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This work addresses the problem of planning a robot configuration and grasp to position a shared object
during forceful human-robot collaboration, for example, a puncturing or a cutting task. Particularly, our goal
is to find a robot configuration that positions the jointly manipulated object such that the muscular effort of
the human, operating on the same object, is minimized, while also ensuring the stability of the interaction
for the robot. This raises three challenges. First, we predict the human muscular effort given a human-robot
combined kinematic configuration and the interaction forces of a task. To do this, we perform task-space
to muscle-space mapping for two different musculoskeletal models of the human arm. Second, we predict
the human body kinematic configuration given a robot configuration and the resulting object pose in the
workspace. To do this, we assume that the human prefers the body configuration that minimizes the muscular
effort. And third, we ensure that, under the forces applied by the human, the robot grasp on the object is
stable and the robot joint torques are within limits. Addressing these three challenges, we build a planner
that, given a forceful task description, can output the robot grasp on an object and the robot configuration to
position the shared object in space. We quantitatively analyze the performance of the planner and the validity
of our assumptions. We conduct experiments with human subjects to measure their kinematic configurations,
muscular activity, and force output, during collaborative puncturing and cutting tasks. The results illustrate
the effectiveness of our planner in reducing the human muscular load. For instance, for the puncturing task,
our planner is able to reduce muscular load by 69.5% compared to a user-based selection of object poses.
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1 INTRODUCTION

When a human and a robot jointly manipulate an object, the robot must take into account the
human kinematic and biomechanical response to different possible robot actions. If the robot can
predict such response, then it can plan actions that reduce the biomechanical load on the human,
leading to more efficient and comfortable human-robot collaboration.

In this work, we present a method that simultaneously predicts the kinematic and biomechanical
response of the human during forceful human-robot collaboration (fHRC). We then use these
predictions to plan robot grasps and configurations that reduce the load on the human biomechanical
system, particularly by minimizing the predicted human muscular effort.

Take for example the collaborative tasks in Figure 1. We show a ‘puncturing’ task (top-left) where
the human forcefully inserts a pointed tool into a hard foam board at a designated point on the
board. In the top row, i.e., Figures 1-A, C, and E, we show three different human-robot configurations
to perform the same puncturing task. Notice that, given the same task, e.g. puncturing, the human
body takes a different kinematic configuration, and exerts different amounts of muscular effort,
depending on where the robot holds the object (the board). In this work, we explore this interaction.
We present a planner that, given a forceful task like puncturing or cutting, intelligently decides on
the robot configuration, grasp, and position of the object in order to proactively instruct humans to
configurations which demand less physical muscular effort. For example, in Figure 1, our planner
produces the robot configuration in A for puncturing, and B for cutting. After the robot attains the

Fig. 1. Example forceful human-robot collaborative tasks and configurations. Top row: Puncturing task, where

the human forcefully inserts a pointed tool into a hard foam board at a designated point on the board.

Different configurations to perform the same task are shown in A, C, and E. Bottom row: Cutting task, where

the human uses a cutter to cut a foam board along a straight line (shown as dashed red arrow), starting at an

existing square hole on the board and finishing the cut at another hole. Different configurations are shown in

B, D, and F. A and B: Outputs of our planner that minimizes predicted muscle-effort. C and D: Randomized

configurations. E and F: User-defined configurations.
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planned configuration, the human performs the task. (C and D are randomized configurations; E
and F are human-designed configurations.)
To produce such configurations, our planner solves three problems: (i) predicting the human

muscular effort, (ii) predicting the human kinematic configuration, (iii) ensuring the stability of the
robot grasp and joints.
Predicting the human muscular effort. Given a particular human biomechanical model,

kinematic configuration (i.e. the joint angles of a kinematic model of the human body), the object
pose, and an estimate of the tooltip forces required to complete a task (e.g. puncturing), our planner
predicts the human muscular effort required.

To do this, we transform cooperative task-space forces, to human muscle-spaceÐwhere human
motor-control signals are applied and muscle-tendon forces generate the output joint-torques. The
muscle space actuation is nonetheless highly redundant (take for instance, the 7-joint kinematic
model in [45] which is actuated by a set of 50 muscles). Consequently, a given forceful human-robot
collaborative operation often has infinite solutions in the muscle-space. To solve this indeterminacy,
we use two well-known approaches for dimensionality reduction in muscle-space. These produce
two fundamentally different muscle activity prediction paradigmsÐand therefore two different
planners. Our main objective in using both methods is to understand the influence of redundancy
resolution techniques over the actual minimization of muscle effort. We present the details of how
we predict the muscular effort in Section 4.

