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{m.bashar,p.xiao,r.tafazolli@surrey.ac.uk}@surrey.ac.uk, {kanapathippillai.cumanan,alister.burr}@york.ac.uk, emil.bjornson@liu.se
Abstract—A cell-free Massive multiple-input multiple-output

(MIMO) system is considered, where the access points (APs) are
linked to a central processing unit (CPU) via the limited-capacity
fronthaul links. It is assumed that only the quantized version of the
weighted signals are available at the CPU. The achievable rate of a
limited fronthaul cell-free massive MIMO with local minimum mean
square error (MMSE) detection is studied. We study the assumption
of uncorrelated quantization distortion, which is commonly used in
literature. We show that this assumption will not affect the validity
of the insights obtained in our work. To investigate this, we compare
the uplink per-user rate with different system parameters for two
different scenarios; 1) the exact uplink per-user rate and 2) the
uplink per-user rate while ignoring the correlation between the inputs
of the quantizers. Finally, we present the conditions which imply
that the quantization distortions across APs can be assumed to be
uncorrelated.

I. INTRODUCTION

A. Limited-fronthaul Cell-Free Massive MIMO
Cell-free massive multiple-input multiple-output (MIMO) is a

promising technique, where large number of distributed access
points (APs) serve a much smaller number of users [1]. Similar to the
methodology in [2], we model the phase of the line-of-sight (LoS)
path as a uniformly distributed random variable, which enables us to
take the phase shifts due to mobility and phase noise into account.
In [3], the authors investigate the effect of phase shifts in cell-free
massive MIMO. An investigation of device-to-device-based cell-free
massive MIMO with limited fronthaul links is presented in [4]. The
effect of channel aging in cell-free massive MIMO is investigated
in [5]. The authors in [6] investigate the performance of perfect-
fronthaul cell-free massive MIMO over spatially correlated Rician
fading channels. A limited fronthaul cell-free massive MIMO system
is investigated, where the access points (APs) send the quantized
versions of the received signals and the channel estimates to a
central processing unit (CPU) through limited fronthaul links [7]–
[11]. The limited capacity links from the APs to the CPU constitute
one of the most principal challenges in the cell-free massive MIMO
system. The assumption of infinite fronthaul in [1] is not realistic
in practice. In the uplink transmission, the fronthaul network will
carry quantized signals, which will affect the system performance.
This paper therefore provides an approach for the analysis of the
effect of fronthaul quantization distortion correlation on the uplink
of cell-free massive MIMO.

B. Why Local Minimum Mean Square Error (L-MMSE) Detection?
We study the case when only the quantized version of the

weighted signal is available at the CPU which employs local
minimum mean square error (L-MMSE) detection. The L-MMSE
detection is interesting due to following reasons: 1) The L-MMSE
detector has low complexity and is practically feasible. Note that in-
version of the aggregate the channel matrix is required for designing
zero forcing (ZF) and MMSE. Hence, due to the large number of
users and APs in cell-free massive MIMO, ZF and MMSE detectors
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impose huge complexity burden on the CPU and they are not suitable
for practical implementations. It should be noted that the current
hardware cannot perform matrix inversion for a matrix with the
dimension larger than 25×25 in practical systems [12], [13]. 2) The
L-MMSE detector provides good performance in cell-free massive
MIMO with the use of only the local channel matrix [14]. 3) The
L-MMSE detector can be implemented in a distributed manner, as
each AP uses the complex conjugate of the channel estimates in a
distributed approach [14]. 4) The L-MMSE detector can facilitate
flexible functional splits in cell-free massive MIMO [15].
C. Motivation and Contribution

In [16], the authors generalize the Bussgang theorem for MIMO
distortions. According to [16], it is common that the quantization
distortion correlation is neglected without any justifications and
motivations in the literature. In [16], the authors extend the Bussgang
results to be applicable hardware impairments [7]. In [16], the
authors investigate the cumulative distribution function (CDF) of
the absolute value of the correlation coefficient between elements
of the MIMO system.

