
This is a repository copy of Nothing in evolution makes sense except in the light of
parasitism:evolution of complex replication strategies.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/176868/

Version: Published Version

Article:

Hickinbotham, Simon, Stepney, Susan orcid.org/0000-0003-3146-5401 and Hogeweg,
Paulien (2021) Nothing in evolution makes sense except in the light of parasitism:evolution
of complex replication strategies. Royal Society Open Science. 210441. ISSN 2054-5703

https://doi.org/10.1098/rsos.210441

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

royalsocietypublishing.org/journal/rsos

Research

Cite this article: Hickinbotham SJ, Stepney S,

Hogeweg P. 2021 Nothing in evolution makes

sense except in the light of parasitism: evolution

of complex replication strategies. R. Soc. Open Sci.

8: 210441.

https://doi.org/10.1098/rsos.210441

Received: 15 March 2021

Accepted: 6 July 2021

Subject Category:

Computer science and artificial intelligence

Subject Areas:

evolution/computational biology/complexity

Keywords:

replicator, parasite, RNA world,

automata chemistry, artificial life

Author for correspondence:

Simon J. Hickinbotham

e-mail: simon.hickinbotham@york.ac.uk

Nothing in evolution makes
sense except in the light
of parasitism: evolution of
complex replication strategies

Simon J. Hickinbotham1, Susan Stepney2 and

Paulien Hogeweg3

1Department of Electronic Engineering, and 2Department of Computer Science,

University of York, York, UK
3Theoretical Biology and Bioinformatics Group, Utrecht University, Utrecht, The Netherlands

SJH, 0000-0003-0880-4460; SS, 0000-0003-3146-5401;
PH, 0000-0003-3392-9839

Parasitism emerges readily in models and laboratory experiments

of RNAworld and would lead to extinction unless prevented by

compartmentalization or spatial patterning.Modelling replication

as an active computational process opens up many degrees of

freedom that are exploited to meet environmental challenges,

and to modify the evolutionary process itself. Here, we use

automata chemistry models and spatial RNA-world models to

study the emergence of parasitism and the complexity that

evolves in response. The system is initialized with a hand-

designed replicator that copies other replicators with a small

chance of point mutation. Almost immediately, short parasites

arise; these are copied more quickly, and so have an

evolutionary advantage. The replicators also become shorter,

and so are replicated faster; they evolve a mechanism to slow

down replication, which reduces the difference of replication

rate of replicators and parasites. They also evolve explicit

mechanisms to discriminate copies of self from parasites; these

mechanisms become increasingly complex. New parasite

species continually arise from mutated replicators, rather than

from evolving parasite lineages. Evolution itself evolves, e.g. by

effectively increasing point mutation rates, and by generating

novel emergent mutational operators. Thus, parasitism drives

the evolution of complex replicators and complex ecosystems.

1. Background
As Dobzhansky said: ‘Nothing in biology makes sense except in

the light of evolution’ [1]. However, this begs the question: how

to make sense of evolution? Naively, the ‘currency’ of ‘fitness’ is

replication rate. Many mathematical, in silico and in vivo models

© 2021 The Authors. Published by the Royal Society under the terms of the Creative

Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits

unrestricted use, provided the original author and source are credited.

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

of evolution adopt this currency explicitly as their fitness criterion, and maximization of replication rate is

seen as the outcome of the evolutionary process in some evolutionary experiments [2,3]. However, the

complexity that has evolved in the biosphere appears to falsify fast replication being the dominant

evolutionary trend: elephants clearly replicate more slowly than do bacteria.

Here, we document the evolution of replicators in the Stringmol automata chemistry [4–6] to study

how complexity can evolve at the expense of replication speed. Each replicator is a short computer

program, consisting of a string of opcodes, that can replicate other strings that bind to it. These strings

do not copy themselves (unlike the case in well-known automata chemistry models of evolution, like

Tierra [7], Avida [8,9] and others [10–13]) but instead copy other strings, which may be copies of

themselves, but may also be non-replicators. In this way, these strings resemble the RNA ‘replicases’

of the hypothesized RNA world of prebiotic evolution [14–16]. In such systems, the emergence of

‘parasites’, which are replicated but do not harbour replication potential, is deemed inevitable in real

life [17,18], in models [19], and in experiments [20].

In contrast tomostmodels of the RNAworld (but like RNA replication itself), Stringmol replication is an

active process, taking time as the program executes, copying the opcodes one by one. This should strongly

disfavour the evolution of longer, more complex replicators, and strongly favour the evolution of fast

replicating ‘parasites’, which, having lost the replication code, would tend to be (much) shorter.

Stringmol does not set an a priori fitness measure via some ‘task’: fitness is intrinsic and implicit in the

ability of a string to increase its number by being copied by another replicator. Early experiments with

Stringmol rapidly evolve to extinction, due to the evolution of faster replicating parasites.

Such evolution towards extinction by faster replicating parasites is to be expected, unless the replicators

are embedded in (transient) compartments [21,22] or in space, where spatial pattern formation, and thereby

higher order selection, prevents extinction [15,16,23]. Here, we embed Stringmol in space.We study how an

explicit replicationmechanism (via the Stringmol reactionmechanism) evolves to copewith emerging faster

replicating parasites when spatial pattern formation prevents extinction.

In the early stages of evolution, extinction still occurs in about half the cases due to almost-

immediately emerging fast replicating parasites. However, where the system survives long enough for

the well-known replicator–parasite wave pattern to emerge, fascinating long-term evolution unfolds.

Intricate replication mechanisms evolve to cope with the parasites, including slower replication, higher

mutation rates, and a self/non-self discrimination check. Diverse ecosystems evolve, with relatively

long replicators, subdued parasites, and large population densities. The replicators may even subdue

parasites to such an extent that the parasites become rare, and then the replicators, not needing the

defence against parasites any more, lose their complex countermeasures and become simpler and

shorter; but new parasites emerge, reversing this trend again. These processes are detailed below.

Thus we see that parasites, while traditionally seen as a threat to evolving replicator systems [19], are

instead the means by which complexity can evolve, provided that spatial pattern formation prevents

global extinction (see also [24–27]).

2. Results

2.1. Stringmol overview

We describe in detail the Stringmol automata chemistry as used to perform our experiments in theMethods

section below. Here, we provide a brief summary sufficient to understand the results as presented.

A Stringmol string is a variable length sequence of assembly language instructions (opcodes). The

language is designed so that the program cannot crash, no matter what sequence of opcodes is

executed. Stringmols bind probabilistically based on their sequence, and their encoded program

executes over the bound strings: the bound strings ‘react’.

The system is initially ‘seeded’ with hand-programmed replicators. A seed replicator binds to another

string, copies it one character at a time onto the end of that other string, then cleaves off the copied string. The

overall reaction isR +C→R +C +C, where R is the seed replicator, andC is the copied string (initially also a

seed replicator).

