
1.  Introduction
Sediment accumulation rates tend to decrease with the time span over which they are determined: this 
phenomenon is known as the “Sadler effect” (Sadler, 1981; Sadler & Strauss, 1990). This happens because 
depositional processes are episodic in nature, and the average length of time gaps at any point in space tends 
to increase with the time window considered (Ager, 1993; Barrell, 1917; Dott, 1996; Miall, 2015). The frac-
tion of time recorded in a stratigraphic section (“stratigraphic completeness”) is therefore itself dependent 
on time (Sadler & Strauss, 1990). Based on analysis of natural examples and a numerical modeling output, 
Durkin et  al.  (2018) quantified the stratigraphic completeness of fluvial meander-belt deposits, demon-
strating how sediment preservation follows a natural logarithmic decay with time. Yet, the preservation of 
channel-belt sediments is expected to vary significantly in relation to the natural variability of river mor-
phodynamics. Fluvial meanders can evolve through multiple stages of bar growth, each of which may be 
dominated by different bend-transformation behaviors: lateral expansion versus downstream translation, 
commonly in combination with bend-apex rotation (Daniel, 1971; Hagstrom et al., 2019). Previously accu-
mulated point-bar deposits can undergo partial erosion, leading to the formation of potentially complex 
mosaics of accretion patterns (Durkin et al., 2015; Johnston & Holbrook, 2019; Strick et al., 2018; Willis 
& Sech,  2019). The amount of intra-channel-belt erosion depends critically on meander-transformation 
behavior (Durkin et al., 2018; Ghinassi et al., 2016). Over longer timescales, meander cut-offs can lead to 
the abandonment of point-bar deposits; these can later be subject to cannibalization by the mobile river 
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Plain Language Summary  Larger sediment volumes tend to record slower rates of 
deposition, because the likelihood of incorporating significant gaps in sedimentation increases with 
time. Hence, over timescales from seconds to millions of years, accumulation rates decrease as a power 
of time. This research determines whether this relationship holds true for channel belts produced by 
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established based on the area over which a river migrated. The results show that, over this time window, 
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(Constantine & Dunne,  2008). The stratigraphic completeness of meander-belt deposits is related to all 
these processes. However, whether these mechanisms lead to a classic Sadler effect, whereby a power-law 
relationship exists between planform accretion rates and measurement intervals (Sadler, 1981), has yet to 
be determined. This is rendered difficult by the limited availability of meander-belt examples for which a 
detailed temporal framework exists, since historical maps and radiocarbon or optically stimulated lumi-
nescence dating, for example, can only provide spot measurements. In this work we examine the poten-
tial timescale dependency in the rates of planform growth of meander belts, and determine the impact of 
morphodynamic controls on the preservation of fluvial meander-belt deposits. This is done by applying a 
numerical model, the Point-Bar Sedimentary Architecture Numerical Deduction model (PB-SAND; Yan 
et al., 2017), to simulate idealized scale-free rivers informed by observations of scroll-bar patterns identified 
in natural systems.

2.  Methodology
The PB-SAND (Yan et al., 2017) is a numerical model that simulates the planform evolution of meander 
belts based on input consisting of centerlines representing the river course at selected time steps (Figure 1a; 
Yan et al., 2017). In PB-SAND, channel evolution and resulting channel-belt accretion and erosion are mod-
eled by linear interpolation between input river trajectories (Yan et al., 2017, 2020, 2021). Thirty-four ideal-
ized meander-belt reaches that vary in bend-transformation styles and number of channel cut-off events are 
modeled based on planform evolutions documented by scroll-bar patterns of natural analogs, visible in sat-
ellite images, LiDAR topographies or geomorphological maps (Figure S1). The idealized river planforms are 
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Figure 1.  Illustration of methods. (a) Example input trajectories digitized over a LiDAR topography; t1 to t5 denote chronological order. “C” and “A”denote a 
control point and a meander apex, respectively. (b) Hierarchies of sedimentary architecture considered here: accretion packages, accretion stages and meander-
belt segments. (c) Definition of sediment preservation ratio. (d) Relationships between reach-averaged channel migration rate (y axis) and channel radius of 
curvature normalized by channel width (x axis), employed to estimate time of river migration, based on three different assumptions: (i) constant migration rates 
for any value of channel radius of curvature (“time 0”); (ii) inverse monotonic relationship between migration rates and radius of curvature (“time 1”); and (iii) 
channel migration rates increasing as the ratio of radius of curvature to channel width decreases toward 2.44, then decreasing for tighter bends (“time 2”). The 
“time 1” and “time 2” relationships are based on nominal channel migration rates by Howard and Knutson (1984). Migration rates are on arbitrary scale.