Predicting the human kinematic configuration. Above, to predict the muscular effort, we
assumed that we know the kinematic configuration of the human body. However, there is also
kinematic redundancy in the human body. Given an object pose, the human can choose among
many different body configurations to perform the task. Therefore, when the robot is choosing an
object pose, before it can predict the muscular effort, it first needs to predict the likely kinematic
configuration the human will choose. In this work, we focus on a 7-joint model of the human
shoulder, elbow and wrist. In most literature [5, 26, 27, 52], it is assumed that humans resolve
this redundancy in a consistent manner: choosing a limb configuration that minimizes energy
expenditure in terms of muscle activity. Therefore, in this work, we assume that the human chooses
the kinematic configuration that results in the minimum muscle effort. We name this the kinematic
minimum effort assumption (KMEA).We present the details of howwe predict the human kinematic
configuration through this assumption in Section 5.
Ensuring the stability of the robot grasp and joints. Finally, it is also important for the

planner to choose: (a) grasp points on the object such that the external human applied force can be
resisted in a stable manner (e.g. the object does not slip through the fingers), and (b) robot arm
configurations such that the predicted torque load on the robot joints are within limits. These
constraints must be satisfied while the predicted human muscle effort, as explained above, is
minimized, therefore tightly coupling these different constraints and requiring a simultaneous
solution to the human and robot related constraints. We explain the details of how we model the
stability of the robot grasp and robot joints in Section 6. To do this we mostly rely on an existing
formulation of ours from previous work [15] but integrate it here with human-related constraints.
To evaluate the performance of the proposed planner, we conducted fHRC experiments in

puncturing and cutting tasks, examples of which are shown in Figure 1. These were performed with
different participants and conditionsÐmeasuring task-space forces, joint-space kinematics (using a
motion-capture system), muscle-space biofeedback (using 9 electromyography sensors, EMGs), and
participant perception. We particularly analyze (i) whether the human muscular effort, as indicated
by EMG readings, is indeed reduced when we use the proposed planners, and (ii) how well the
predictions of the KMEA assumption agrees with the actual human kinematic configurations, as
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indicated by the motion capture readings. The results show a reduction in the muscle effort when
our planner is used, and show KMEA to be effective, though open to improvement.1

We call our proposed planner the ‘comfort-based planner’, since achieving comfortable human-
robot collaboration is our overall goal and since muscular effort plays an important part in a
human’s comfort perception. Though we also acknowledge that muscular effort is probably not
the only factor, and other psychological, spatial, and postural factors may also be contributing to a
subject’s comfort perception. To evaluate how well a decrease in muscle effort translates into an
increase in comfort perception, we conduct a psychometric questionnaire.

Building human-robot collaboration systems that are more comfortable for humans is important.
Particularly, a comfortable configuration can improve performance, alleviate and reduce stress and
lower incidence of musculoskeletal disordersÐmusculoskeletal strains are the largest cause of work
related injuries in many industrial countries [6, 30, 34]. The proposed formulation of muscle effort
minimization and planning contributes to the understanding of human muscular response to daily
activities and it is a building block to developing comfortable human-robot collaboration systems.
We have previously presented part of the formulation here in a conference paper [14]. The

current work, however, extends it significantly. Most importantly, here (i) we use an additional
and more realistic higher-dimensional muscular model; (ii) we discuss the redundancy-resolution
techniques that the higher-dimensional model requires; (iii) we use EMG, kinematic, and force
data to analyze the performance of our planners during human-robot experiments (while our
previous set of experiments only used questionnaires to evaluate the planners); and (iv) we conduct
experiments to analyze the KMEA assumption, a key aspect of our formulation.
The rest of this paper is structured as follows. Section 2 presents the related work. Section 3

formalizes the overall planning problem we aim to solve. Sections 4, 5, and 6 detail the key building
blocks of the system as explained above, i.e. the muscle effort prediction, human configuration
prediction, and robot stability, respectively. Section 7 present our simulation experiments, and
Section 8 our human subject experiments. Section 9 further analyzes the human experiment results
in terms of muscle selection and discusses the contribution of individual muscles to the task. Section
10 concludes the paper and discusses future work.