In order to allow evolutionary experiments, point mutation is included in the system. The copy

opcode executes with a small probability of mutation, by copying a different character, or inserting or

deleting a character. Thus the initial population of seed replicators gradually mutates into other forms

as they are imperfectly copied. These mutations result in more convoluted execution pathways,

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

2

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

including executing code on the other string; hence the result of a reaction can be a function of the

program of both strings. We see forms of macromutation emerge through evolution.

We call a collection of strings with identical sequences a ‘species’. All strings have a small probability

of decay. Thus strings need to be replicated for the species to survive in the long term.

In previous work, we have studied Stringmol evolution in a ‘well-mixed’ system, where a string can

potentially bind to and react with any other string in the system. Here, we conduct Stringmol

experiments in a spatial arena: a two-dimensional grid of cells with periodic boundary conditions (a

torus), where each cell either contains a single string, or is empty. Strings can bind only with other

strings in their Moore neighbourhood. The cleaved product of a reaction is placed in an empty cell in

that neighbourhood: if there are no empty cells available, the product string is discarded.

One kind of species that rapidly evolves into existence is the parasite. A parasitic pair of strings R, P is

one where R can replicate P but P cannot replicate R. This results in a form of host-parasite dynamics,

with parasites locally out-competing the replicators, and with both species evolving. Here, we study

the evolution of these parasites, and the evolution of replicator defences against them.

2.2. Nothing makes sense…

We carried out 20 runs in total, of which 12 went extinct, and eight remained executing, after two million

timesteps. Figure 1 shows the change in population size and number of species for the eight runs that

survived to T = 2 000 000. The population generally increases in size over each run, due to a corresponding

increase in replicating efficiency via evolution. The number of different species present also increases,

usually in proportion to the total population size, but with some relatively sudden large changes in this ratio.

Increases in efficiency suggest identifiable changes in the mechanism of replication; there should

be some observable features of the macro-level function of the strings themselves that correspond to

these changes. One obvious explanation is that the programs become shorter in length or reaction

time. The average values for these properties are shown in figure 2, and it is clear that this

explanation does not hold. Although average program length decreases at first in all but one run,

there is little or no corresponding decrease in reaction time; indeed, the latter half of all runs mostly

show an increase in reaction time and program length. How has the system managed to increase its

productivity without a corresponding decrease in reproduction time?

2.3. … except in the light of parasitism

Another possibility that could explain this increase in efficiency is that there is some secondary, emergent

process serving to limit the population size increase early in the runs, and that this process becomes less

0
2
0
0
0

6
0
0
0

1
0

0
0
0

0
2
0
0
0

6
0
0
0

1
0

0
0
0

run 1 run 2 run 3

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

run 4

0 5 00 000 1 000 000 2 000 000 0 5 00 000 1 000 000 2 000 000 0 5 00 000 1 000 000 2 000 000 0 5 00 000 1 000 000 2 000 000

run 5 run 6 run 7 run 8

population and number of species

population (left axis) bound population (left axis) n spp (right axis) bound n spp (right axis)

Figure 1. Population dynamics in the eight runs that survived to T = 2 000 000. Orange lines are population size (left axis) and

show a general increase in overall reproductive efficiency as the environment is increasingly occupied; blue lines are number of

species (right axis) and show a general increase in diversity.

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

3

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

effective later in the runs. One such limiting process is well known: parasitism. Different entities in the

system co-evolve different strategies to get themselves copied. Altruistic entities copy other strings,

whereas parasites exploit their ability to bind to replicating programs and be copied, but do not

return the favour. If parasites can be copied sufficiently faster than replicators, then the system will

collapse as the number of available replicators diminishes, unless spatial patterns emerge that can

protect a subpopulation of replicators from parasitism.

This proposed mechanism is difficult to discern from figures 1 and 2 for two reasons. Firstly, there is a

significant role of spatial organization in the survival of the system that is not captured in these summary

figures. Secondly, since parasitism is an emergent property of this system, we have to interrogate the

system in order to identify the properties of parasitic entities.

We clarify the interaction between replicators and emergent parasites through detailed examination

of a single run, before going on to identify the more general features and trends we have discovered via

these experiments. Figure 3 shows the arrangement of emergent spatial patterns for run 2 of our

experiments. The spatial arrangements of the population of strings are shown at six different time

points, corresponding to different phases of the dynamics in the system. The percentage of parasitic

reactions in the system drops to nearly zero by t = 1 500 000, and at this point the average program

length is maximal. Note that at this point in the analysis, the function of individual molecules in the

reactions is inferred by studying the emergent spatial organization of the system and by reference to

dynamics observed in similar studies [15,16,23]. This inference has been confirmed by studying

individual reactions as will be described below.

t1: shows the state of the system early in the run. At this point, there is a collection of replicator

programs that follow the same basic execution pattern as the seed replicator. These are shown in red

and orange. Parasites have already emerged at this stage and surround the trailing edge of these

waves of replicators in the same manner described in e.g. [16,28].

t2: shows that the system has become organized into (pale blue) patches of short, mutually replicating

strings of around the same length, with shorter (dark blue) parasitic entities around the margins. These

replicators are more similar in length to the parasites, which confers an increased ability to compete for

replicating resource. However, at this point, although the average program length has shortened, the

reaction time has hardly changed (see top right panel of figure 3). How?

t3: shows the emergence of a longer replicator, as indicated by the greener patches in the figure, which

demonstrates an uptick in both program length and reaction time compared with t2.

t4: although the difference in length is smaller, there still appears to be two distinct lengths of the

replicator patches. Close inspection reveals two shades of green, and the yellower (longer) shade has

fewer parasites.

run 1 run 2 run 3

0
1
0
0

2
0
0

3
0
0

4
0
0

0
1
0
0

2
0
0

3
0
0

4
0
0

run 4

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

0 5 00 000 1 500 000 0 5 00 000 1 500 000 0 5 00 000 1 500 000 0 5 00 000 1 500 000

run 5 run 6 run 7 run 8

median string length and reaction time

string length (left axis) reaction time (right axis)

time

st
ri

n
g
 l

en
g
th

re
ac

ti
o
n
 t

im
e

Figure 2. Change in program length and reaction execution time for molecular interactions. The midlines are the median length/

time; the spread shows the interquartile range.

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

4

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

t5: the system is at carrying capacity. The few empty cells are due to the random decay process in

Stringmol. The string length has become shorter again, and the strings are arranged in patches of

uniform length. Although these lengths are approximately the same as those for t2, it is clear that the

system is more productive. This highly productive period is also a time when parasites have been

driven nearly to extinction.

t6: at the end of this run, the number of strings diminishes concurrently with a re-emergence of

parasitic strings and very long strings.

