Finally, equipped with bulk and boundary equations, initial
value problems on quad-graphs with boundary can be naturally formulated, similar to how this is done for
quad equations without boundary [3, 22], with characteristic lines reflecting off the boundary. Some examples
of well-posed initial-boundary value problems beyond the Z

2-lattice are shown in Figures 17 and 18. A general
criterion of the well-posedness of initial-boundary data on generic quad-graphs with boundary remains to be
investigated.
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Fig. 17: Open boundary reduction on a hexagonal lattice. The three configurations amount to the same map
due to the 3D-consistency of the bulk equation.
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Fig. 18: Other possibilities of open boundary reductions beyond Z
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