In this paper, we study the performance of a cell-free massive
MIMO with the L-MMSE detector. The effect of the quantization
distortion correlation on the cell-free massive MIMO system is
investigated. In general, the inputs of the quantizers at different
APs are correlated, the quantization distortions across APs are
therefore correlated. However, according to [9]–[11], the correlation
between the inputs of the quantizers at different APs renders,
the closed-form achievable rate formulas overly complicated and
many optimization problems (i.e., sum-rate maximization, max-
min rate, energy efficiency maximization) are intractable. For this
reason, in [9]–[11], [17], the quantization distortion correlation is
not taken into account and an approximated achievable rate derived
by ignoring the quantization distortion correlation is exploited to
facilitate the capacity analysis in [9]–[11], [17]. In this paper, we
present approximation and exact closed-forms for the capacity of
the limited-fronthaul cell-free massive MIMO system to analyze the
impact of quantization distortion correlation. However, in this paper,
we present the exact definition of the power of the quantization
distortion. The analytical and numerical results for typical cases
imply that, for cell-free Massive MIMO, under the necessary con-
ditions listed below, the quantization distortions are approximately
uncorrelated: 1) There is a large number of users, or 2) there are
a few antennas at each AP. In this paper, we show that for small
number of antennas per AP, the approximation on the achievable rate
while ignoring the quantization distortion correlation is very close
to the exact achievable rate. However, if there are few active users
and each AP is equipped with a large number of antennas, then the
correlation between the outputs of the quantizers have a substantial
impact on the achievable rate. The approximate rate expression that
neglects the correlation should not be used in that case.

II. SYSTEM MODEL

We consider uplink transmission in a cell-free massive MIMO
system with M APs and K single-antenna users randomly dis-



tributed in a large area. Moreover, we assume each AP has N
antennas.

A. Channel Model
The uplink channel between the mth AP and the kth user is

presented by gmk which is modeled as [2]

gmk =
√
αmke

jφmk +
√
βmkh̃mk, (1)

where
√
αmke

jφmk corresponds to the LoS component and√
βmkh̃mk accounts for the NLoS components. Note that the term

φmk ∼ [−π, π) is the phase-shift of the LoS component. Moreover,
we have αmk = κmk

κmk+1ζmk and βmk = 1
κmk+1ζmk, where ζmk

denotes the large-scale fading coefficient. In addition, the term κmk
is modelled as [2]

κmk =
PLoS(dmk)

1 + PLoS(dmk)
, (2)

where dmk is the distance between the mth AP and the kth user,
PLoS(dmk) is the LoS probability depending on the distance dmk,
where the LoS probability is defined in Section III.

B. Channel Estimation at the APs
All pilot sequences transmitted by the K users in the channel

estimation phase are collected in a matrix Φ ∈ Cτp×K , where τp is
the length of the pilot sequence for each user and the kth column, φφφk,
represents the pilot sequence used by the kth user, where ‖φφφk‖2 = 1.
Let
√
τφφφk ∈ Cτ×1 be the pilot sequence assigned to the kth user.

We assume the case where channel statistics are available at the
APs, however, the phase shifts are completely unknown. Then, we
can use the non-aware linear MMSE (LMMSE) estimator. Based
on the analysis in [2, Section III-B], the LMMSE estimate of the
channel gmk is given by

ĝmk = cmk

(√
τpppgmk +

√
τppp

K∑
k′ 6=k

gmk′φφφ
H
k′φφφkΩp,mφφφk

)
, (3)

where Ωp,m denotes the noise vector at the mth AP whose ele-
ments are independent and identically distributed (i.i.d.) CN (0, 1),
pp represents the normalized signal-to-noise ratio (SNR) of each
pilot symbol. The p̄p denotes the power of pilot sequence where
pp =

p̄p
pn

and pn is the noise power [18]. Moreover, we have cmk =
√
τppp(βmk+αmk)