Thus we see that at each stage after t1, new behaviours have emerged that change the dynamics of the

system. In order to understand these behaviours, we need to investigate the program execution structure

of the key reactions at each of the time points described above.

2.4. Innovative strategies in run 2

The spatial patterning shown in figure 3 illustrates the dynamics of the system, but does not explain the

selective advantage that each replication strategy has over others. In order to discover this, it is necessary

to inspect the reactions between entities at the program execution level, by following the execution of the

dominant reactions at each time point.

In order to determine whether properties like parasitism hold, which require the determination of a

counterfactual behaviour (equation 5.2), we have to perform further analysis of the strings observed at

certain epochs. See §5.3 ‘Reaction types’ below for a description of how this is achieved. We

summarize the resulting behaviours here.

0 5 00 000 1 000 000 1 500 000 2 000 000 0 5 00 000 1 000 000 1 500 000 2 000 000

1
0

3
0

5
0

7
0

t1 t2 t3 t4 t5 t6

time time

p
ar

as
it

ic
 r

ea
ct

io
n

s
(%

)

1
0
0

2
0
0

t1 t2 t3 t4 t5 t6

re
ac

ti
o
n
 t

im
e

t1 = 90 000 t2 = 6 00 000 t3 = 6 80 000

t4 = 10 80 000 t5 = 15 00 000 t6 = 20 00 000

5

10

15

20

25

30

35

40

45

50

55

60

65

70

V

>70

length

Figure 3. Change in program length and run-time for molecular interactions. Top panel shows change in the percentage of reactions

which are parasitic (left) and mean reaction time (right). Bottom panel shows a visualization of the spatial arrangement of the

strings at times t1–t6 during the run. The opaque square in the t1 image shows the initial distribution of the hand-coded

replicator molecules. Each pixel in the image represents a cell in the grid. Empty cells (void, V) are shown in black. Occupied

cells are coloured according to program length. Shorter strings are more blue, longer strings are more red. Where length is

greater than 70 (in panel t6), cells are coloured white. The seed replicator is length 65.

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

5

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

Figure 4 shows program flow for a variety of different replication programs from the time points

identified in figure 3. The t1 panel shows the self–self reaction for the original ‘seed’ replicator and with

a parasite. The relative position of the complementary binding sites (red-edged rectangles) determine the

entry point (start) of the program, shown as a green dot. Execution proceeds on the active string in a

linear fashion (black line) until entering an iterative ‘copy loop’, shown as a pink box on the string and a

red arrow with a red dot at the beginning on the program execution line. This loop is the heart of the

replication process, producing a new string that is a copy of the template string. When copying is

finished, the program proceeds to the exit instruction, indicated by a black dot, and terminates.

The t2 panel of figure 4 shows the dominant replicator at this time point. Selection pressure for shorter

sequence length and hence faster replication is evident. Two further important adjustments to the

replicating reaction program have emerged. First, the manner in which the strings bind is no longer

complementary (because the bind uses opcodes which are specified to bind to each other), and there is a

50 : 50 chance of the program entry point being on either string. This has no effect on the efficiency of

replication, but has important ramifications for parasitic strings that bind to the replicator. With

complementary binding, it is possible for parasites to avoid binding to other parasites, since they need

only one of the two complementary sequences to bind to the replicator. With the non-complementary

binding here, parasites do bind to each other, which reduces their specificity for replicators, so giving

replicators a selective advantage.1 Second, an innovation we call self-scan has emerged, whereby

execution enters a loop, but instead of immediately producing a new string, the program string initially

overwrites itself with its own code, leaving its sequence unchanged (unless mutation on copy happens),

before going on to copy the other string. The main effect is to slow down the entire replication process.

The selective advantage of this feature is apparent only in the presence of parasites, since their rate of

reproduction is also slowed. Shorter programs get copied more quickly because fewer iterations of the

copy loop are required, and since parasites do not need to carry any functional code beyond the binding

R

R

P

reactions at t1

R+R R+R+R230

R+P R+P+P188

R

R

P

reactions at t2

R+R R+R+R183

R+P R+P+P129

R

R

P

reactions at t3

R+R R+R+R262

R+P R+P218

R

R

P

reactions at t5

R+R R+R+R224

R+P R+P191

ZAA

ZAA

BBB

Z

AABBB

reactions at t6

ZAA+ZAA ZAA+ZAA+ZAA157

ZAA+BBB Z+BBB+AABBB150

Z+BBB Z+BBB+BBB108

KEY

program

bind site

toggle

move

loop

program start

execution path

self-scan loop

copy loop

program end

Figure 4. Evolved replicator mechanisms for t1, t2, t3, t5 and t6. The grey bars represent the program strings, with coloured

rectangles highlighting various regions (see key panel). The first four panels illustrate how the replicator (centre string) copies

two different classes of string: a replicator (top) and a parasite (bottom). The t6 panel summarizes several key reactions

occurring at that time point. The length of the bind site is different for the ‘ZAA+ZAA’ and ‘ZAA+BBB’ reactions. The black

line represents the program execution path (which opcode on which string is being executed at each time point). The fat

arrows to the right summarize the reactants and products; the colour represents a replication (red) or other (grey) reaction in

which neither of the input reactants are copied; the number shows the program timesteps.

1The analogy in RNA is that short repeats can effectively reproduce the effects of non-complementary binds at the macro level: for

example, the sequence GCGCGCGCGCGC can bind to an instance of itself, albeit with a minor misalignment.

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

6

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

region, selection favours shorter parasites, which can destroy the entire system. The self-scan feature adds a

fixed cost to replication which parasites cannot avoid, and it appears that (inefficient) replicators can persist

in the presence of parasites by adopting this strategy. This explains how short programs can have long

reaction times as observed in figure 2—a second iteration over the length of the program has been

added. Finally, because self-scan is achieved by using the copy operator (which fires point mutations) to

overwrite every opcode with the same opcode, the point mutation rate is approximately doubled for

replicating reactions that have this feature.

The third panel of figure 4 shows the dominant reaction at t3, a time of sharp increase in population. The

self-replicating reaction involves longer strings (and thus slower reactions) than those shown for t2. The

program has evolved to move some execution to the partner string. The blue and green boxes on each

string indicates a ‘toggle’ or ‘move’ operation, which switches execution to the partner. (Although these

two operations have similar effects, they are derived from mutations of different parts of the original

replicator code.) Where the string is bound to an instance of itself (a self–self reaction), execution is

subsequently toggled back to the active string, and only then does execution enter the copy loop.

Considered in terms of replication alone, this feature adds to the fixed overhead of execution initiated by

self-scan. However, this toggling feature acts as a gatekeeper for replication: if a non-self string does not

have the toggle code, execution is not passed back to the active string and replication does not happen.