2 RELATED WORK

Designing physical human-robot collaborative (pHRC) actions is a complex procedure that in-
volves planning and control over the tightly coupled constrained dynamical system [2, 16, 23, 56].
Among the many challenges pHRC poses, this work mainly focuses in two areas which have
often been studied separately: human motion synthesis and prediction; and bio-informed physical
human-robot collaboration [1, 25, 31, 44].
Human motion synthesis: has long been a topic of investigation in physiology, anatomy, biome-
chanics, and neuroscience. In recent years, it also became a topic of robotics research which
produced novel insights into human motion mechanisms [22, 32]. Particularly, with improved
simulation tools [18, 21] and musculoskeletal models [45, 46, 51], task-space-oriented approaches
extended to muscle-space have successfully leveraged robotics techniques to movement sequence
reconstruction [27], tracking and/or performance assessment/filtering [7, 27], and instantaneous
task- to muscle-nullspace assessment [49, 50]. These methods nonetheless fail to cover sensory-
motor planning and long-term prediction (e.g., how to predict reaching and forceful interaction
prior to the start of the motion). This work fills this gap and assesses the performance of the
planning prediction during fHRC which represents a largely unexplored problem that falls both
into the categories of human posture prediction and physical human-robot collaboration.

1The compiled experimental data will be available at data.leeds.ac.uk.
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Bio-informed physical human-robot collaboration: is a recent topic in robotics that integrates
biomechanics methods to improve human-robot interaction through a better understanding of the
influence of forces over the musculoskeletal system, e.g., [37, 45, 51]. In our previous work [14],
we devised an optimization-based planning strategy taking the muscle activation estimation from
Tanaka et al., [51], and peripersonal safety from [43]. From a more comprehensive musculoskeletal
model described in [45], Peternel et al., [40], focused on fatigue estimationÐextending techniques
from biomechanics literature [4] to fHRC framework. More recently, this work was extended in
[41] to allow control of the task force direction, i.e., the relative pose attitude. The robot-tool
attitude varied accordingly to muscle-activity-based fatigue estimation w.r.t. a set of predefined
task-dependent muscle groups. The robot pose was however planned by assessing an ergonomics
cost function based on the overloading joint-torque profile from centre of pressure and ground
reaction forces, [29, 42]. Similar optimization-based planning strategies are also found in [28, 30].

Our work, on the other hand, presents an optimization-based planning strategy fully based on the
6-DoF wrenchmapping to muscle activation. In this sense, this work is similar to our previous efforts
in [14]. Yet, herein we unfold a more general comfort paradigmÐwith different musculoskeletal
models. We also take a thorough experimental assessment addressing different comfort metrics
and biosignals from EMGs. Furthermore, another novelty presented is the experimental assessment
of the KMEA minimum-effort assumptionÐthat underlies our biomechanics-based results during
fHRC tasks and defines the redundancy resolution for most pHRC literature. To the best of the
authors’ knowledge, there are no other studies capable of both predicting and planning for human
comfort, especially if we take forceful interaction into account. This is also the most complete
pHRC work in terms of assessing muscle activity with 9 simultaneous biofeedback readings from
EMGs.
Other works on ergonomics and comfort for HRC: Ergonomic concepts as RULA (rapid upper
limb assessment) and REBA (rapid entire body assessment) were also exploited and extended to
assess human-robot interaction comfort level in [9, 10]. Nonetheless, although ergonomic concepts
are well-posed for high-level rapid task-planning, they fail to address the impact and magnitude of
larger forces and dynamic constraints in fHRC.

There has also been a considerable amount of research on comfort analysis concerning HRI for
object hand-over, [3, 11, 12], yet solutions neglect any forceful interaction and mostly rely on the
geometry of interaction, physiological evaluation [20], object attitude [38], or at most learning
transfer stability and corresponding wrist wrenches [13, 36].

