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1  | INTRODUC TION

The idea that organisms are not equal in their attributes and 

functions— that is, the range of things they do (Petchey & 

Gaston, 2006)— is old. For example, as early as the fourth century BC 

Theophrastus recognised that plants can be classified into groups 

sharing similar characteristics (traits) such as woodiness and size. 

Similar pioneer observations found a more formal definition with 

the introduction of the concept of the ecological niche (Elton, 1927; 

Grinnell, 1917; Hutchinson, 1957) and the subsequent emergence of 

functional ecology as a scientific discipline (Calow, 1987). When the 

homonymous journal Functional Ecology was launched in 1987, its 

Editorial Board was cautious, perhaps even skeptical, about the po-

tential success of this discipline. They wrote: ‘Your immediate reaction 
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Abstract
1. The use of functional diversity analyses in ecology has grown exponentially over 

the past two decades, broadening our understanding of biological diversity and its 

change across space and time. Virtually all ecological sub- disciplines recognise the 
critical value of looking at species and communities from a functional perspective, 

and this has led to a proliferation of methods for estimating contrasting dimen-

sions of functional diversity.

2. Differences between these methods and their development generated termino-

logical inconsistencies and confusion about the selection of the most appropriate 

approach for addressing any particular ecological question, hampering the poten-

tial for comparative studies, simulation exercises and meta- analyses.

3. Two general mathematical frameworks for estimating functional diversity are pre-

vailing: those based on dissimilarity matrices (e.g. Rao entropy, functional den-

drograms) and those relying on multidimensional spaces, constructed as either 

convex hulls or probabilistic hypervolumes.

4. We review these frameworks, discuss their strengths and weaknesses and pro-

vide an overview of the main R packages performing these calculations. In parallel, 

we propose a way for organising functional diversity metrics in a unified scheme 

to quantify the richness, divergence and regularity of species or individuals under 

each framework. This overview offers a roadmap for confidently approaching 

functional diversity analyses both theoretically and practically.

K E Y W O R D S

alpha diversity, beta diversity, biological trait, functional dendrogram, functional dispersion, 

functional regularity, functional richness, hypervolume
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to this first issue [...] might be to throw up your arms in despair at the 

thought of yet another primary, scientific journal’ (Editorial, 1987). It 

made us smile to read at this editorial with hindsight, now that func-

tional information proved to be a key pillar of modern ecology (de 

Bello, Carmona, et al., 2021; Malaterre et al., 2019) and an important 
dimension of biodiversity (Jarzyna & Jetz, 2016).

Over the past two decades, we have witnessed an exponential 

growth of trait- based studies. This was primarily driven by a number 

of seminal essays that illustrated a way of rethinking entire ecological 

fields from a functional perspective, from population and commu-

nity ecology (McGill et al., 2006; Violle et al., 2012) to biogeogra-

phy (Violle et al., 2014), along with conservation biology (Cadotte 
et al., 2011; Rosenfeld, 2002; Wellnitz & Poff, 2001). Stemming from 

this intellectual legacy, the use of functional diversity in the study of 

ecological patterns across different spatial and temporal scales has 

now become routine (Jarzyna & Jetz, 2018; Kraft & Ackerly, 2010; 
Lamanna et al., 2014; Mason & De Bello, 2013; Safi et al., 2011).

This fast theoretical development was accompanied by a pro-

liferation of methods for studying functional diversity (de Bello, 

Carmona, et al., 2021; Legras et al., 2018). There is nowadays a wide 
variety of algorithms and frameworks (hereafter ‘methods’) that can 

be used to delineate the trait space occupied by a given species or 

community, each based on particular mathematical objects— raw 

data, distance matrices, trees, convex hulls, kernel density hypervol-

umes, etc. (see Table 1 for a glossary). Once the trait space is gener-

ated, an even larger set of indices (hereafter ‘metrics’) is available to 

calculate specific properties of the system (Pavoine & Bonsall, 2011; 

Schleuter et al., 2010). Albeit this broad availability of methods and 
metrics is fuelling gigantic leaps forward in our understanding of 

ecosystem functionality, it has been pointed out that it is also ‘[...] 

causing much confusion in selecting appropriate methods for specific 

questions’ (Carmona et al., 2016b).

In our view, this confusion is the direct consequence of two driv-

ers. First, there have been few efforts to compare each method to 

illustrate their strengths, weaknesses and limitations. Our experi-

ences as reviewers and editors of manuscripts, readers of the ex-

isting literature and instructors of early career scientists have led 

us to think that most users routinely use a single method or metric 

just because it has been published in a famous paper or it appears in 

the first page of Google, and not because it better fits their question 

and data. Second, researchers developing the statistics underlying 

functional diversity approaches often provided the user with a lim-

ited selection of functions for calculating functional metrics or used 

different denominations to metrics with similar properties.

In the last decade or so, there have been subsequent attempts 

to categorise functional metrics and explore their usefulness in dis-

criminating different processes (e.g. Mason et al., 2005; Mouchet 
et al., 2010; Ricotta, 2007; Villéger et al., 2008). Building upon this 
ground, Pavoine and Bonsall (2011) provided a broad clarification of 

the mathematics underpinning this plethora of metrics, categorising 

them under three independent dimensions of richness, divergence 

and regularity (Box 1). The Pavoine– Bonsall scheme is compelling, 

allowing the grouping of taxonomic, phylogenetic and functional 

metrics under a common umbrella that well encapsulates a modern 

view on biodiversity (Jarzyna & Jetz, 2016). Yet, the classification 
still presents limitations (e.g. it does not account for a beta- diversity 

level; Box 1) and was not fully incorporated in the available statisti-

cal packages for functional diversity calculation, which often provide 

the user with an incoherent set of metrics to explore these three 

dimensions.

Altogether, these shortcomings generate a fertile ground for 
terminological and conceptual confusion, which leads to a parallel 

BOX 1 The Pavoine– Bonsall scheme for 
classifying taxonomic, phylogenetic and functional 
metrics

Pavoine and Bonsall (2011) proposed a semantic taxonomy 

for classifying taxonomic, phylogenetic and functional 

metrics under a unified scheme. This classification was 

further improved by Tucker et al. (2017), who identified 

three distinct dimensions of diversity: richness, divergence 

and regularity. These three dimensions capture the primary 

mathematical operation inherent in each metric, namely:

1. The ‘richness’ dimension encompasses metrics reflect-

ing the sum of differences among observations;

2. The ‘divergence’ dimension encompasses metrics re-

flecting the average differences among observations; 

and

3. The ‘regularity’ dimension encompasses metrics reflect-

ing how regular the differences among observations are.