This effectively blocks parasitism by short strings: the parasites now have to do more than simply bind

to a replicator in the correct place; they also need the toggle facility to return execution to the replicator

and thus access the copy loop. The ‘P’ molecule in the t3 panel was able to parasitize earlier replicators,

but it cannot do this with the dominant replicator at t3, so it is not copied. Furthermore, as the figure

shows, the code of the parasite is executed; in this case, a secondary self-scan occurs. So parasites are not

replicated, but they are held in an unproductive reaction for long periods of time during which they are

unable to bind to other replicating strings that do not have the toggle protection.

The competitive advantage gained via this strategy is short-lived, because new parasite strings

quickly evolve by mutation from these replicators to incorporate the toggle function and access the

copying mechanism. From now on, there is an arms race (but not the classical evolutionary ‘Red

Queen’ arms race [29], because the new parasites evolve from the replicators, rather than evolving in

their own lineage), in which the replicators add increasingly sophisticated security schemes around

the copy loop and parasites overcome them. In the run we are studying here, we see a point where

the replicator wins this race, because at time t5 in figure 3, the population is highest and parasites are

almost extinct. This is also evidenced by the narrow interquartile range for both string length and

reaction time during the latter half of run 2 in figure 2, where replication is the unimodal behaviour.

The t5 panel of figure 4 shows the dominant program execution at this point: here we have two

additional checks on the partner string’s code that must be passed by a parasite in order to access the

copy loop. The effect is that parasites are shut out of replication if they do not have these checks, but

even with these checks they have no advantage in terms of replicative efficiency because they are not

much shorter than replicators. So we see a corresponding drop in the number of parasitic reactions:

only 323 of a total of 5671 reactions at t5 are parasitic.

Once parasites become rare, the selective pressure to counter them is removed. Efficiency once more

becomes the dominant mode of selection, until parasites emerge anew. This is the situation in the t6

panel of figure 4, where the interactions between dominant strings are shown. The dominant self-

replicator string, dubbed ZAA to indicate its component substrings, is shorter than the strings at t5, but

the self–self reaction takes longer. A single loop structure is responsible for both self-scan and replication

in 157 timesteps. Although the parasite dubbed BBB has the code to return execution back to ZAA, it

does not position the cleave point in the correct place for replication. As a result, the tail end of ZAA is

appended to the front of BBB to form AABBB as the product of the reaction, leaving a shorter molecule

Z, which cannot self-replicate (the Z:Z reaction is not shown in the figure). When Z binds to BBB, a

replication reaction is possible, because BBB contains the program fragment needed to arrange the

pointers to allow replication; thus BBB catalyses the creation of Z, and then parasitizes it. Inspection of

the spatial arrangement of strings at time t6 in figure 3 shows short (dark blue, Z) strings surrounded by

longer (pale blue, BBB) ones, reflecting the mechanism just described. If the short partner goes extinct,

the strategy is still advantageous as long as strings that carry out self-scan can be bound to.

2.5. Reproductive efficiency

Figure 5 shows the potential increase to maximum population size given the rate of replication, arena size

and decay rate for the seed replicator and the dominant replicators just after t1 and then for t2–t6. The t1

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

7

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

and t2 time points show increase in reproductive efficiency: the green lines (evolved replicators) rise more

quickly (reproduce more efficiently) than does the black line (seed replicator). At t3, there are two groups

of replicators: one group is more efficient than the seed and one has parasite protection, which comes at a

reproductive cost. By t4, the slower strategy has come to dominate via this mechanism. Although all the

t5 replicators increase more quickly and have a higher carrying capacity than t4, the difference

is relatively small: it is the evolved resistance to parasitism that explains how the population size is

larger than seen before. By t6, we see the return of the mix of fast replicators and mechanisms to

combat parasitism as in t3, only here the difference between the two strategies is more pronounced.

2.6. Macromutations

Changes in the length of the replicators play an important role in the dynamics of the system. Stringmol

defines only point mutations, but here large changes are happening, by an emergent mechanism different

from the explicitly coded point mutations.

How do these large changes between these strings arise as they evolve? A series of single-point

mutations appears to be a highly improbably route to the observed rearrangements of the program

instructions that yield the innovative behaviours. By studying the sequence of products from long

lineages of replicating reactions, we have found that these changes are consequences of single point

mutations combined with subsequent changes in binding and cleaving of strings at points different

from the original design.

Some single point mutations change the function of the program such that a cascade of mutant

species are subsequently produced, none of which is self-sustaining, but which eventually result in

new replicators that are able to increase in number. As an example of these mutational cascades,

figure 6 illustrates stages in the transition to the first self-scanning replicator.

1: The seed replicator, divided into four regions: two complementary bind sites in yellow and grey, the

copy loop in red, and the cleave/end region in blue.

2: A mutation in the positioning of the write pointer causes the trailing three regions of the seed replicator

to be copied onto another replicator string. In the resulting outputs of the reaction, the first bind site is

lost, and the copy and terminate regions are repeated. This string persists for some time, and fixes by

copying itself onto whatever it is bound to.

3: A mutation in the positioning of the program flow pointer for the cleave operation means that the

string is further truncated.

t1

0
4
 0

0
0

8
 0

0
0

1
2
 0

0
0

0
4
 0

0
0

8
 0

0
0

1
2
 0

0
0

t2 t3

t4

0 2000 4000 6000 8000 10 000 0 2000 4000 6000 8000 10 000 0 2000 4000 6000 8000 10 000

t5 t6

time steps

p
o
p
u
la

ti
o
n

arena size carrying capacity replicators seed replicator

Figure 5. Change in reproductive efficiency and maximum possible population size for t1–t6. Each line shows the rise to maximum

population size from a population of two self-replicators in a well-mixed system with no mutation. Each green line is for a common

replicator species in its respective time point. The black line is for the seed replicator.

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

8

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

4: A second repositioning of cleave truncates the string again.

5: The truncated string from step 4 is copied onto the start of a longer string that also has the red and blue

regions at the end of its sequence.

6: Finally, a further mispositioned cleave truncates the string from 5, but here the trailing portion of the

string forms a viable replicator, and the copy loop additionally functions as the bind site.

2.7. Replicator phylogenies

Tracing the ancestry of strings in an RNA-world scenario is challenging: the definition of species is not

possible; although Stringmol has the potential to form clades that cannot replicate each other, this has not

been observed. A member of a species (a specific sequence of opcodes) may be the product of several

different reactions; as long is it can bind to a replicator (and overcome any mechanisms to prevent it),

it has a chance of being reproduced. In this context, we attribute the creation of a new species, and

the strings that generated it, to the reaction that caused its first appearance. A graphical depiction of

the ‘phylogeny’ of the ten most populous replicating strings at t6 for run 2 is shown in figure 7. The

lower edge of the species in these plots indicate the rate of production of new species: a relatively

steep angle indicates a relatively slow production of new species. As the self-scan feature is

introduced, the rate of production increases: self-scan has the possibility of inducing mutations while

scanning. The length of the strings also has phases, from the relatively long seed, through a short

phase of efficient copying, and then with the introduction of mechanisms to protect from parasitism.