τppp
∑K
k′=1

(βmk′+αmk′ )|φφφHk′φφφk|
2+1

and γmk =
√
τpppcmk(βmk +

αmk).
C. Data Detection

The transmitted signal from the kth user is denoted by xk =√
ρ qksk, where sk with CN (0, 1) and qk denotes the transmitted

symbol and the transmit power, respectively. Moreover, ρ refers to
the normalized uplink SNR. The N × 1 received signal at the mth
AP is given by

ym =
√
ρ

K∑
k=1

gmk
√
qksk + nm, (4)

where nm ∼ CN (0, IN ) is the noise vector at the mth AP. We
consider the case when each AP multiplies the received signal by
the L-MMSE receiver, and sends back a quantized version of this
weighted signal to the CPU. Let vmkCN be the L-MMSE vector
that the mth AP design for the kth user. Then the local estimate of
the transmitted signal sk, i.e., ŝmk, is given by

zmk , ŝmk = vHmkym, (5)

where
vmk =

(̃
a2ρ

K∑
k′=1

qk′ ĝmk′ ĝ
H
mk′ + Rmk

)−1

ĝmk, (6)

where Rmk = ρ
∑K
k′=1 qk′Wmk′ + IN + Fm and

Wmk′ = Smk′ −Tmk′ , (7a)

Smk′ =

(
σ2
ẽ,B

ã2
+ 1

)
diag [rep (βmk′ + αmk′ , N)] , (7b)

Tmk′ =
(
1− σ2

ẽ,B

)
diag [rep (γmk′ , N)] ,Fm =

σ2
ẽ,B

ã2
IN , (7c)

where ã and σ2
ẽ,B are the constant term in the Bussgang decom-

position and the quantization distortion power, respectively, which
are defined in [9, Table 1]. The mth AP quantizes the terms
zmk = vHmkym,∀k, and forwards the quantized signals in each
symbol duration to the CPU, where vmk is the L-MMSE receiver.
Hence zmk is the input of the quantizer at the mth AP. Using the
Bussgang decomposition, the estimate of the signal sk at the CPU
can be written as

ŝk =
∑M

m=1
Q (zmk) =

∑M

m=1
Q
(
vHmkym

)
=

M∑
m=1

ãvHmkym +

M∑
m=1

dzmk︸ ︷︷ ︸
TQDk

, (8)

where TQDk refers to the total quantization distortion (TQD) at the
kth user. Since the input to the quantizer is the sum of many random
variables, from the central limit theorem, it has a nearly Gaussian
distribution [10]. Moreover, using Bussgang decomposition the
elements of the quantization distortion are uncorrelated with the
input of the quantizer [19], i.e.,

E
{(

vHmkym
)H

dzmk

}
= 0. (9)

The achievable rate of the kth user is given by Rk = log2(1 +
SINRk), where the SINRk is the achievable signal-to-interference-
plus-noise ratio (SINR) of the kth user and is given by

SINRk= (10)
qk1

T f̄kk f̄
H
kk1

K∑
k′=1

qk′E{1T f̄kk′ f̄Hkk′1
T}−qk1T f̄kk f̄Hkk1+1

ρ

M∑
m=1

1TDk1+1
ρE
{
|TQDk|

2
},

where f̄kk′ =
[
E{vH1kĝ1k′} · · ·E{vHMkĝMk′}

]T
, Dk =

diag
[
E
{
||v1k||2

}
· · ·E

{
||vMk||2

} ]T
where 1 = [1, · · · , 1]T ∈

CN . The power of the quantization distortion for user k is given by

E
{
|TQDk|

2
}

= E

{∣∣∣∣∑M

m=1
dzmk

∣∣∣∣2
}

= E

{(
M∑
m=1

dzmk

)(
M∑
m=1

dzmk

)∗}
=
∑M

m=1
E
{
|dzmk|

2
}

+
∑M

m=1

∑M

n 6=m
E
{
dzmk (dznk)

∗}
=
∑M

m=1

[
Cdzkd

z
k

]
mm

+
∑M

m=1

∑M

n 6=m

[
Cdzkd

z
k

]
nm
, (11)

where Cdzkd
z
k

= E
{

dzk (dzk)
H
}

is the covariance matrix of the

quantization distortion and dzk = [dz1k · · · dzMk]
T is the quantization

distortion vector. Note that
[
Cdzkd

z
k

]
mn

is the mnth element of
Cdzkd

z
k
. To calculate Cdzkd

z
k
, we first re-write the aggregate received

signal at the CPU as follows:
rk = Q(zk) = Azk + dzk, (12)

where rk = [r1k · · · rMk]
T and zk = [z1k · · · zMk]

T . Moreover,
based on the analysis in [20], it can be shown that the matrix A is



diagonal. The matrix A is determined by the LMMSE estimation
of rk from zk as follows [20]:

A = E
{
rkz

H
k

}
E
{
zkz

H
k

}−1
= CrkzkC

−1
dzkd

z
k
, (13)

and the error has the following covariance matrix [20]
Cdzkd

z
k

= E
{

(rk −Azk) (rk −Azk)
H
}
E
{
zkz

H
k

}−1

= Crkrk −CrkzkA
H −ACzkrk + ACzkzkA

H

= Crkrk −CrkzkC
−1
zkzk

Czkrk . (14)

Proposition 1. The covariance matrices Crkrk , Crkzk , and Czkrk

are obtained using the Price Theorem.

Proof: To characterize the cross-correlation and auto-correlation
properties of Gaussian input signals, we exploit the Price Theorem
[21]. Based on the Price theorem, the correlation coefficient at the
output of nonlinear functions f1(x1) and f2(x2) with correlated
inputs x1 and x2 having zero-mean and the variances σ1 and σ2,
respectively, and the correlation coefficient ρx1x2 =

E{x1x
∗
2}

σx1σx2
, has

the following derivatives [21]

∂kE {f1(x1)f2(x2)}
∂ρkx1x2

= σk1σ
k
2

∫ ∞

−∞

∫ ∞

−∞

f
(k)
1 (x1)f

(k)
2 (x2)

2πσ1σ2

√
1− ρ2

x1x2

exp

(
− 1

2
(
1− ρ2

x1x2

) [x2
1

σ2
1

+
x2

2

σ2
2

− 2ρx1x2x1x2

σ1σ2

])
dx1dx2.(15)

Next, for the special case f1(x1) = x1, then we have [20]
∂E {x1f2(x2)}

∂ρx1x2

=

σ1σ2

∫ ∞

−∞

1

σ2

√
2π
f ′2(x2) exp

(
x2

2

σ2
2

)
dx2, (16)

resulting in
E {x1f2(x2)} =

σ1σ2ρx1x2

∫ ∞

−∞

1

σ2

√
2π
f ′2(x2) exp

(
x2

2

σ2
2

)
dx2. (17)

Next, we use the uniform quantizer as follows [20, Chapter 2]
f2(x) = Q(x) =

∑2α

i=1
li
(
u
(
x− llo,i

)
−u
(
x− lup,i))

= l1+
∑2α

i=2

(
li − li−1

)
u
(
x− llo,i

)
. (18)

Using the lup,i = llo,i+1, we have
∂Q(x)

∂x
= l1+

∑2α

i=2

(
li − li−1

)
δ
(
x− llo,i

)
, (19)

where δ is the Dirac Delta function. Therefore
E {x1Q(x2)} =

σ1ρx1x2

∑2α

i=1

li
(

exp

(
− (llo,i)

2

2σ2
2

)
− exp

(
− (lup,i)

2

2σ2
2

))
√

2π
. (20)

Next, we find the covariance at the output of the quantizer as follows

E {Q(x1)Q(x2)} =

K∑
i=2

K∑
k=2

∆2∫ ρx1x2

0

exp

(
− 1

2(1−ρ′2)

[
(llo,i)

2

σ2
1

+
(llo,k)

2

σ2
2
− 2ρ′llo,illo,k

σ1σ2

])
2π
√

1− ρ′2
dρ′. (21)

Figure 1. Figure presents the mnth element of the covariance matrix of the
quantization distortion (i.e.,

[
Cdz

k
dz
k

]
mn

in (11)) versus ρmnk for different number
of quantization bits for a given user k.

Note that in cell-free Massive MIMO, we have ρx1x2
= ρmnk,

where ρmnk is defined in (24). Finally, Crkrk , Crkzk and Czkrk

are determined using (20) and (21) and the following equalities:

Crkrk = E {rkrk} = E {Q(zk)Q(zk)} , (22a)
Czkrk = E {zkrk} = E {zkQ(zk)} , (22b)
Crkzk = E {rkzk} = E {Q(zk)zk} , (22c)

which completes the proof. �

Based on the above derivations,
[
Cdzkd

z
k

]
mn

is a function of
the number of quantization bits α, the step-size of the quantizer ∆,
and the correlation coefficient between the inputs of the quantizer
at the mth and nth APs, i.e., ρmnk, which is obtained numerically.