Geophysical Research Letters

normalized such that the formative-channel width is the same across all examples. The tempo of point-bar 
accretion is dictated by the chosen spacing of accretion surfaces to mimic scroll-bar morphologies observed 
in nature. In the model outputs, three depositional hierarchies are considered for analysis (Figure 1b): (a) 
pairs of accretion packages, wherein each package is contained between two consecutive accretion surfaces; 
individual accretion packages are not considered because erosion within them is not simulated; (b) sets of 
accretion packages (here termed “accretion stages”) bounded by two consecutive input trajectories, rep-
resenting phases of point-bar growth with a given style of meander transformation; and (c) meander-belt 
segments that are composed of multiple sets of accretion packages, each of which may be dominated by 
different styles of meander transformation. Accretion packages can be regarded as analogous to flood-inter-
flood units. Due to their generation by linear interpolation between input trajectories, accretion packages in 
each stage exhibit similar amounts of accretion (see Supporting Information).

The “preservation ratio” is the fraction of meander-belt deposits that are preserved over a given timescale, 
quantified as the ratio between the planform area covered by deposits accumulated over a certain time that 
are preserved (area of net deposition) and the area over which the river has wandered over the same time 
(area of river migration) (Figure 1c). In this quantification, erosion and deposition of channel-belt deposits 
are only considered for accretion packages generated during the time interval in question; erosion of older 
packages is ignored; hence, preservation as a function of time is not expressed as a cumulative quantity 
(cf. “survivability curves” sensu Durkin et al., 2018, for a different approach, and see Figure S6 for data in 
a format comparable to that of Durkin et al., 2018). The time recorded in each accretion package is deter-
mined by the ratio between channel migration distance and channel migration rate. The channel migration 
distance is determined by the ratio between the surface area subtended by two centerlines and their average 
length. Values of average channel migration rate over each depositional package (i.e., between two consecu-
tive channel centerlines) are determined separately based on three different assumptions of its relationship 
with the average channel radius of curvature: (a) constant channel migration rate for any value of channel 
radius of curvature; (b) migration rate decreasing monotonically as the channel radius of curvature increas-
es (i.e., channel curvature decreases; cf. Furbish, 1988; Howard & Knutson, 1984; Sylvester et al., 2019); 
(c) migration rate increasing as the ratio of radius of curvature to channel width increases toward a value 
of 2.44 (Howard & Knutson, 1984), and then decreasing as the radius of curvature increases further. The 
latter non-monotonic behavior is seen in nature for migration rates measured at locations where meander 
bends undertake lateral shifts fastest (Finotello et al., 2019; Hudson & Kesel, 2000; Nanson & Hickin, 1983), 
but the implications of a non-monotonic relationship can sensibly be explored for reach-averaged values 
too (cf. Crosato, 2009). The second and third alternatives are determined based on relationships between 
channel radius of curvature and nominal migration rates that return realistic relationships between average 
actual channel migration rates and channel curvature in models by Howard and Knutson (1984). For these 
relationships (Figure 1d), the dimensionless arbitrary scale of Howard and Knutson (1984) is maintained. 
The dimensionless accretion time is determined by the ratio of migration distance to average migration rate. 
The two proxies for time length associated with the second and third alternatives (“time 1” and “time 2” 
hereafter) are also employed to compute meander-belt accretion rates, the ratio between accretion distance 
and dimensionless time.