This scheme is general as it can be applied to both abun-

dance, presence/absence or other data, and provides a 

simple and intuitive rationale for grouping functional met-

rics. The classification scheme is also split on a second axis 

of information, reflecting the level of data organisation at 

which each metric is calculated (Group). In their classifica-

tion of phylogenetic indices, Tucker et al. used two levels 

of organisation, depending whether each metric is calcu-

lated within a set (e.g. individuals within a species or spe-

cies within a community; so- called α- diversity) or between 

sets (e.g. comparison of multiple species or communities in 

space and time; so- called β- diversity). Here, we expanded 

this second axis of information to three levels of organisa-

tion, namely:

1. ‘Observation level’, representing the distinct functional 

elements within a set (e.g. an individual, population or 

species);

2. ‘Within groups’, representing all the Observation level 

elements within a set (e.g. functional diversity within a 

population, species, community or region); and

3. ‘Between groups’, comparing multiple Groups (e.g. com-

parison of multiple populations, species, communities or 

regions in space and time).
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confusion about the selection of the most appropriate methods 

and metrics for addressing any particular ecological question. This 

hampers the potential for comparative studies and meta- analyses, 

meanwhile preventing a full understanding of the eco- evolutionary 

rationale beyond functional diversity estimation. We aim, therefore, 

to propose a classification of the existing jungle of functional meth-

ods, dimensions and metrics. To achieve this goal, we first review the 

main frameworks and R packages for estimating functional diversity 

that are emerging in trait- based ecology. We explain the ecological 

logic underpinning each framework (i.e. how each method relates to 

the concept of niche) and discuss their pros and cons. We then illus-

trate the meaning of the three dimensions of functional diversity— 

richness, divergence and regularity (Box 1)— in the context of each of 

these methods. Finally, we present the metrics quantifying each di-

mension within each method and which R packages calculate them. 

Our ultimate goal is to develop a roadmap to select the best possi-

ble functional diversity approach depending on the question under 

study.

2  | MATHEMATIC AL METHODS FOR 
FUNC TIONAL DIVERSIT Y ESTIMATION

Stemming from the concept of the ecological guild, the simplest 

mathematical estimation of functional diversity can be achieved 

using a raw data matrix of traits, whereby total functional richness is 

calculated as the number of unique functional combinations (guilds) 

in a given set of observations (Blondel, 2003). Although the idea of 
guild provides an intuitive representation of functional diversity, 

researchers soon felt that this approach was too simplistic (Legras 
et al., 2018). A plethora of more sophisticated methods has since 
been developed to represent the observed diversity of traits in a 

system and their relations. We will refer to this representation of the 

diversity of traits as the ‘trait space’ throughout this review (Table 1).

Rather than overviewing all published and used methods, which 

would probably create further confusion, we seek to illustrate a way 

to frame the plethora of possibilities for trait space analyses. We 

chose to only discuss methods that:

1. Are open and free, which today practically coincide with 
packages and functions implemented and maintained in R (Lai 
et al., 2019);

2. Are accessible to the largest possible audience, namely methods 
that are thoroughly documented and thereby do not require a 

high level of knowledge in mathematics, statistics or program-

ming; and

3. Are based on robust mathematical concepts that provide an easy- 
to- understand representation of the trait space.

In our view, two general mathematical approaches for es-

timating the trait space and its properties are prevailing in 

recent literature: those based on non- ordinated matrices (non- 

dimensional representation) and those based on ordinated mul-

tidimensional spaces (i.e. multidimensional representation). We 

hereafter briefly describe each of these methods, discuss their 

strengths and weaknesses (Table 2), and list the main R packages 

(Table 2) and functions (Table 3) that can be used for practical 

calculations.

TA B L E  1   Glossary of terms. Modified from Guillerme et al. (2020)

Term Mathematics Definition Examples in literature

Trait matrix Matrix (n × d) The matrix reporting the traits of the studied system. 

It reflects the variation of traits in the trait space 

occupied by a certain ecological or evolutionary unit

Functional space, ecospace, dissimilarity 

matrix, etc

Observations Rows (n) The units of focus in the study Taxa, individuals, populations, 

morphospecies, species, etc

Traits Columns (d) The number of elements (traits) that were measured 

for each Observation or any transformation thereof 

(e.g. principal components)

Traits, ordination scores, distances, principal 

components, etc

Observation 

matrix

Matrix (m × n) Optional matrix that provides attributes for the 

Observations (e.g. abundances, weights) and the 

subdivision of the Trait matrix into relevant Groups

Abundance data, community data, incidence 
data, biomass data, etc

Groups Rows (m) The meaningful groups of observations for answering 

the research question(s) of interest

Communities, ecosystems, species, clades, 

geological strata, etc

Trait space Graphical 

representation of 

the trait matrix.

Any transformation and/or visualisation (graphic 
representation; usually a 2D or 3D projection) of the 

trait matrix. It represents the space in which functional 

metrics are most often visualised

Hypervolume, convex hull, functional 

dendrogram, probability density, etc

Functional 

metric

Statistic (i.e. a 

measure)

The metric is the aspect(s) of interest that attempts to 

summarise some intrinsic feature of the variation in 

the trait space. This is what is measured (usually at the 

level of the group) to answer the research question(s) 

of interest

Richness, divergence, regularity, functional 

index, functional diversity, functional 

richness, beta functional diversity, trait 

dispersion, trait divergence, etc
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TA B L E  2   Advantages and disadvantages of the existing frameworks for functional diversity. Main R packages for calculation are given in alphabetic order

Family Method Advantages Disadvantages R packages

Raw data Functional guild 

or any other raw 

representation of 

the traits

Simplest approach

Rooted in a milestone ecological concept: the guild

Easily communicated or visualised, even for the 

general public

Functional guild transforms continuous traits into categories, with 

consequent loss of information

Does not provide a direct link with the niche concept

The selection of the relevant number of groups is often subjective

The delimitation of groups is subjective

stats

Dissimilarity- 
based methods

Mean dissimilarity 
methods

Allow considering abundances
Clear biological interpretation. (average dissimilarity 

between the individuals composing a group)