III. NUMERICAL RESULTS AND DISCUSSION

A cell-free Massive MIMO system with M APs and K single-
antenna users is considered in a D×D numerical area, where both
APs and users are uniformly distributed at random points. The path
loss and noise power are the same as [1]. For the LoS probability,
we use the following model from the 3GPP-UMa [2]

PLoS(dmk) = min

(
18

dmk
, 1

)(
1− e−

dmk
63

)
+ e−

dmk
63 , (23)

where dmk is in meters. In cell-free massive MIMO, the inputs of
quantizer at the mth and nth APs are zmk = vHmkym and znk =
vHnkyn, respectively. We aim to calculate the correlation coefficient
between the mth and nth APs, which is given by

ρmnk =
|E {zmkz∗nk}|
σzmkσznk

, (24)

where we have σ2
zmk

= E
{
|zmk|2

}
, and the expectation is taken

over the small-scale fading coefficients.
1) The Actual Value of Correlation Between the Quantization

Distortions Versus the Correlation Between the Inputs of the Quan-
tizers: Fig. 1 plots

[
Cdzkd

z
k

]
mn

versus ρmnk for different numbers
of quantization bits α, where the diagonal elements of the covariance
matrix are obtained by setting ρmnk = 1. Fig. 1 plots

[
Cdzkd

z
k

]
mn

versus ρmnk for different numbers of quantization bits α, where the
diagonal elements of the covariance matrix are obtained by setting
ρmnk = 1. From Fig. 1, it can be observed that ρmnk ≤ 0.4 is small
enough so that the off-diagonal elements of the correlation matrix
can be safely ignored. Note that the performance gap between the
exact uplink per-user rate and the uplink per-user rate while ignoring
the correlation between the inputs of quantizers depend on total
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Figure 2. The term “Perf. fh” refers to the perfect fronthaul link. The term “Exact” is the case where we include the correlation between the quantization distortions at
different APs whereas the term “Approx.” refers to the case when we ignore the correlations between the error at different APs.

number of users in the area K and the number of antennas per-AP
N . Hence, in the next section, we investigate the effect of K and N
on the correlation coefficients ρmnk and the achievable rate. Next,
we provide numerical results and discussion to address the effect of
correlation between the inputs of the quantizers at different APs.

2) How Large is the Correlation Between the Input of the
Quantizers at Different APs in Cell-Free Massive MIMO?: The CDF
of ρmnk in cell-free Massive MIMO for the cases of K = 20 and
K = 30 users is plotted in Fig. 2a. The figure shows that in the case
of a few antennas per AP and large number of users in the area, the
correlation between the inputs of the quantizer at different APs is
small. The correlation coefficient ρmnk enables us to investigate the
performance gap between the exact rate and the approximated rate
obtained by omitting the correlation ρmnk. Note that by increasing
the number of APs, the correlation ρmnk decreases, resulting in a
smaller gap between the approximated rate and the exact rate. This
will be investigated in the next subsection.

3) The Performance Gap Between the Exact Uplink Per-User
Rate and the Uplink Per-User Rate While Ignoring the Correlation
Between the Inputs of the Quantizers: In this section, we present the
uplink per-user rate with different system parameters for two differ-
ent scenarios. To remind, the correlation between the quantization
distortions at different APs is given by

E
{
|TQDk|

2
}

=

M∑
m=1

[
Cdzkd

z
k

]
mm

+

M∑
m=1

M∑
n6=m

[
Cdzkd

z
k

]
nm

. (25)

The rate obtained by the exact value of E
{
|TQDk|

2
}

in (26) is
referred to as “Exact” in Figs. 2b-2c. Next, we exploit the results
in Figs. 2b-2c, the covariance matrix of the quantization distortion
is approximated with a diagonal matrix as follows:

E
{
|TQDk|

2
}

=

M∑
m=1

[
Cdzkd

z
k

]
mm︸ ︷︷ ︸

sum of diagonal elements of Cdz
k
dz
k

+

M∑
m=1

M∑
n 6=m

[
Cdzkd

z
k

]
nm︸ ︷︷ ︸

sum of off-diagonal elements of Cdz
k
dz
k

≈
M∑
m=1

[
Cdzkd

z
k

]
mm

. (26)