3 PROBLEM FORMULATION

To better illustrate the interaction context, consider the forceful task of drilling on an object held
by the robot in a shared environment, as shown in Figure 2-C. The proposed planning strategy

takes as prior knowledge the input set
(

𝒙h , 𝒈h
, o𝒙 t, 𝑚𝑡 ,

o𝒇
)

(shown in Figure 2-A) given by2:

• Human-positioning, 𝒙h , more specifically, their shoulder pose w.r.t. the robot frame
∑

r;
• Human grasp on the tool 𝒈

h
, which also gives the tooltip pose w𝒙𝑡 w.r.t. the wrist frame

∑

w;
• The pose o𝒙 t of the tooltip w.r.t. the object frame

∑

o, e.g., the drill point on the board;
• The mass (and center of mass) of the tool𝑚t;
• And, the generalized applied force o𝒇 at the tooltip w.r.t. to the object, e.g., drilling force.

2We use top-left superscripts to distinguish the coordinate frames with respect to which the variable is expressed. For
simplicity, superscripts will be omitted for world (robot) coordinate frame

∑

r .
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Fig. 2. Overview of the comfort-based forceful human-robot collaborative planning: On the left, (A) shows

the input information on human-robot positioning 𝒙h , task tool (human grasp 𝒈
h
and mass𝑚t), and force

operation (tooltip on the workpiece o𝒙t and wrench o𝒇 ); (B) presents the planning overview as described by

(1), illustrating the geometric, force and biomechanics constraints and the predicted human kinematics (9)

and muscle-activity (7)-(8); and (C) shows the task-execution based on the planner output (𝒒opt
r

,o𝒙
opt
rg ) and

the real human kinematics and muscle-activity response (available only for evaluation).

With this input, the robot then plans its arms configuration in joint-space, 𝒒
r
, and the robot grippers

pose, o𝒙rg, to grasp the object, given in the object frame
∑

o. These define the object pose and,
consequently, where in the cooperative-task space the forceful interaction takes place.

Given the above inputs, our human-comfort-based planner aims at finding the robot configuration
and grasp that minimizes muscular effort whilst satisfying robot kinematic and grasp stability
constraints (as shown in Figure 2-B). We assume biological comfort is related to the generated
forces and muscle activity during the execution of motor tasks, that is, we aim at lightening the
human muscular load during interaction. More specifically, we aim to minimize the ratio of the
applied muscle-tendon forces with respect to the maximum force capability per muscle involved
in the motion/force output. More details about muscle activity are given in Section 4. Using this
comfort-metric, we define the comfort-based planning as the following optimization problem:

𝒒opt
r
, o𝒙

opt
rg = arg min

𝒒
r ,

o𝒙rg

{

muscleAct
(

𝒒̂
h
, o𝒇

)}

(1a)

𝑠 .𝑡 . biomecConstraints
(

𝒒̂
h
, o𝒇

)

, (1b)

graspStability
(

𝒒
r
, o𝒙rg,

o𝒙 t,
o𝒇
)

, (1c)

geomConstraints
(

𝒒
r
, o𝒙rg, 𝒙h ,

w𝒙𝑡 ,
o𝒙 t

)

, (1d)

where muscleAct is a comfort metric based functional that computes the summed muscle activity
of different muscles involved in a task. Details on the functional and the biomechanics constraints,
biomecConstraints, mapping task-space variables to predicted muscular-activity are given in Sec-
tion 4. Additionally, the graspStability summarizes the robot grasp stability conditions (described
in Section 6) for the given force operation and robot configuration, while the geomConstraints is
described below.
geomConstraints: checks geometric and kinematic constraints ensuring the tightly coupled human-
robot configuration is within human and the robot joint-limits range (Qh,lim,Q𝒓 ,lim). Furthermore,
assuming quasi-static human-robot interaction the geomConstraints defines where the interaction
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will take place by means of the tooltip pose 𝒙 t,

𝒙h ⊙
h𝒙w ⊙

w𝒙𝑡 = 𝒙 t, (2a)

𝒙rg ⊙
o𝒙−1rg ⊙

o𝒙 t = 𝒙 t, (2b)

where ⊙ is the rigid-body group operation, 𝒙rg ≜ RFKM(𝒒
r
) are the robot end-effectors (grippers)

pose based on robot forward kinematics model (RFKM), o𝒙−1rg is the pose of the object w.r.t. to the

grippers (the inverse transformation of o𝒙rg), and h𝒙w is the human wrist pose w.r.t. to human arm
base (shoulder) given by the human forward kinematics model, HFKM:

h𝒙w ≜ HFKM(𝒒
h
). (3)