Clear correspondence with variance, which allows 

using an analysis of variance framework (De Bello 

et al., 2011)

Allow for partitioning of diversity across scales (de 
Bello et al., 2010; Pavoine et al., 2016)

Can be applied to other aspects of diversity 

(taxonomic, phylogenetic) using a single coherent 

mathematical framework (Chao et al., 2014; Pavoine 

et al., 2016)

There is not a single entropy- based framework to measure richness, 

divergence and regularity components of the trait matrix

Does not come with a clear graphical representation of the trait 

space— although possibilities do exist (Bruelheide et al., 2018; Carmona 

et al., 2012)

Choice of distance measure is not trivial; should be considered carefully 

as it may affect results significantly (De Bello et al., 2013)

Not intuitively linked to the concept of species niche
Diversity does not necessarily increase when more observations or traits 

are added (this may also be seen as an advantage, e.g. when calculating 

redundancy)

ade4 (Dray & Dufour, 2007); 

adiv
a (Pavoine, 2020); 

BAT
a (Cardoso et al., 2015, 

2021); entropart (Marcon 
& Hérault, 2015); FDa 

(Laliberté et al., 2014); 
funrar

a (Grenié et al., 2017); 
hillR

a (Li, 2018); picante 

(Kembel et al., 2010); TPDa 

(Carmona, 2019)

Functional 

dendrogram (= 

functional tree)

Intuitive visual presentation, potentially allows the 

calculation of all functional diversity metrics by 

hand (easy error checking)

The theoretical understanding of tree objects 

properties is vast, thanks to a long tradition of 

phylogenetic studies

Can be applied to other aspects of diversity 

(taxonomic, phylogenetic) using a single coherent 

mathematical framework based on trees (Cardoso 

et al., 2015)

Not sensitive to abundances when calculating richness
Choice of distance measure for tree estimation is not trivial; should be 

considered carefully as it may affect results significantly (Podani & 

Schmera, 2006)

Not intuitively linked to the concept of ecological niche

adiv
a; BATa; vegan (Oksanen 

et al., 2018)

Multidimensional 
space

Binary hypervolume 

(= convex hull)

Intuitive visual presentation of the trait space 

(Cornwell et al., 2006)

Conceptually simpler than probabilistic hypervolumes

Computationally faster than probabilistic 

hypervolumes

Only suitable for exploring the Richness dimension of functional 

diversity (see Table 3)

Curse of dimensionality (Bellman, 1957): a linear increase in the number 

of dimensions requires an exponential increase in the number of 

observations. Also, computation time scales exponentially with 
the number of dimensions (Blonder, 2016; Guillerme et al., 2020; 

Mammola, 2019)
Do not allow the existence of variable densities in the trait space— 

‘convex hull expectation’ (Blonder, 2016)

Extremely sensitive to outliers: a single functionally distinct observation 

may significantly affect the estimation of the volume

Performs poorly with low sample size

Cannot consider abundances when calculating richness

Categorical traits are not fully implemented in the calculation— although 

possibilities do exist (e.g. Carvalho & Cardoso, 2020; Lloyd, 2016, 2018)

BAT
a; betapart (Baselga 

et al., 2018); FDa

(Continues)
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2.1 | Methods based on non- dimensional 
representation

All these methods rely on converting the trait matrix to a dissimilar-
ity matrix; in turn, this transformed matrix serves to delineate the 

trait space and explore its properties. Here, we distinguished be-

tween methods and metrics that attempt to measure the entropy of 

the trait space as the dissimilarity among observations directly and 

those that use a distance- based dendrogram object to represent the 

trait space.

Whereas all these methods have several features that may make 

them advantageous over multidimensional frameworks, there are at 

least two main caveats that apply to all. Foremost, they do not relate 

well with the classical concept of niche sensu Hutchinson (1957) in 

that they do not organise the trait space according to defined niche 

axes. Second, the choice of the distance measure to use is not trivial, 

especially because a trait matrix is frequently a mixture of different 

datatypes— continuous, ordinal, categorical and binary data— and 

this can significantly affect results (Podani & Schmera, 2006).

2.1.1 | Mean dissimilarity methods

The methods in this category are based on the notion that functional 

diversity represents the extent of trait differences between species 

(de Bello et al., 2016; Scheiner et al., 2017). These methods do not 

allow the visualisation of the trait space directly [but see, e.g. Micó 
et al. (2020) for a workaround], and are more a collection of metrics 

measuring entropy- based properties of the trait matrix. Four com-

monly used metrics are:

1. Rao quadratic entropy (Rao), representing the expected dissimi-

larity between two different individuals, populations or species 

sampled at random (Botta- Dukát, 2005);

2. Functional dispersion (FDis) sensu Laliberté and Legendre (2010), 
representing the weighted mean distance of individual species to 

the centroid of all species;

3. Mean pairwise dissimilarity (MPD), representing the expected 
dissimilarity between two randomly selected species without re-

placement (Weiher & Keddy, 1995); and
4. Hill numbers, representing the effective number of equally abun-

dant and functionally distinct species within a group (Chiu & 

Chao, 2014).

The differences between these metrics are subtle, but with im-

portant practical consequences. Both Rao and FDis have the same 

mathematical basis as variance (Pavoine & Bonsall, 2011) so that they 

are considered to be fundamentally equivalent (de Bello, Carmona, 

et al., 2021). Conversely, in MPD the expected dissimilarity is es-

timated only considering individuals from different species, thus it 

does not allow to account for intraspecific variability, unlike Rao. The 

great advantage of using mean dissimilarity methods versus others 

is their clear link with taxonomic and phylogenetic diversity (Chao Fa
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TA B L E  3   A ‘periodic table’ organising functional diversity metrics. The classification is adapted from the Pavoine– Bonsall scheme   
(Box 1). The row entries distinguish between observation, within groups, and between groups levels; column entries represent the three   

dimensions of richness, divergence and regularity under the main frameworks identified in this study. The table is expanded from that   

proposed in Mammola and Cardoso (2020). Examples of R functions for calculation (ordered alphabetically) are mostly taken from packages   
fully devoted for functional diversity estimations (see Table 2)

Dimension RICHNESS (… how much?) DIVERGENCE (… how different?) REGULARITY (… how regularly?)