1:

2:

3:

4:

5:

6:

Figure 6. Macromutations to new behaviours: stages in the transition from the hand-designed seed replicator to the first self-

scanning replicator. The black box outlines the part of the string that is written to the new mutant via the copy loop in the

replication program. The colours indicate particular substrings (see text for details).

0

0
5
 0

0
 0

0
0

1
 0

0
0
 0

0
0

1
 5

0
0
 0

0
0

2
 0

0
0
 0

0
0

ti
m

e

1 × 105 2 × 105 3 × 105

species number

4 × 105 5 × 105

Figure 7. Phylogeny of dominant strings at end of run 2. The x-axis is species number, indexed by order of appearance in the run.

Only strings involved in generating new species in the ancestry of these replicators are shown. Vertical lines indicate the first and last

appearance of each species in this ancestry, coloured by species length as in figure 3. Horizontal lines indicate the ‘parent’ species of

each new species; red indicates the string with the program entry point for each reaction, and blue indicates its partner.

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

9

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

This shows that new parasites emerge as offspring of replicators either directly or as the result of short

mutational cascades—separate lineages of parasitic molecules are not a feature of this system.

2.8. Parasite phylogenies

A picture of the phylogenies of parasites would not save a thousand words: overwhelmingly, parasites

are direct mutations from interactions between replicators. Any separate lineages of parasites that we

have observed are short-lived cascades from a viable replicator population to a viable parasite that

fixes via non-viable intermediates.

A novel parasite may flourish because it inherits features of its replicator ancestor, by which it may

circumvent that replicator’s defence system, in particular its self–non-self check. When the replicator

evolves an effective defence against these parasites, they are replaced by newly parasitic offspring of

the replicators, rather than by their own mutated offspring. The emergence of novel parasites from

replicators are ‘easy’ mutations in our system, as it would be in the RNA world as well. Thus the

dynamics observed here of continuously emerging novel parasitic lineages should probably be the

case in the RNA world as well, rather than a classical arms race between co-evolving independent

replicator and parasitic lineages that have been postulated and observed before. The active replication

process implemented in our model can ‘invent’ the appropriate mutation, whereas in most models of

the RNA world such mutations are not possible. Recent in vitro RNA evolution experiments [30] have

observed similar evolutionary dynamics to those observed here.

2.9. Common trends and emergent mechanisms

Exhaustive analysis of all runs shows a striking common strategy to accommodate parasitism:

deceleration of reproductive rate combats parasitism by diminishing the rate advantage that parasites

gain when they jettison their reproductive code. There are many ways that this strategy can be

achieved, and this has led to a diverse behavioural oeuvre in these experiments.

Features common to all runs are: a move to non-complementary binding, which has the effect of forcing

‘hostile’ sequences to bind to each other, thus reducing their access to replicators; self-scanning as a way of

increasing the reaction time in a way that is not proportional to the length of the string being replicated,

reducing the benefit of evolving to be short; diverting the execution path such that repeated excursions to

the partner string demand that it reciprocates, thus demanding that replicated molecules adhere to

particular structural requirements.

In addition to features seen in all runs, there are some runs dominated by short hypercycles, whereA copies

B, B copies A, but neither A nor B can self-copy: A and B are mutual replicators but not auto-replicators.

3. Discussion

3.1. The counterintuitive rise of complexity

In the absence of other selection pressures, it might be assumed that self-replicating entities would evolve

to be replicated as rapidly as possible, in order to gain advantage over competing entities that are

replicated more slowly. This drive to efficiency might be thought to dominate fitness, leaving no room

for an increase in the complexity necessary for the emergence of novel behaviours. However, as we

see, both in the real world and in in silico experiments, complexity, and size, does increase. The causes

are subtle, and need a specific style of in silico experiment in order to unpick the details.

3.2. Stringmol compared with other model systems

Experimental vehicles to explore replicator-parasite systems are complex to set up. In vitro experiments

have problems such as: designing the seed replicator; maintaining the correct concentration of

resource materials throughout the experiment; interpreting the evolving concentrations of replicator

species and their cohorts. Although in silico experiments allow all environmental variables to be

controlled with precision, and the results to be fully interrogated, the challenge is that a complete

simulation environment, including the population of replicating entities, must be constructed ab initio,

and detailed experiments can be computationally intensive. Work to date on in silico systems can be

categorized into two approaches, which we call ‘explicit’ and ‘emergent’.

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

10

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

The explicit approach focuses on interactions where the rate of replication is not subject to evolution;

the evolutionary potential of replicators and parasites is similar. In some such models [16,24,28], only the

parameters determining the interaction strength of predefined or emerging lineages evolve; in RNA-

sequence based models [31,32] the interactions evolve through its primary and secondary structure.

Because the replication is abstracted, these experiments can be large in scale, allowing many tens of

thousands of individuals to be modelled in detail over long timescales. These experiments

demonstrate emergent macroscopic spatial arrangements of replicators and parasites preserving

replicating populations that would be driven to extinction in well-mixed systems.

The emergent approach [7–9,33–35] focuses on systems where the rate of the replication emerges from

a detailed implementation of a replication mechanism. The computational costs mean that these

experiments are relatively small in scale; however, the complex dynamics of the replication process

itself can be studied. There are relatively few emergent systems, and mechanisms by which parasitism

emerges is different from in Stringmol, for two main reasons. Firstly, the mechanism for reproduction

is different: program instances in the other systems reproduce themselves, by self-inspection (only one

string is involved), whereas Stringmol reproduces a separate instance (two strings are involved). Also,

the other systems’ access to computational resources violates locality in space and the definition of

‘self’: individuals can access the resources (CPU cycles and memory space) allocated to others,

forming the definition of parasitism in those systems.

In both the explicit and the emergent approaches, the effects of parasitism on the dynamics of the system

have been reported. However, each approach has limitations. In the large-scale simulations with abstracted

replication, since replication is notmodelled directly, it is not possible to investigate the effect ofmutation on

the replication process itself. In simulations where replication is explicitly modelled, the systems tend to

impose explicit fitness functions to either maintain the replicating population [7] or to explore the

evolution of functional properties built on top of the replicating component [27].

The work reported here, Stringmol with spatial position, combines the advantages of each approach.

Previous experiments with aspatial Stringmol also exhibit parasites and other complex behaviours [6],

but because the system is well-mixed, parasites can drive the system to extinction at any time. As in

earlier spatial models of the RNA world, here extinction due to the inevitably arising parasites is

prevented by spatial pattern formation of chaotic wavefronts where replicators invade empty space and

are out-competed by the parasites at the back of the waves. The dynamics of the waves impose similar

selection pressures in the various models. Subsequent evolution copes with these selection pressures in

different ways in the different models, dependent on the evolving entities’ degrees of freedom.