From (2)-(3), the robot can tailor human response in order to complete the task with the least amount
of force and muscle activity (1a) based on human biomechanics models (1b), whilst satisfying robot
kinematic and stability constraints.
Nonetheless, there is often an infinite number of arm configurations that satisfy (3). In this

manner, the robot through (2) in fact shapes the set of all feasible human arm configurations
Qh (𝒒r

, o𝒙rg, 𝒙h ,
w𝒙𝑡 ,

o𝒙 t). This reflects human flexibility (redundancy) to choose different configu-
rations given kinematics constraints and raises the question of how the human will choose their
arm configuration based on (2a) and (3). To solve this redundancy in a consistent manner, in the rest
of this work, we assume the existence of a unique mapping function that predicts the human arm
configuration 𝒒̂

h
∈ Qh satisfying (2)-(3)Ðthroughout this work, we will always useˆto distinguish

predicted from real variables. Further details on this redundancy resolution strategy are given in
Section 5.

4 PREDICTING THE MUSCLE EFFORT: TASK- TO MUSCLE-SPACE MAPPING

This section provides model descriptions for the human kinematics and biomechanics, as well as
different methodologies for predicting muscular activity, human comfort and arm-configuration.
These concepts shape the backbone of this work, and are crucial for the automatic reasoning and
planning over human biological motor properties. In Subsection 4.1, we begin by defining the
comfort metric used in muscleAct in Eq. 1a. We then describe the transformation that takes human
task-space force and torques (see Figure 2-A) to human joint-space torques in Subsection 4.2. The
torque values are thereafter mapped to muscle-space actuation by means of two fundamentally
different paradigms in Subsections 4.3 and 4.4.

To keep the presentation simple, in this Section, we assumewe know the human arm configuration
at joint-level, 𝒒

h
, that the humanwill take during task execution. Nonetheless, as previously stressed,

arm configuration can only be predicted by our planner. Details of this prediction will be explained
later in Section 5.

4.1 Muscular Effort

To minimize the summed activation of all muscles involved with the task-space force application,
we need to assess human effort from muscle-space variables. Similarly to [14, 27, 51], we adopt the
concept of muscle activity effort (∥𝜶̂ ∥M𝑚 ), and explicitly define the comfort metric functional
in (1) as

∥𝜶̂ ∥2M𝑚 ≜ muscleAct
𝜶 ∈M𝑚

=𝜶𝑇𝜶 , (4)

where 𝜶 is the vector of activation level of the𝑚−muscles involved in the force operation. The
activation denotes themuscle-tendon force normalized by themaximum force amuscle can generate,
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1:8 Figueredo, et al.

that is, 𝛼𝑖 ∈ [0, 1], 𝑖={1, . . . ,𝑚}. Hence,

𝜶 ∈ M𝑚, with M={𝛼 ∈ R | 0≤𝛼≤1}. (5)

We predict muscle activation and forces indirectly, first estimating the related joint-variables, i.e.
human joint torques, and then mapping the joint torques to muscle activation. In Subsection 4.2, we
present the mapping from task- to joint-space wrenches. One additional challenge is that there are
many more DoFs in a musculoskeletal system than in joint-space (i.e., redundancy), [19] which leads
to an indeterminacy w.r.t. muscle activation and forces. To solve this redundancy, we estimate 𝜶̂
from biomechanics models (biomecConstraints) which often relies on either musculoskeletal-model-
based optimization strategies or model-reduction techniques based on simulation or human-based
experiments, [40, 51]. In Subsections 4.3 and 4.4, we present these two different estimation paradigms
for the biomecConstraints which shapes different comfort criteria with (1).

4.2 Task to Joint-Space Modeling for the Human Arm

Fig. 3. Human-joints kinematics used in Subsection 4.3

To reason over human biomechanics, we be-
gin by recalling that similar to a robot manip-
ulator, human limbs can be represented by
kinematic chains. Indeed, the upper limb is
often modeled3 as a 7-DOF serial chain sys-
tem with the shoulder defined as the base
frame, as shown in Figure 3. From the human
kinematics and the geometric constraints, the
pose of the tooltip 𝒙 t can be computed as in
(2a). Consequently, generalized velocities and
wrenches exerted at this tooltip can be locally
mapped to the joint-space manifold, at con-
figuration 𝒒

h
, through the geometric Jacobian

𝑱
h
, that is,

𝝉 h = 𝑱𝑇
h

(

𝒇 + 𝝆t

)