Framework: Raw data Mean dissimilarity Functional 
dendrogram

Binary hypervolume Probabilistic 
hypervolume

Raw data Mean dissimilarity Functional 
dendrogram

Binary hypervolume Probabilistic 
hypervolume

Raw data Mean dissimilarity Functional 
dendrogram

OBSERVATION 
LEVEL

Metric: Contribution to richness Originality / Uniqueness Contribution to evenness

Question: How much does an observation add to the total trait space? How different is an observation   

to the others?

Example 
calculation:

For each 

observation is 

1 divided by 

the number of 

observations 

with the same 

combination of 

traits

- Edge length 

provided by an 

observation

Contribution of an 

observation to the 

total volume of a 

convex hull

Contribution of an 

observation to 

the total volume 

of a probabilistic 

hypervolume 

(can be negative)

The distance 

of each 

functional 

observation 

from the 

average of 

the trait 

itself.

Average distance   
between an   

observation   

and all others   

(originality) or   

between an   

observation   

and the closest   

(uniqueness)

Average distance Not applicable: a Average distance Not applicable: 

Example R 
function(s):

n.a. n.a. BAT::contribution;
vegan::spantree

BAT::hull.
contribution

BAT:: kernel.
contribution

n.a. funrar::uniqueness BAT::originality; 
BAT::uniqueness

BAT::kernel.originality; BAT::evenness. BAT::kernel.

WITHIN 
GROUPS

Metric: Richness Divergence Evenness

Question: What is the size of the trait space? How dispersed is the trait space?

Example 
calculation:

Number of 
unique 

combinations 

of traits (or 

weighted mean 

of the trait 

values)

Number of 
equivalent 

observations 

(i.e. maximally 

dissimilar 

observations 

needed to 

produce the 

observed 

diversity). Or, the 

effective total 

distance between 

observations in 

the group

Total branch 

length of the 

functional tree

Volume of the 
convex hull or 

sum of areas of 

successive convex 

hulls (after Fontana 

et al., 2016)

Volume of the 
hypervolumes or, 

in TPD, the sum 

of cells where 

trait probability 

density >0 

(Carmona 

et al., 2016a, 

2016b)

Standard 

deviation of 

functional 

observations

Expected   

dissimilarity   

between two   

observations  

randomly taken   

from the group   

(De Bello et al.,   

2011) or average   

distance of   

observations to   

a centre of the   

trait space   

(Laliberté &   
Legendre, 2010)

Average dissimilarity Not applicable: a Average dissimilarity 

Approximated 

(Villéger 

Not applicable: 

Mammola & 
⁠

Example R 
function(s):

BAT::cwm; 
FD::sing.sp; 

FD::functcomp

div::EqRao; 

hillR::hill_func; 

TPD::Rao

BAT::alpha BAT::hull.alpha; 
FD::dbFD

BAT::kernel.alpha; 
TPD::REND

BAT::cwd FD::Fdis; TPD::Rao BAT::dispersion BAT::kernel.dispersion; 
TPD::REND

BAT::cwe BAT::evenness BAT::kernel.

TPD::REND

BETWEEN 
GROUPS

Metric: Beta richness Beta replacement

Question: How dissimilar is the size of multiple trait spaces? How distant are multiple trait   

spaces?

Example 
calculation:

Net difference 
in the number 

of distinct 

functional 

observations

Number of 
equivalent 

observations 

estimated at 

nested scales

Or the effective 

number of 

equally large 

and completely 

distinct group 

pairs

Net difference 
in summed 

length of edges 

of functional 

dendrograms 

(beta richness 

sensu Cardoso 

et al., 2014)⁠

Net difference in 
amplitude of binary 

hypervolumes (or 

nestedness sensu 

Villéger et al., 2013)

Net difference 
in amplitude 

of probabilistic 

hypervolumes 

(Carvalho & 

Cardoso, 2020)

Replacement 

of distinct 

functional 

observations 

between 

groups

Divergence   

among different   

groups.

Villéger et al., 2013)

Not applicable: 

Example R 
function(s):

n.a. adiv::EqRao; 

hillR::hill_func_

parti; TPD::Rao

BAT::beta BAT::hull.beta; 
betapart::functional.

beta.multi

BAT::kernel.beta n.a. ade4::disc;   

TPD::Rao

BAT::beta BAT::hull.beta; BAT::kernel.beta; 
BAT::kernel.similarity; 

BAT::beta. BAT::kernel.beta.

Abbreviation: n.a., No specific function available.
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TA B L E  3   A ‘periodic table’ organising functional diversity metrics. The classification is adapted from the Pavoine– Bonsall scheme  

proposed in Mammola and Cardoso (2020). Examples of R functions for calculation (ordered alphabetically) are mostly taken from packages  

Dimension RICHNESS (… how much?) DIVERGENCE (… how different?) REGULARITY (… how regularly?)

Framework: Raw data Mean dissimilarity Functional 
dendrogram

Binary hypervolume Probabilistic 
hypervolume

Raw data Mean dissimilarity Functional 
dendrogram

Binary hypervolume Probabilistic 
hypervolume

Raw data Mean dissimilarity Functional 
dendrogram

Binary 

hypervolume

Probabilistic 

hypervolume

OBSERVATION 
LEVEL

Metric: Contribution to richness Originality / Uniqueness Contribution to evenness

Question: How much does an observation increase the regularity?

Example 
calculation:

Average distance  Average distance 
between an 

observation and all 

others (originality) 

or between an 

observation and the 

closest (uniqueness) 

in the tree

Not applicable: a 
convex hull, being 

homogeneous, is 

equally dispersed 

throughout

Average distance 
between an 

observation and a 

sample of random 

points within 

the probabilistic 

hypervolume, or 

overlap between the 

TPD function of a 

single observation 

and the TPD function 

of the whole set of 

observations

Contribution of an 

observation to 

the evenness of a 

community

Contribution of an 

observation to 

the evenness of a 

community

Contribution 

of each 

observation 

to the 

evenness of 

the functional 

dendrogram

Not applicable: 
a convex 

hull, being 

homogeneous, 

is even 

throughout

Contribution of 

an observation 

to the evenness 

of a probabilistic 

hypervolume

Example R 
function(s):

BAT::contribution; BAT::hull. BAT:: kernel. BAT::originality; 
BAT::uniqueness

n.a. BAT::kernel.originality;
TPD::uniqueness

n.a. n.a. BAT::evenness.
contribution

n.a. BAT::kernel.
evenness.

contribution

WITHIN 
GROUPS

Metric: Richness Divergence Evenness

Question: How regular is the trait space?