3.3. Selection pressures

Since the replication program itself evolves, selection can act directly on the replication strategies in the

system. This allows the replicators to have a much greater evolutionary potential than the parasites, and

they dominate the evolutionary process. This has a profound impact on the evolutionary dynamics.

In almost all previous models, a long-term co-evolutionary process of two or more independent

lineages unfolds. There, new parasites originating from mutated replicators cannot compete with the

specialized parasitic lineages. By contrast, in the model here, parasites with novel functionality do not

arise from mutated parasites. Instead, throughout the evolutionary run, mutation causes replicators to

lose their replication capacity by having part of their program deleted; they mutate into novel

parasites that inherit features of the replicator, and therefore may ‘fool’ the self–non-self discrimination

defences of the replicators. In recent RNA evolution experiments [30] both these types of parasite

evolution are observed: a parasite lineage emerges very early, persists and evolves continuously; also

new, shorter-lived parasitic lineages arise from mutated replicator strands and exploit the mechanisms

those have evolved to increase their own replication.

Similar selection pressures in all these models force the evolutionary processes, but can be achieved

by different means, or lead to different outcomes. For example, in [28], the parasite evolves a parameter

that decreases its relative competitive advantage, whereas in the model here, a weaker relative advantage

of the parasite is a result of evolution of the replicator: its self-scanning mechanism slows down

replication. This mechanism can occur only in a system where replication can take different lengths of

time. This self-scan is apparently squandering resources in order to avoid parasitism: there is selective

advantage in actively wasting resources outside of the main replicating activity. By evolving a process

in addition to that of pure replication, the resources that are ‘squandered’ provide an evolutionary

toehold for directly advantageous processes to develop, giving a route to escape the relentless

pressure to simply replicate ever more efficiently.

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

11

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

Another important selection pressure is avoiding the formation of complexes that prevent replication,

for example parasite–parasite complexes that hinder parasite replication. In the model here, the

replicators evolve non-complementary binding, which ensures that parasites cannot avoid forming such

complexes. In the sequence-based RNA models [32], with complementary binding, the parasites evolve a

folding structure that prevents such complexes, and parasites are always available for replication.

In the model here, the replicators evolve such intricate recognition programs that parasites are

(almost) extinguished. However, without the selection pressure of the parasites, these elaborate

mechanisms are then lost, and new parasites emerge. In the sequence-based RNA-world models,

parasite lineages cannot be sustained at very high mutation rates [31,32], and the replicators evolve in

such a way that no parasites can be formed by single, or even multiple, mutations.

These parallels and contrasts underline the need for studying evolutionary process not only in terms of

preset selection pressures, but also by exploring how the structural background can shape the outcome.

4. Conclusion
We have demonstrated a pathway for how and why a replicator might involve itself in complex activities

other than pure efficient copying. First, it is advantageous to the individual replicator to ‘cheat’ and

become a parasite. Next, the remaining replicators slow down their replication rate and introduce

fixed costs that replicators and parasites alike must pay. Then the resources used in paying the fixed

costs are themselves subject to adaptation. It is not implausible that such evolving emergent

mechanisms be exapted into other functionality too.

Evolution in replicator systems makes sense if we consider the selection pressures induced by the

emergence of parasitism.

5. Methods

5.1. Stringmol details

Stringmol [5,6] is an automata chemistry [36] in which the ‘molecules’ are programs encoded as strings

of opcodes: sequences of symbols, each of which specifies a computational operation to be performed.

The sequence composition determines the bind probability, execution pathway and product(s) of the

reaction. Details of the Stringmol language and execution semantics are given in [5]. Here, we

describe the main features.

Opcodes. The Stringmol assembly language has 33 opcodes. Seven of these, ?$^%}>=, are functional:

they manipulate pointers, copy symbols, loop and cleave strings. The remaining 26 opcodes, the

characters A-Z, have no operation when executed (they are ‘no-ops’), but are used when binding

strings, and as modifiers of the functional opcodes.

Pointers. Each bound string is supplied with four pointers (instruction, flow, read, write) for it to use

as it executes. These provide the only program ‘memory’ in addition to the strings themselves: there are

no registers or stacks to hold values.

Binding to form reacting pairs is probabilistic, based on the strength of string matching determined

by a Smith-Waterman algorithm. The no-ops have complementary matching based on ROT13: A matches

N, B matches O, and so on. The functional opcodes have non-complementary matching: each functional

opcode matches itself.

When two strings bind, one is designated as string1 and the other as string2. This designation

depends on the lengths of the substrings before the bind site. If the bind is ‘asymmetric’ (the bind site

is nearer the start of one string than of the other), then the string with the longer end before the bind

site is string1. If the bind is ‘symmetric’ (the bind site is the same distance from the start of both

strings), then string1 is chosen randomly. This leads to three possibilities when attempting to bind

two strings A and B: (i) no bind, A and B cannot react; (ii) binding site such that A is always string1

and B is always string2; and (iii) binding site such that either A or B can be string1.

Mutation happens stochastically with a preset probability when a program executes the copy opcode

‘=’. On mutation, the symbol at the read pointer is miscopied: a randomly chosen different symbol is

written at the location of the write pointer. (See [37] for an investigation of behaviours when the

miscopying is biased rather than random.)

Decay also happens stochastically, removing strings from the system with a fixed uniform probability

each timestep. This frees up space for new stringmols, and ensures species of strings must be actively

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

12

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

reproduced to maintain their presence in the arena. It is possible for the entire arena to ‘die’ if the

community of strings is no longer self-maintaining.

Reactions between strings occur by executing the sequences of opcodes of strings in the reacting pair.

On binding, four pointers that control program execution are initialized. The start point of the reaction

program is the end of the bind site on string1. The program executes, with one opcode executed per

timestep, using opcodes of one or both strings, depending on the sequences. (Previous work has an

energy model: opcodes are executed only if energy is available. Here, all opcodes waiting are executed,

with a limit of one execution per reacting pair per timestep.) For a given reaction, one opcode is executed

each timestep, until either the reaction program terminates, or probabilistic decay occurs. Execution and

effects are purely local to the pair of strings in the reaction, and any product strings that result.

Arena. This work introduces ‘spatial Stringmol’, in contrast to the ‘well-mixed Stringmol’ of earlier

work. The strings are placed on a two-dimensional toroidal grid, and reactions are permitted only

between individuals that are in the Moore neighbourhood of each other. New products of reactions are

placed in empty cells around the first string in a reaction, or discarded if there are no free cells available.