+ 𝝉𝜌 , (6)

where 𝝉 h is the required joint-space torque and 𝒇 is the exerted wrench represented in world
frameÐnote that, for the sake of clarity, we are omitting arguments whenever possible. The
wrench 𝒇 is computed by means of norm-preserving object to tooltip and tool to world-frame
transformations, i.e., o𝒙 t and 𝒙 t (𝒒r

, o𝒙rg), applied to the known wrench at the tooltip in object-frame
o𝒇 . In (6), we can also account for joint-torque contributions from the arm and tool weights. The
gravitational torques from the arm are given by 𝝉𝜌 (𝒒h

), while 𝝆t (
h𝒙w,𝑚t) denotes the wrenches at

end-pose stemming from the tool weight.4

4.3 Muscular Activity Prediction based on Static Optimization (𝜶̂ SO)

To address the muscle redundancy and estimate the muscle activation level 𝜶̂
(

𝒒
h
,𝝉 h

)

, biomechanics

solutions often rely on the observation that humans resolve this redundancy in a relatively consistent

3The HFKM of the human upper limb deployed in Subsection 4.4 is defined in accordance to Figure 3, and to the muscu-
loskeletal model of [46], whereas in Subsection 4.4, a standard spherical-revolute-spherical model is employed to satisfy the
non-redundant transformation used in [14, 51]. In general, the choice of HFKM will be dependent on the musculoskeletal
model deployed for analysis as the torque to muscle mapping inherently relies on the HFKM and the mapping in (6).
4We assume quasi-static interaction, yet extension to dynamics can be obtained directly, e.g., by means of the Lagrangian
method [48], 𝑴h

¥𝒒
h
+𝑪h
¤𝒒
h
= 𝝉h − 𝑱𝑇

h
(𝒇 +𝝆t)−𝝉𝜌 , where 𝒇 is the end-pose wrench, and 𝑴h and 𝑪h the inertia and

centrifugal-Coriolis forces.
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[33] and optimal manner [5, 50]. Optimality, in this case, refers to minimizing energy expenditure
by means of the motor control system optimization of the constrained norm of the muscular activity
(5).

Existing muscle-effort optimization techniques are usually classified into static or dynamicÐw.r.t.
muscle activation and contraction dynamics. Static optimization neglects the nonlinear activa-
tion/contraction muscle dynamics which in turn eliminates the time-dependency from optimization
and yields a bounded least-square problem [39, 53]. Compared to dynamic methods, they are less
complex and time-consuming. Among classes of dynamic optimizers, direct shooting [19] and,
computed muscle control [52] are the most widely used strategies that concern neural excitation
and contraction dynamics while integrating muscle activation. Nonetheless, despite requiring more
elaborate solvers, dynamic methods have only shown improvements in very narrow cases, e.g.,
long-term activity or fatigue estimation [4], which are not the case in this work. We deploy static
optimization strategy since we are focused on highly forceful but short interactions. In this sense,
joint-torques are defined by muscle-tendon force and the moment-arm connecting the joint to the
antagonistic pair of muscles. The optimization then focuses in providing the muscle activation
vector that yields least muscular activity effort satisfying biomechanics constraints, that is,
biomecConstraints:

𝜶̂ SO = arg min
𝜶 ∈M𝑚

{

𝜶𝑇𝜶
}

(7a)

𝑠 .𝑡 . 𝜞h (𝒒h
)𝑭 h (𝒒h

)𝜶 = 𝝉 h , (7b)

where 𝜶̂ SO , obtained from static optimization, gives the predicted muscle activity and provides
an equality constraint to (1b). The diagonal matrix 𝑭 h = diag

(

𝑓 max
1 , . . . , 𝑓 max

𝑚

)

∈ R𝑚×𝑚 depicts the
maximum isometric muscle forces, and 𝜞h ∈ R

7×𝑚 is a matrix-transformation that maps muscle
forces to joint torques. 𝜞h contains 𝛾𝑖 𝑗 ∈ R elements representing the moments-arms between the
𝑖−th muscle and the 𝑗−th joint. Hence, each 𝑖-th muscle contributes to the torque generated at the
𝑗-th joint by means of the muscle-force generated (activation level 𝛼𝑖 times its maximum isometric
force 𝑓 max

𝑖 ) and its moment-arm about the joint 𝛾𝑖 𝑗 , that is, 𝜏 𝑗 =
∑𝑚

𝑖 𝛾𝑖 𝑗
(

𝑓 max
𝑖 𝛼𝑖

)

.
The matrices 𝑭 h and 𝜞h depend on the human joint-configuration 𝒒

h
(we explain how to predict

𝒒
h
in Section 5) and the corresponding musculoskeletal model. For the model, we take parameters

from the seminal work of Saul et al, [45], through the OpenSim simulator [21], where𝑚 = 50.