Example 
calculation:

Number of Number of Volume of the Volume of the 

(Laliberté &  
Legendre, 2010)

Average dissimilarity 
between any two 

observations in the 

tree

Not applicable: a 
convex hull, being 

homogeneous, is 

equally dispersed. 

One can, however, 

potentially 

approximate it as the 

perimeter divided 

by area

Average dissimilarity 
between any two 

random points within 

the boundaries of the 

hypervolume or the 

distance between 

random points and 

the centroid

Regularity of trait 

values, reflecting 

trait abundances 

and distances 

between values

Approximated 
as the kurtosis 

of traits (Gross 

et al., 2017) or 

weighted evennes 

of the traits

Regularity of 

abundances and 

distances along 

the minimum 

spanning tree 

linking all 

observations

(Villéger 
et al., 2008); or 

deviation in the 

uniqueness

Regularity of 

abundances 

and distances 

between 

observations 

in the tree

Not applicable: 
a convex 

hull, being 

homogeneous, 

is even 

throughout

Overlap between 

the hypervolume 

and an imaginary 

hypervolume 

where traits 

are evenly 

distributed 

within their 

possible range 

(Carmona 

et al., 2019; 

Mammola & 
Cardoso, 2020)⁠

Example R 
function(s):

BAT::cwm; BAT::alpha BAT::hull.alpha; BAT::kernel.alpha; 
TPD::REND

BAT::cwd BAT::dispersion n.a. BAT::kernel.dispersion; 
TPD::REND

BAT::cwe FD::feve; 

funrar::uniqueness

BAT::evenness n.a. BAT::kernel.
evenness; 

TPD::REND

BETWEEN 
GROUPS

Metric: Beta evenness

Question: How different is the regularity of multiple trait spaces?

Example 
calculation:

Net difference Number of Net difference 

⁠

Net difference in 

Villéger et al., 2013)

Net difference Replacement of the 

edges of functional 

dendrograms (beta 

replacement sensu 

Cardoso et al., 2014)

Replacement of 

functional space 

enclosed by convex 

hulls (or turnover 

sensu

Villéger et al., 2013)

Replacement 

of functional 

space enclosed 

by probabilistic 

hypervolumes 

(Carvalho & 

Cardoso, 2020) or 

overlap between 

probability density 

function

Difference in 

evenness values 

between two 

groups

Difference in 

evenness values 

between two 

groups

Difference 

in evenness 

values 

between two 

functional 

dendrograms.

Not applicable: 
a convex 

hull, being 

homogeneous, 

is even 

throughout

Difference in 

evenness values 

between two 

probabilistic 

hypervolumes

Example R 
function(s):

BAT::beta BAT::hull.beta; BAT::kernel.beta BAT::beta BAT::hull.beta; 
betapart::functional.

beta.multi;

BAT::kernel.beta; 
BAT::kernel.similarity; 
TPD::dissim;

n.a. n.a. BAT::beta.
evenness

n.a. BAT::kernel.beta.
evenness

Abbreviation: n.a., No specific function available.
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et al., 2014; De Bello et al., 2010; Hevia et al., 2016). Another advan-

tage is that all these metrics allow the incorporation of information 

on species abundances on estimations of functional diversity, as well 

as using trait data containing missing information (as long as the dis-

similarity index chosen allows for it).

Yet, they present disadvantages as well (Table 2). Besides the 
general caveats discussed before, probably the main limit is that 

there is no single mean dissimilarity metric able to measure the rich-

ness, divergence and regularity components of the trait space. While 

Rao and related metrics are well suited to estimate the divergence 

component, they do not serve well in other research scenarios. Also, 
a consequence of the mathematical relationship between Rao (and, 

as a corollary, of FDis) and Simpson's index is that Rao is not indepen-

dent of species richness, but rather has an asymptotically increasing 

relationship with it (Carmona, Guerrero, et al., 2017).

2.1.2 | Functional dendrograms

In a milestone paper, Petchey and Gaston (2002) proposed to 

represent the trait space of a given community or site as the den-

drogram of the functional relationships (distances) among spe-

cies, whereby total functional richness can be calculated as the 

total branch length of the tree. A dendrogram representation of 
the trait space is graphically intuitive, allowing the visualisation of 

functional relations among species or individuals. Moreover, this 
way of calculating the trait space is strongly linked with tree- based 

phylogenetic diversity (Faith, 1992), thereby offering a congruent 

framework based on tree objects for comparing different dimen-

sions of biodiversity (phylogenetic and functional diversity). A 
dendrogram- based representation of the trait space presents, of 

course, disadvantages as well (Table 2). Beside the one previously 

discussed about the lack of direct relationship with species niches, 

dendrograms might change the between- species dissimilarities 

compared with the dissimilarity matrix initially used to build them 

(Maire et al., 2015; Mouchet et al., 2008).

2.2 | Methods based on multidimensional spaces

Making the closest analogy with the Hutchinsonian niche, Rosenfeld 
(2002) defined functional diversity as the distribution of observa-

tions in a multidimensional space whose axes represent the traits 

of interest. In other words, the position of observations in a multidi-

mensional space can be used to characterise different aspects of a 

multidimensional object (hypervolume) encompassing all trait values 

observed in the group.

The interest in multidimensional representations of the trait 

space (and of the ecological niche; Holt, 2009) is growing. For ex-

ample, it has been ironically pointed out that there are now probably 

‘as many definitions of these multidimensional spaces [...] as there are 

questions that can be tackled with such methods’ (Guillerme, 2018)⁠. 

Here, in a way of synthesis, we grouped methods into two families: 

those that achieve a binary description of the trait space depend-

ing on whether it is occupied or not, and those that achieve a prob-

abilistic description of the trait space by modelling the density of 

observations.