Planform characteristics of each architectural hierarchy are characterized in terms of average circular var-
iance of channel centerlines, meander-apex rotation, and accretion style (Figure 1a). The circular variance 
of channel orientation is computed along the downstream direction for pairs of consecutive control points 
(centerlines vector nodes); this is an indirect measure of channel sinuosity. A quantity called “migration an-
gle” is defined for each accretion package as the absolute angle between the direction of channel migration, 
approximated by the direction of shift of corresponding control points across two consecutive trajectories, 
and the circular mean of downstream channel direction, which approximates the channel-belt orientation 
(Figure 1a). Point bars of expansional meanders are expected to return average migration angles close to 
90°, whereas downstream-translating point bars are expected to return migration angles smaller than 45° 
(Yan et al., 2021). The degree of rotation of meanders is defined as the change of direction of the meander 
apex, itself identified as the point of local maximum curvature between two channel inflection points, 
across consecutive accretion packages (Figure 1a). For each meander belt, the amount of rotation is quan-
tified as the average across all meanders. A more detailed description of the methods is provided in the 
supporting information.
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3.  Results
For each architectural hierarchy, the sediment preservation ratio de-
creases overall as the time span of sedimentation increases, in a similar 
manner across the three approaches used to estimate time (Figures 2a 
and 2b). The variability in preservation ratio is limited for package pairs 
(st. dev. = 0.019, mean = 0.997) and accretion stages (st. dev. = 0.010, 
mean  =  0.993) (Figure  S5), but more significant for meander-belt seg-
ments (st. dev. = 0.128, mean = 0.816). A systematic decrease in pres-
ervation with channel-belt maturity (Figure  2b) reflects the combined 
effect of intra-point-bar erosion between accretion stages and point-bar 
cannibalization following bend cut-offs (Durkin et al., 2018). The average 
preservation ratio is 0.84, 0.77, and 0.67, for meander belts that respec-
tively record no cut-off (N = 24), a single cut-off (N = 6), and multiple 
cut-off events (N = 4).

Negative power-laws fitted to accretion rates and variables “time 1” and 
“time 2,” have coefficients of determination (R2) of 0.56 and 0.71, and 
exponents of −0.44 and −0.60, respectively. These exponents differ mark-
edly from the value of −0.75 documented by Sadler for vertical accu-
mulation rates of fluvial strata (Pelletier & Turcotte, 1997; Sadler, 1981) 
(Figure 2c). Stronger power-laws can also be fitted to each architectural 
hierarchy for both computed times, with R2 varying between 0.73 and 
0.93, and exponents ranging from −0.61 to −0.80. Similarity in the results 
relating to “time 1” and “time 2” can be related to the limited number of 
modeling steps for which values of average normalized channel radius of 
curvature fall below 2.44 (Figure S3b).

Sediment preservation ratios tend to covary with certain meander-belt 
planform characteristics (Figure  3). Meander belts with lower average 
centerline circular variance tend to have lower preservation ratio (Pear-
son's R = 0.516, p = 0.002, Figure 3a). This may reflect (a) how down-
stream bend translation tends to maintain channel sinuosity while driving 
point-bar erosion by sweeping meanders, at a shorter timescale (Ghinassi 
et al., 2016), and (b) how periodic cutoffs reduce channel sinuosity while 
causing point-bar cannibalization, at a longer timescale (Camporeale 
et al., 2008). The average migration angle does not show correlation with 
the preservation ratio (R = 0.063, p = 0.737, Figure 3b), possibly because 
this quantity can fail to capture the type of bend transformation (Yan 
et al., 2021), but also because of a lack of examples that record long-term 
channel evolutions dominated by bend translation. The average bend ro-
tation correlates weakly with the preservation ratio for cases of compara-
ble timescales (R = 0.381, p = 0.026, Figure 3b). However, the data sug-
gest that the effect of rotation as a mechanism of intra-point bar erosion 
on sediment preservation may be subordinate. The standard deviation of 
migration angles across accretion stages quantifies variability in modes 
of meander-belt accretion through the modeled timescale: modest corre-
lation exists between this quantity and the preservation ratio (R = 0.434, 
p = 0.010, Figure 3d). This may reflect the effect of toggling between ex-
pansion and translation on intra-point bar erosion (cf. Johnston & Hol-
brook, 2019), for example, as seen in Case 18 (Figure S1).
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Figure 2.  Scatterplots of preservation ratio (a), mean preservation ratio 
(b), and accretion rate (c) versus time span, for the different architectural 
hierarchies and approaches to time estimation. Preservation ratio is 
defined as in Figure 1c.
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4.  Discussion
The adopted numerical modeling approach allows simulation of meander-belt evolutions that are inherent-
ly realistic, being based on natural examples, overcoming limitations of numerical models of meandering 
channels (see Frascati & Lanzoni, 2009, and references therein). Yet it also permits a systematic evaluation 
of sediment preservation over a range of timescales and at a resolution that would not be achievable using 
datasets from rivers for which chronometric constraints are available. Results from the numerical models 
elucidate how sediment preservation is determined by morphodynamic processes that operate at different 
spatial and temporal scales, and that affect depositional units of variable hierarchies (Figure 2b). It there-
fore becomes possible to determine whether and where the so-called “Sadler effect” — the dependency of 
vertical sediment accumulation rate on timescale (Bailey & Smith, 2005; Durkin et al., 2018; Holbrook & 
Miall, 2020; Miall, 2015; Plotnick, 1986; Sadler, 1981, 1999) — persists or breaks down in meander-belt suc-
cessions, when considered for rates of planform growth, and for datasets with suitable continuity and gran-
ularity in the record of processes and products. It is significant that a single power-law relationship between 
time and point-bar accretion rate that would align with the power law observed for fluvial deposits tout 
court (Pelletier & Turcotte, 1997; Sadler, 1981) does not emerge. Instead, the three architectural hierarchies, 
associated with different timescales, appear to yield distinct power-law relationships. A primary reason 
why a simple power law is lacking can be found in the important overlap in preservation ratios and accre-
tion rates of package pairs and stages (Figure 2c). This likely reflects how the rate of erosion of developing 
point bars remains relatively steady in time under conditions of constant style of meander transformation; 
this situation may be best depicted by meanders undergoing progressive bend tightening. When changes 
of meander transformation styles occur, instead, more significant intra-point-bar erosion commonly takes 
place (Durkin et al., 2018; Hagstrom et al., 2019; Johnston & Holbrook, 2019). Significant erosion can occur 
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Figure 3.  Scatterplots of preservation ratio versus metrics describing planform characteristics of meander belts, for two 
different approaches to time estimation.
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when formerly expansional meanders commence a trajectory of downstream migration, for example, where 
channel banks encounter less erodible substrates, such as valley walls or abandoned channel fills (Ghinassi 
et al., 2016). Meander rotation is also a driver of point-bar erosion, especially in the vicinity of the outer 
banks of rotating apices (Ielpi & Ghinassi, 2014; Strick et al., 2018). Yet, the role of steady meander rotation 
in generating intra-point-bar erosion may be secondary relative to threshold changes from one meander 
transformation style to another (Figure 3), since such erosion tends to be localized (Yan et al., 2021). The in-
fluence of neck or chute cutoff events on the long-term preservation of channel-belt deposits only becomes 
important for channel belts that have reached a certain maturity. Cutoffs serve as a geomorphic threshold 
that drives the systematic obliteration of older reaches (Camporeale et al., 2008; Schumm, 1973) and that 
potentially triggers further cutoff and ensuing channel-belt erosion (Schwenk & Foufoula-Georgiou, 2016).