An example of a spatially constrained reaction is illustrated in figure 8. Empty cells are shown in white,

occupied cells are shown in grey. 1: cell C3 (blue, solid border) is selected randomly, and initiates a bind

with a randomly chosen unbound string in its Moore neighbourhood (indicated by the dashed blue

box). 2: a bind is achieved with cell B4 (pink, solid border). String1 is chosen as the entry point for the

reaction from the position of the bind site on each string. 3: during the reaction, any new product strings

are placed in an empty cell in the Moore neighbourhood of string1, shown as the blue hatched box. In

this example, C3 is string1, so products can be placed at D3, D4, C4, B2 or B3. Had cell B4 been string1,

then products could have been placed within its Moore neighbourhood, shown as the pink hatched box.

4: in this example, a new string is produced, and placed in cell D4. This new string is available for

binding on the subsequent timestep. 5: The two original strings remain bound until the program terminates.

5.2. Configuration

In the experiments reported here, there are 20 runs with different random number seeds. The arena size is

12 500 cells, arranged on a toroidal grid, size 100 × 125 for 10 runs, and 250 × 50 for 10 runs. Each run is

initialized with 100 ‘seed replicator’ strings with sequence WWGEWLHHHRLUEUWJJJRJXUUUDYGRHJLR

WWRE$BLUBO^B>C$=?>$$BLUBO%}OYHOB. Ten runs place these strings in a 10 × 10 block, and 10 runs

place them in adjacent pairs at 50 random positions throughout the grid. This gives four treatments

with five replicates each.

The runs were done on a Sun Grid Engine at the University of York. This facility has a CPU time limit

of 5 days on individual runs, so it was necessary to restart runs until a simulation clock time of 2 million

timesteps was reached; CPU time versus wall clock time for runs varies depending on how many

E

D

C

B

A

1 2 3 4 5

Figure 8. Reaction protocol. See text for details.

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

13

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

reactions are executing in the arena at each timestep. The log files for a run are a concatenation of the

separate restarts runs. The runs were performed with Stringmol software v. 0.2.3.4, available at

github.com/uoy-research/stringmol/releases/tag/0.2.3.4.

5.3. Reaction types

As the results show, these runs generate many emergent behaviours that were not predefined, including

non-complementary binding, parasitism and various different patterns of replication. In order to

automate the classification process, it is necessary to define these properties rigorously. See [38] for a

full formal description; relevant properties are summarized here.

These properties are defined in a different context from the experimental runs, in that mutation is

switched off during analysis. So a given reaction behaves deterministically during analysis, allowing

its type to be defined, whereas it might exhibit different stochastic mutations during an experimental

run. The reaction types used in the analysis above are:

Replicator. In a replication reaction, one of the strings is replicated: there are more instances of that

string after the reaction than before. In the simplest case, of the initial seed replicator, we have a

reaction like R + T→R + T + T: R is the replicator, and T is replicated template. Later, more

complicated replication reactions may be seen.

We say that a reaction has the repl(R, T) property if R replicates T. Tmight be the string2, replicated by

string1 R, or it might be string1, using the code of string2 R to copy itself, or there might be some more

complicated case using the code on both strings. We cannot tell where the replication code lies in either

case and the definition does not require it to be known. Whether or not R is string1, whether or not R

carries the copying code, it is the ‘catalyst’ for T’s replication. So, irrespective of which is string1, we

say ‘R replicates T’, call R the replicator, and T the template.

Auto-replicator. In an auto-replication reaction, a string can replicate (another instance of) itself; there

are at least three copies of the string after the reaction.

auto-repl(R) W repl(R, R): (5:1)

The initial seed replicator is an auto-replicator.

Parasite. In order to determine that a string is a parasite, we need to consider the reaction between

two strings ‘both ways round’, that is, what happens when each string is string1. The parasitic

property holds if R replicates P, but P does not replicate R:

parasitic(P, R) W repl(R, P) ^ : repl(P, R) (5:2)

In this reaction pair, we call R the replicator and P the parasite. P is parasitic on this particular R; it might

not be parasitic on other replicators.

5.4. Analysis

The logfiles from the runs were parsed with these definitions using the R software package github.com/

uoy-research/Rstringmol v. 0.3.1. The program flow of reactions as shown in figure 4 were followed

using the Stringmol software and the web app at stringmol.york.ac.uk/webapp.

Data accessibility. The dataset generated and analysed during the current study is available at https://doi.org/10.15124/

305dfdb6-9483-4c5b-8a01-c030570b9c31.

Authors’ contributions. S.J.H. wrote the code, performed the experiments, did the detailed analyses and prepared the

figures. P.H. and S.S. assisted in the interpretation of the results. All contributed to writing the manuscript.

Competing interests. The authors declare that they have no competing interests.

Funding. The Stringmol system was originally developed under the Plazzmid project, EPSRC grant no. EP/F031033/1,

and was further developed under the EU FP7 project EvoEvo, grant no. 610427. The simulations were run on the York

Advanced Research Computing Cluster (YARCC).

References

1. Dobzhansky T. 1973 Nothing in biology makes

sense except in the light of evolution. Am. Biol.

Teach. 35, 125–129. (doi:10.2307/4444260)

2. Chevin L-M. 2011 On measuring selection in

experimental evolution. Biol. Lett. 7, 210–213.

(doi:10.1098/rsbl.2010.0580)

3. Lenski RE, Rose MR, Simpson SC, Tadler SC.

1991 Long-term experimental evolution in

Escherichia coli. I. adaptation and divergence

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

14

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

during 2000 generations. Am. Nat. 138,

1315–1341. (doi:10.1086/285289)

4. Clark EB, Hickinbotham SJ, Stepney S. 2017

Semantic closure demonstrated by the evolution

of a universal constructor architecture in an

artificial chemistry. J. R. Soc. Interface 14,

20161033. (doi:10.1098/rsif.2016.1033)

5. Hickinbotham S, Clark E, Stepney S, Clarke T,

Nellis A, Pay M, Young P. 2011 Specification

of the stringmol chemical programming

language version 0.2. Technical Report YCS-

2010-458, University of York. https://www.cs.

york.ac.uk/ftpdir/reports/2010/YCS/458/YCS-

2010-458.pdf.

6. Hickinbotham S, Clark E, Nellis A, Stepney S,

Clarke T, Young P. 2016 Maximizing the

adjacent possible in automata chemistries. Artif.

Life 22, 49–75. (doi:10.1162/ARTL_a_00180)

7. Ray TS. 1991 An approach to the synthesis of

life. Artif. Life II 11, 371–408.

8. Adami C, Brown CT. 1994 Evolutionary learning

in the 2D artificial life system ‘avida’. In Artificial

Life IV , pp. 377–381. (http://arxiv.org/abs/

adap-org/9405003).

9. Ofria C, Wilke CO. 2004 Avida: a software

platform for research in computational

evolutionary biology. Artif. Life 10, 191–229.

(doi:10.1162/106454604773563612)

10. Banzhaf W, Dittrich P, Eller B. 1999 Self-

organization in a system of binary strings with

spatial interactions. Physica D 125, 85–104.