2.2.1 | Binary hypervolumes

A convex hull— the smallest convex polyhedron surrounding a set 
of observations— is arguably the simplest type of hypervolume 

and provides an intuitive geometrical representation of the trait 

space that easily embodies the often continuous nature of species’ 

traits (Cornwell et al., 2006). This approach was first introduced by 

Cornwell et al. (2006) and later popularised by Villéger et al. (2008) 
who described a way to use convex hulls for functional richness 

estimation and to explore turnover among communities (Villéger 
et al., 2013⁠). Convex hulls have a long tradition of use in functional 

ecology, and their performance has been tested across most king-

doms of life, biomes and spatial scales (Mouillot et al., 2021). A con-

vex hull is advantageous over rectangular representation of the trait 

space because it excludes the ‘missing corners’ of irregular distribu-

tions. In n ≥ 2 dimensions, it also reduces the amount of empty space 
compared to (hyper- )cubes or (hyper- )spheres (Cornwell et al., 2006). 

Finally, convex hulls potentially have faster computation times than 

probabilistic hypervolumes.

Yet, convex hulls have two main shortcomings in functional 
ecology (Table 2). First, they are very sensitive to outliers. Second, 

they can only be used to explore the richness dimension of func-

tional diversity (Table 3). Furthermore, the space within extreme 

values of a convex hull is assumed to be homogeneous, implying 

that the trait space is uniformly occupied within extreme trait val-

ues (Blonder, 2016; Mammola & Cardoso, 2020). This can be seen as 
either a limitation or a feature of this type of trait space representa-

tion, emphasising the intrinsic difference between convex hulls and 

probabilistic hypervolumes. To partly remedy this problem, Gruson 

(2020) recently proposed a way for creating ‘concave’ hulls (i.e. in-

cluding voids or pockets) based on α- shapes. Whereas the approach 

was developed to estimate the colour volume of organisms, it could 

be easily generalised to other traits.

2.2.2 | Probabilistic hypervolumes

Rather than assuming that the trait space is homogeneous, as 

in a convex hull, density- based approaches allow the detection 

of areas of higher or lower density in the multidimensional space 

(Blonder, 2016). Thus, probabilistic hypervolumes reflect the notion 

that not all areas within the boundaries of a given trait space are 

filled with the same intensity. This representation of the trait space 

better reflects the concept of niche by Hutchinson (1957), who en-

visioned that a multidimensional niche should have internal differ-

ences in ‘density’— although, at the time, there were no methods for 

similar computations.
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The popularity of probabilistic hypervolumes is steadily increas-

ing in functional ecology, as testified by the number of R algorithms 

published in recent years allowing to delineate and/or analyse prob-

abilistic hypervolumes (Blonder et al., 2014; Blonder et al., 2018; 

Brown et al., 2020; Carmona et al., 2019; Carvalho & Cardoso, 2020; 

Junker et al., 2016; Lu et al., 2020; Mammola & Cardoso, 2020; 
Swanson et al., 2015). Inevitably, these representations of the trait 

space, like any other, also present shortcomings, at least in their 

present formulation (Table 2). The plot density will depend on the 

method and parameters used, and there are no clear guidelines on 

the best options (Mammola, 2019). Also, these methods are com-

putationally demanding, especially in high dimensions (Mammola & 
Cardoso, 2020).

3  | DIMENSIONS OF FUNC TIONAL 
DIVERSIT Y FOR SPECIFIC RESE ARCH 
QUESTIONS

Most often than not, the reason for characterising a trait space is to 
explore its properties in relation to a research question of interest 

(Figure 1; Appendix S1). This can be achieved by interrogating the 
trait space at a specific level of organisation under the domain of 

richness, divergence and regularity. Here we propose a way to group 

existing functional metrics using a simple, unifying scheme (Table 3). 

This is an attempt towards providing some order to the avalanche 

of available metrics, useful for applying the richness, divergence 

and regularity notions (Box 1) to different levels of organisation and 

spatial scales. Interestingly, besides emphasising how there is both 

complementarity and redundancy in the metrics for exploring the 

trait space, this exercise of classification allowed us to point to the 

existence of gaps in what is currently available, potentially stimulat-

ing future developments of new metrics.

3.1 | Level of organisation

Existing metrics can be divided according to the level of data or-

ganisation at which they are calculated. Metrics can be calculated 
for individual observations (individuals, populations or species), 

within groups (e.g. individuals within a species or species within a 

community; so- called α- diversity), or between groups (e.g. compari-

son of multiple species or communities in space and time; so- called 

β- diversity).

3.1.1 | Observations

Observations contribute differently to the trait space occupied by 

a population, species or community, or to the differences between 

populations, species or communities. Different measures have been 

developed to reflect the position of an observation in the trait space 

relative to other observations, including originality, uniqueness and 

contribution (Table 3). All these measures quantify in different ways 
how dissimilar an observation is from all others and hence how much 

it adds to the group measures. This can be applied to the richness, 

divergence or regularity, allowing the mapping of the different com-

ponents of functional rarity and commonness (Grenié et al., 2017; 
Kosman et al., 2019; Violle et al., 2017) at different scales of organi-
sation (Carmona, de Bello, et al., 2017).

3.1.2 | Within groups

The within- group level, often referred to as alpha diversity or simply 

α, reflects the properties of a group of observations without refer-

ence to other groups. Observations add to the occupation of a given 

trait space that characterises in different ways a species or com-

munity. This is by far the most explored level in functional diversity 

studies.

3.1.3 | Between groups

Differences between groups reflect the natural heterogeneity in na-

ture, whereby populations, species and communities differ in space 

and time. Also called beta diversity or β, this property was first de-

fined as the extent of change in community composition along gra-

dients (Whittaker, 1960). Since then, the term has expanded its use, 

although always encompassing some kind of compositional hetero-

geneity or differentiation (Anderson et al., 2011; Tuomisto, 2010a, 
2010b). Importantly, two distinct processes shape species or com-

munities and their functional differences: substitution of trait space 

and net gain or loss of trait space [see Carvalho and Cardoso (2020) 

for species and Cardoso et al. (2014) for communities]. When com-

paring groups, one may understand how niche shifting in space or 

time relates to competition or ecological release and consequent 

evolution of traits (Carvalho & Cardoso, 2020), or to explore how 

trait diversity decays with spatial distance or change through time 

(Pavoine & Bonsall, 2011).