The modeling approach taken in this work is subject to several limitations (see Supporting Information). 
The modeled time windows are limited to lengths of time over which the temporal evolution of the rivers 
can be reconstructed with confidence; none of the considered examples span lengths of time bracketed by 
river avulsions. The assessment of sediment preservation of meander belts was undertaken considering 
planform areas as proxies for sediment volumes (cf. Durkin et al., 2018). It therefore disregards how pre-
served volumes are affected by (a) changes in meander-belt thickness in relation to streamwise variations in 
channel bathymetry (e.g., across meander pools and riffle zones, Yan et al., 2021) and (b) streambed aggra-
dation. This is a reasonable simplification for freely meandering rivers in which rates of lateral migration 
are much larger than rates of aggradation. The influence of autogenic dynamics (e.g., bend cutoff; Schwenk 
& Foufoula-Georgiou, 2016) on accretion rates, and hence recorded time, is also not considered. The time 
embodied by accretion packages was calculated based on trajectories that are linearly interpolated, effec-
tively assuming that point-bar accretion in each stage takes place in regular pulses (meaning that 10-years 
or 100-years floods, e.g., are assumed to have comparable impacts), and that hiatuses of variable magnitude 
associated with accretion surfaces do not exist. In reality, the amount of erosion recorded between and 
within individual accretion packages can be considerable (cf. Moody & Meade, 2014), but the fragmentary 
nature of point-bar bedsets is not simulated through the chosen approach. This is likely to explain, at least 
in part, the limited variability in preservation between accretion-package pairs and stages. Also, the con-
sidered scroll-bar morphologies may not accurately mirror the patterns of point-bar accretion, particularly 
where scroll bars are partly sculpted by erosional processes (cf. Mason & Mohrig, 2019).

5.  Conclusions
Detailed reconstructions of meander-belt evolutions have revealed the role of different morphodynamic 
processes in controlling point-bar sediment preservation over a range of timescales. In the channel belts 
of meandering river systems, relationships between time, preservation and accretion rates appear to be 
rendered complicated by threshold processes of meander transformation change and bend cutoff. Yet, non-
linearity in point-bar accretion cannot be captured by a simple power law between sedimentation rate and 
time. This has implications for the inference of the temporal significance of depositional units of variable 
hierarchy.
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