This scenario is given as “Approximation” in Figs. 2b-2c. As Figs.
2b-2c show, there is a negligible performance gap between the exact
rate and the approximate rate obtained by ignoring the quantization
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Figure 3. This figure presents the average uplink per-user rate versus number of
antennas per AP with M = 15 and α = 1. Here the term “Exact” refers to the
exact uplink rate whereas the term “Approximation” presents the uplink per-user rate
while ignoring the quantization correlation.

distortion correlation. Here we consider the uncorrelated quantiza-
tion distortions at different APs, and the total quantization distortion
is obtained as follows:

E
{
|TQDk|

2
}

= E


∣∣∣∣∣
M∑
m=1

dzmk

∣∣∣∣∣
2
 (27)

≈
M∑
m=1

E
{
|dzmk|

2
}

=
(̃
b−ã2

)
M∑
m=1

[
N2

K∑
k′=1

γ2
mk′

∣∣φφφHk′φφφk∣∣2 ρqk′+Nγmk K∑
k′=1

βmk′ρqk′+Nγmk

]
.

Next, we investigate the ratio between “the sum of off-diagonal
elements of the distortion covariance matrix” and “the sum of all
elements of the distortion covariance matrix” in (26). We define the
following ratio:

ratioC =

∑M
m=1

∑M
n 6=m

[
Cdzkd

z
k

]
nm∑M

m=1

[
Cdzkd

z
k

]
mm

+
∑M
m=1

∑M
n 6=m

[
Cdzkd

z
k

]
nm

. (28)

Fig. 4 demonstrates the cumulative distribution of ratioC with
the same parameters as in Fig. 3. Moreover, Fig. 4 shows that the
power of the off-diagonal elements of the quantization distortion
matrix is very small relative to the power of all elements of the
quantization distortion matrix, except for smaller K and larger
N . This explains the performance gap between the systems using
“Approximation” (obtained by ignoring off-diagonal elements of the
distortion covariance matrix) and “Exact” in Fig. 3.
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Figure 5. The average uplink per-user rate with three different detectors with M =
60, N = 1, and K = 20.

4) The effects of number of users and number of antennas per
AP: Finally, we investigate the effect of the total number of users
and number of antennas per AP on the system performance. In Fig.
3, the average per-user uplink rate is presented versus the number of
antennas per AP (N ) for different cases of total number of users in
the system (namely K = {5, 10, 15, 20}). As the figure shows for the
case of single antenna APs, the average uplink per-user rate while
omitting the quantization correlation is very close to the exact uplink
per-user rate. Moreover, as the figure demonstrates, if there are K ≤
10 active users in the area, the average uplink per-user rate while
omitting the quantization correlation (shown as Approximation in
the figure) is very close to the exact rate. As a results, if there are
K < 10 active users and the AP are equipped with N > 2 antennas,
the correlation between the inputs of the quantizers should not be
ignored.

5) The effect of different linear detectors: This section investi-
gates the average uplink per-user rate of cell-free massive MIMO
with three different receivers, namely the MMSE, L-MMSE and
MRC receivers. In Fig. 5, we assume that M = 40 APs each with
N = 2 antennas are uniformly distributed in the area. Moreover,
we consider K = 20 users and τp = 20 as the length of pilot
sequences. As the figure shows the MMSE receiver provides the
greatest median uplink rate. Note that in the case of MRC and L-
MMSE, the CPU does not have access to the quantized channel
estimates and exploits only the statistics of the channel to decode
the data whereas to design the MMSE receiver the CPU needs to
have the quantized version of channel to design the receiver.

IV. CONCLUSIONS

We have considered cell-free massive MIMO with L-MMSE
detector, when the quantized version of the weighted signals are
available at the CPU. Bussgang decomposition has been used to

model the quantization effects. We have investigated the assumption
of uncorrelated quantization distortion and showed that this assump-
tion will not affect the insights obtained in our works. We presented
a comparison between the exact uplink per-user rate and the uplink
per-user rate while ignoring the correlation between the inputs of the
quantizers. Finally, we have presented the conditions which imply
that the quantization distortions across APs can be considered as
uncorrelated signals.
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