(doi:10.1016/S0167-2789(98)00238-3)

11. Banzhaf Available from W. 1993 Self-replicating

sequences of binary numbers. Foundations I:

general. Biol. Cybern. 69, 269–274. (doi:10.

1007/BF00203123)

12. Banzhaf W, Yamamoto L. 2015 Artificial

chemistries. Cambridge, MA: MIT Press.

13. Dittrich P, Banzhaf W. 1998 Self-evolution in a

constructive binary string system. Artif. Life 4,

203–220. (doi:10.1162/106454698568521)

14. Joyce GF, Orgel LE. 1999 Prospects for

understanding the origin of the RNA world. Cold

Spring Harbor Monogr. Ser. 37, 49–78.

15. Takeuchi N, Hogeweg P. 2012 Evolutionary

dynamics of RNA-like replicator systems: a

bioinformatic approach to the origin of life.

Phys. Life Rev. 9, 219–263. (doi:10.1016/j.plrev.

2012.06.001)

16. Tupper AS, Higgs PG. 2017 Error thresholds for

RNA replication in the presence of both point

mutations and premature termination errors.

J. Theor. Biol. 428, 34–42. (doi:10.1016/j.jtbi.

2017.05.037)

17. Koonin EV, Wolf YI, Katsnelson MI. 2017

Inevitability of the emergence and persistence

of genetic parasites caused by evolutionary

instability of parasite-free states. Biol. Direct 12,

31. (doi:10.1186/s13062-017-0202-5)

18. Krupovic M, Dolja VV, Koonin EV. 2019 Origin of

viruses: primordial replicators recruiting capsids

from hosts. Nat. Rev. Microbiol. 17, 449–458.

(doi:10.1038/s41579-019-0205-6)

19. Smith JM. 1979 Hypercycles and the origin of life.

Nature 280, 445–446. (doi:10.1038/280445a0)

20. Bansho Y, Ichihashi N, Kazuta Y, Matsuura T,

Suzuki H, Yomo T. 2012 Importance of parasite

RNA species repression for prolonged translation-

coupled RNA self-replication. Chem. Biol. 19,

478–487. (doi:10.1016/j.chembiol.2012.01.019)

21. Matsumura S et al. 2016 Transient

compartmentalization of RNA replicators

prevents extinction due to parasites. Science

354, 1293–1296. (doi:10.1126/science.aag1582)

22. Szathmáry E, Demeter L. 1987 Group selection

of early replicators and the origin of life.

J. Theor. Biol. 128, 463–486. (doi:10.1016/

s0022-5193(87)80191-1)

23. Boerlijst MC, Hogeweg P. 1991 Spiral wave

structure in pre-biotic evolution: hypercycles

stable against parasites. Physica D 48, 17–28.

(doi:10.1016/0167-2789(91)90049-F)

24. Colizzi ES, Hogeweg P. 2016 Parasites sustain

and enhance RNA-Like replicators through

spatial self-organisation. PLoS Comput. Biol. 12,

e1004902. (doi:10.1371/journal.pcbi.1004902)

25. Könnyu B, Czárán T, Szathmáry E. 2008 Prebiotic

replicase evolution in a surface-bound metabolic

system: parasites as a source of adaptive

evolution. BMC Evol. Biol. 8, 267. (doi:10.1186/

1471-2148-8-267)

26. Seoane LF, Solé R. 2019 How Turing parasites

expand the computational landscape of digital

life, October. (http://arxiv.org/abs/1910.14339).

27. Zaman L, Meyer JR, Devangam S, Bryson DM,

Lenski RE, Ofria C. 2014 Coevolution drives the

emergence of complex traits and promotes

evolvability. PLoS Biol. 12, e1002023. (doi:10.

1371/journal.pbio.1002023)

28. Takeuchi N, Hogeweg P. 2009 Multilevel

selection in models of prebiotic evolution II: a

direct comparison of compartmentalization and

spatial self-organization. PLoS Comput. Biol. 5,

e1000542. (doi:10.1371/journal.pcbi.1000542)

29. Van Valen L. 1973 A new evolutionary law. Evol.

Theory 1, 1–30.

30. Furubayashi T, Ueda K, Bansho Y, Motooka D,

Nakamura S, Mizuuchi R, Ichihashi N. 2020

Emergence and diversification of a host-parasite

RNA ecosystem through darwinian evolution.

Elife 9, e56038. (doi:10.7554/eLife.56038)

31. Colizzi ES, Hogeweg P. 2014 Evolution of

functional diversification within quasispecies.

Genome Biol. Evol. 6, 1990–2007. (doi:10.1093/

gbe/evu150)

32. Takeuchi N, Hogeweg P. 2008 Evolution of

complexity in RNA-like replicator systems. Biol.

Direct 3, 11. (doi:10.1186/1745-6150-3-11)

33. Ierymenko A. 2005 Nanopond: the world’s

smallest and simplest evolvable instruction set

virtual machine. https://github.com/

adamierymenko/nanopond.

34. Lenski RE, Ofria C, Pennock RT, Adami C. 2003

The evolutionary origin of complex features.

Nature 423, 139–144. (doi:10.1038/nature01568)

35. Pargellis AN. 2001 Digital life behavior in the

amoeba world. Artif. Life 7, 63–75. (doi:10.

1162/106454601300328025)

36. Dittrich P, Ziegler J, Banzhaf W. 2001 Artificial

chemistries—a review. Artif. Life 7, 225–275.

(doi:10.1162/106454601753238636)

37. Hickinbotham S, Stepney S. 2015 Conservation of

matter increases evolutionary activity. In Artificial

Life Conf. Proc. 13, pp. 98–105. Cambridge, MA: MIT

Press. (doi:10.1162/978-0-262-33027-5-ch024)

38. Stepney S, Hickinbotham S. 2021 What is a

parasite? Defining reaction and network

properties in an open ended automata

chemistry. In ALife 2021, Prague, Czech Republic

(virtual). Cambridge, MA: MIT Press. (doi:10.

1162/isal_a_00413)

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

8:
210441

15

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/

o
n
 0

6
 A

u
g
u
st

 2
0
2
1

	Nothing in evolution makes sense except in the light of parasitism: evolution of complex replication strategies
	Background
	Results
	Stringmol overview
	Nothing makes sense …
	… except in the light of parasitism
	Innovative strategies in run 2
	Reproductive efficiency
	Macromutations
	Replicator phylogenies
	Parasite phylogenies
	Common trends and emergent mechanisms

	Discussion
	The counterintuitive rise of complexity
	Stringmol compared with other model systems
	Selection pressures

	Conclusion
	Methods
	Stringmol details
	Configuration
	Reaction types
	Analysis
	Data accessibility
	Authors' contributions
	Competing interests
	Funding

	References