3.2 | Measured property

Once the level(s) of organisation of interest has been identified, one 

can explore the trait space by measuring its properties in the domain 

of richness, divergence and regularity (Box 1). Examples of specific 

research scenarios and questions in functional diversity are provided 

in Appendix S1.

3.2.1 | Richness

When estimating functional richness, one tries to answer questions 

related to the amount of trait space occupied by assemblages as well 

as how it varies in space and time. These include questions such 
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as what ecological processes and ecosystem services we lose if a 

species goes extinct or a community change (Cadotte et al., 2011; 

Cooke et al., 2019), the filtering effect of a given habitat on spe-

cies traits (Martínez et al., 2021; Micó et al., 2020), and how does 
the functionality of a community vary through seasons (Rocha 

et al., 2012). At a broader, macroecological scale, many studies 
have explored variations in functional richness along gradients of 

thermal seasonality (latitude; Graco- Roza et al., 2021; Lamanna 
et al., 2014; Schumm et al., 2019), glacier cover (Brown et al., 2018) 

or urbanisation (Buchholz et al., 2020; Sol et al., 2020). Mapping the 
richness of traits can also serve to identify areas of conservation 

priority based on criteria beyond species richness (Brum et al., 2017; 

Strecker et al., 2011). For example, one can estimate the importance 

of both common and rare species to the net ecosystem functionality 

(Chapman et al., 2018), define species- level conservation priorities 

(Davic, 2003; Kosman et al., 2019) and even compare extinction risk 
across different taxa (Carmona et al., 2021).

3.2.2 | Divergence

Metrics classified under the divergence component of functional di-
versity seek to assess differences among observations (Gregorius & 

Kosman, 2017), namely the extent to which they spread across the 
occupied trait space (Anderson, 2006), usually relative to a mean or 
centroid (Mason et al., 2005; Villéger et al., 2008). A high disper-
sion is often interpreted as reflecting a high degree of competition 

between species with similar traits, and/or relaxed ecological filters 

(Perronne et al., 2017). Some authors also interpreted dispersion as 

a measure of functional redundancy (Galland et al., 2020), whereby, 

theoretically, less redundant communities should be those char-

acterised by less stringent ecological filters (Ricotta et al., 2020). 

From the perspective of biological conservation, more functionally 

redundant systems should show greater resilience to perturbation 

(Mouillot et al., 2014), for example, when facing the extinction or 
disappearance of a single species, the roles performed by it can be 

done by functionally close species.

3.2.3 | Regularity

The regularity component, or evenness, reflects the regularity of ob-

servations’ distribution within the trait space (Mouillot et al., 2005; 
Schleuter et al., 2010). In terms of raw data, regularity often meas-

ures the skewness of trait values; graphically, it can be seen as a 

measure of how harmonious the shape of the occupied trait space 

is— the symmetry of branches in a functional dendrogram or the 

regularity of the shape of a probabilistic hypervolume. Biologically 

speaking, regularity is used to examine the degree to which there is 

an effective use of the entire range of resources available to a given 

niche space (Mason et al., 2005). When the most abundant species 
share trait space one would expect a strong filtering of specific traits 

by the environment. Conversely, more regular spacing of trait values 

and a lower overlap among the traits of the most abundant species 

would imply a stronger effect of competitive exclusion (Perronne 

et al., 2017), although care should be taken when inferring assembly 

processes from functional diversity patterns (Kraft et al., 2015). A 
practical example comes from cave ecosystems, where the perma-

nent darkness and the consequent lack of photosynthetic primary 

producers exert a strong filter that skews the total trait space to-

wards the over- expression of traits of detritivorous and predators 

(Gibert & Deharveng, 2002) or species employing particular hunting 

strategies (Cardoso, 2012).

4  | ADDITIONAL CONSIDER ATIONS 
RELE VANT TO FUNC TIONAL DIVERSIT Y 
ANALYSES

It is important to remember that the performance of each method 

and the overall quality of a functional diversity analysis depends on 

the quality of the experimental design and data. There are several 

issues concerning data quality and its exploration; we briefly touch 

upon the most relevant to the analytical framework here discussed 

(Figure 1).

In exploring any trait matrix, one must be aware that it can 

be a mixture of different data types (numerical, ordered, fuzzy or 

categorical traits) that may or may not be correlated. To handle 

different data types in the same analysis, and depending on the as-

sumptions of the functional diversity method of interest, one may 

need to standardise traits and transform the matrix with adequate 

distance measures and/or ordination methods (de Bello, Botta- 

Dukát, et al., 2021; Carvalho & Cardoso, 2020; Lloyd, 2016; Mouillot 
et al., 2021). Correlations and graphical tools (e.g. scatterplots) can 

be used to inspect collinearity and, when appropriate, correlated 

traits can be dropped or summarised as principal component axes 

(Carvalho & Cardoso, 2020). Finally, one has also to consider how to 

handle missing data (Johnson et al., 2021), trait variability (Carmona 
et al., 2019; De Bello et al., 2011; Wong & Carmona, 2021), and other 

issues (Palacio et al., 2020; Si et al., 2018).

The number of traits for the trait space delineation is a crit-

ical feature as well. As the number of traits increases, multidi-
mensional analyses will be subject to the ‘curse of dimensionality’ 

(Bellman, 1957). Dimensionality does not only increase computation 

F I G U R E  1   A general workflow for functional diversity analyses. The scheme is structured as a decision tree to guide the researcher 
throughout a hypothetical analysis. The Input data & data exploration phase pertains to the assemblage of the observation (incidence, 

abundance, biomass, etc.) and trait matrices— the raw material for any functional diversity analysis. Once the data have been cleaned and 

inspected, one can move on and delineate and explore the trait space using one of the many approaches discussed in this review (Table 2). 

Then, the most appropriate metrics (Table 3) to characterise the properties of the trait space of interest depend on the research question of 

interest (Appendix S1)
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time, but it also affects the properties of the trait space. In a prob-

abilistic hypervolume context, for example, the space occupation 

becomes sparser and tends to occur towards the boundaries of 

the hypervolume with increasing dimensionality (Blonder, 2016; 

Guillerme et al., 2020; Mammola, 2019). Also, hypervolume over-
lap can only decrease at increasing dimensionality, which directly 

affects the estimation of between- group metrics and redundancy 

(Carmona et al., 2016b; Mammola, 2019). Note, however, that this is 
often a consequence of a real biological feature: since two species 

can differ in so many traits, they are unlikely to overlap much when 

a high number of traits is considered.

Ultimately, the choice of the number of traits depends on the 
overall sample size and the question posed, but there is no univocal 

agreement on this subject (Díaz et al., 2016; Laughlin, 2014; Legras 
et al., 2020). For example, analyses on plants suggest that our ability 

to predict community composition improves by adding new traits, 

reaching a plateau at four to eight traits depending on the system 

(Laughlin, 2014); however, when adding too many traits, estimation 
of functional diversity becomes unfeasible and/or unreliable. Future 

simulation studies comparing the performance of different tech-

niques with different sample sizes and the number of traits could 

help to develop more precise guidelines in this sense.

Finally, it is important to mention that a proper treatment of 

functional diversity analyses often requires using randomisation 

procedures to compare the observed patterns with null expecta-

tions (Gotelli & Graves, 1996). Randomisation procedures are used 

to infer some particular process and/or to test hypotheses of inter-

est, but also to break the trivial correlation between some functional 

diversity metrics and species richness. For example, since functional 

richness often increases as new organisms are included in a group, 

ecologists frequently perform null models to compare the observed 

values of functional richness with those that would be expected 

for the same number of species randomly assembled from the con-

sidered species pool (Carmona, Guerrero, et al., 2017; Petchey & 

Gaston, 2002).

5  | CONCLUSIONS

We here illustrated the emerging consensus on a few, non- 

overlapping frameworks for delineating the trait space and meas-

uring its properties. Our hope is that this synthesis, by digesting 

available concepts (Table 1), methods (Table 2) and metrics (Table 3), 

will offer a practical overview and workflow for streamlining func-

tional diversity analyses (Figure 1). Five take- home messages emerge 

from this exercise:

1. Do not mix apples and oranges. Many studies calculate properties 
of functional diversity with a cocktail of different methods 

and metrics. This is the case, for example, of many studies 

based on the R package FD, which estimates richness as the 

volume of a convex hull, divergence as the distance of the 

observations to a centroid or centre of gravity, and regularity 

with a minimum spanning tree (Laliberté & Legendre, 2010; 
Laliberté et al., 2014; Villéger et al., 2008). Whenever possible, 
we recommend being consistent by choosing a single method 

for delineating the trait space (e.g. a functional dendrogram or a 

multivariate space) and sticking to it for exploring its properties 

in the dimensions of richness, divergence and regularity. In fact, 

by using a single method, one can be sure that a similar error 

and uncertainty applies to all the calculations. Conversely, if 

using different methods, it may be problematic to disentangle 

the effect of the ecological process(es) of interest from that 

of the different algorithms used. The same issue occurs when 

simultaneously studying functional and phylogenetic diversity 

with different frameworks (e.g. hypervolumes for the first and 

phylogenetic trees for the latter). Ideally, we want to remove 

one level of uncertainty in the results, the one associated with 

the choice of methods, even if others will necessarily remain.

2. Be aware of uncertainty. In an ideal world, by calculating analogous 

metrics using different methods— for example, the functional rich-

ness calculated with a dendrogram or a convex hull— one would 

reach the same (or convergent) results. However, as emphasised 

by a few comparative studies across a selection of methods and 

metrics (Junker et al., 2016; Legras et al., 2020; Mammola & 
Cardoso, 2020; Mouchet et al., 2010; Wong & Carmona, 2021), 
this is rarely the case. Discrepancies are partly related to the in-

trinsic differences of each framework (Table 2), and partly to the 

scale of analysis and methodological choices on how to handle 

trait variability (Gentile et al., 2020; Wong & Carmona, 2021), 

as well as the number of traits considered (Legras et al., 2020). 
We believe it would be necessary to comprehensively analyse 

properties of the existing methods using either real- world data 

or simulations based on different combinations of traits, scales 

of organisation and input parameters. Until then, it is important 
to acknowledge that often we do not fully understand what each 

method and metric is exactly measuring.

3. Refute parochialism. There are plenty of functional diversity meth-

ods and metrics out there, and many more will likely be developed 

in the future. While this is certainly disorienting for research-

ers approaching functional diversity analyses for the first time, 

choosing between seemingly equally appropriate options re-

mains challenging even for experienced researchers (Cianciaruso 

et al., 2017). Inevitably, most researchers will tend to stick to their 

‘pet’ approach. Yet, it is important to keep in mind that any analyt-
ical choice should always be fine- tuned to the ecological question 

of interest (Appendix S1) and the pros and cons of each method 
(Table 2), rather than subjective preferences.

4. Indulge in the unknown. The existing breadth of metrics will never 

allow us to explore all the properties of the distribution of ob-

servations in a given trait space and to answer the potentially 

unlimited number of eco- evolutionary questions. When dealing 

with novel paradigms and systems, one will often have to de-

velop metrics or functions de novo. If one lacks programming 

skills, there are tools that can facilitate this task (Guillerme, 2018; 

McPherson et al., 2018). For example, the dispRity framework 
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(Guillerme, 2018; Guillerme et al., 2020) provides a modular archi-

tecture to create and test new metrics tailored to specific data-

sets and questions.

5. Make the best out of functional diversity. Developments in func-

tional diversity are occurring rapidly. If one wants to make the 

best out of this exciting field of research, it is critical to keep 

up with the latest literature, but also to navigate the literature 

of other disciplines to drawn on methods and ideas. In fact, the 

proper treatment of functional diversity estimation is just one out 

of the many facets that one should consider. A careful design of 
the study is pivotal to any investigation of functional diversity; 

whenever possible, one should adopt a rigorous sampling design 

to strengthen the validity of the conclusions (Smith et al., 2017)⁠. 

Also, data exploration is a central phase in any analysis (Zuur 
et al., 2009), and so is a proper hypothesis testing, often achiev-

able via regression- type analyses (Zuur & Ieno, 2016) and null 
modelling/randomisation procedures (Götzenberger et al., 2016). 

Only by integrating all these different aspects, one will maximise 

the usefulness of functional diversity to ecology and beyond.
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