Remark 1. The optimization (7) as well as the resulting 𝜶 SO defining the biomecConstraints in (1b)
satisfies the muscle-activation set definition in (5), i.e, 𝜶 ∈ M𝑚 . This positive constraint makes it
impossible to take an unconstrained optimization directly over the induced norm (asM𝑚 is not a
vector space) nor to device standard performance characterization metrics as in [27, 51],

𝐸 = 𝜶̂𝑇 𝜶̂ = 𝝉𝑇
h

(

𝜞h𝑭
2
h𝜞

𝑇
h

)−1
𝝉 h

= (𝑱𝑇
h

(

𝒇+𝝆t

)

+ 𝝉𝜌 )
𝑇
(

𝜞h𝑭
2
h𝜞

𝑇
h

)−1
(𝑱𝑇

h

(

𝒇+𝝆t

)

+ 𝝉𝜌 ).

The solution above is ill-conditioned as it neglects 𝜶 positiveness, i.e., it assumes the possibility of
negative activation of muscles, which is physiologically unfeasible.

4.4 Muscular Activity Prediction based on Model Reduction (𝜶̂MR)

In addition to musculoskeletal optimization techniques, an alternative approach proposed by [51]
relies on directly measuring human upper-limb joint-torques resulting from task-space forces. In
other words, it experimentally evaluates the transformation between end-point force capabilities
w.r.t. joint-torques bypassing the muscle- to joint-torques transformation. To reduce the dimen-
sionality of the original problem, Tanaka et al. [51] constrained the study on the most relevant
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agonist muscles per joint motion-dynamics. Recording muscle activation and joint-torques, gen-
erated by both uniarticular movements (positive and negative motions) at different joint-vector
(𝒒

h
) configurations, the authors devised a method to compute the activation level of the agonist

(most relevant) muscles given the joint posture, direction of motion (e.g., flexion or extension),
and torque. Hence, for a given 𝒒

h
, a unique muscular activation is associated for each joint-torque

(given its uniarticular direction). In this sense, the redundancy concerning muscle and joint-torques
is removed.
With this mapping, for a given 𝒒

h
and joint-direction, we can compute the maximum possible

torque at the 𝑖-th joint, 𝜏𝑚𝑎𝑥
𝑖 (based on maximum absolute values under maximum voluntary

contraction). This leads to a bijective mapping based on the matrix transformation 𝜫 (𝒒
h
,𝝉 h ) =

diag
(

𝜏𝑚𝑎𝑥
1 (𝒒

h
,𝝉 h ), . . . , 𝜏

𝑚𝑎𝑥
7 (𝒒

h
,𝝉 h )

)

Ða diagonal matrix composed of human upper-limb maximum

torque elementsÐthat can be used to compute the muscle activation as follows
biomecConstraints (𝜶 MR ):

𝜶̂ MR = 𝜫−1 (𝒒
h
,𝝉 h )𝝉 h , (8)

where 𝜶̂ MR = [𝛼1, . . . , 𝛼7]
𝑇 ∈ M7 provides the predicted muscle activation, and an equality con-

straint to (1b).
Note however 𝜫 (𝒒

h
,𝝉 h ) has a nonlinear dependency to the joints positions and torques, par-

ticularly torque direction. This is because each functional 𝜏𝑚𝑎𝑥
𝑖 (𝒒

h
,𝝉 h ) approximates the muscle-

dynamics linearized at given joint posture and expected motion/torque direction. That is to say,
the maximum torque for each joint depends not only on its position but also on its motion and
torque direction (particularly, the torque which implicitly defines extension/flexion of antagonistic
muscles). Hence, 𝜶̂𝑇

h
𝜶̂ h is non-symmetrical w.r.t. 𝝉 h .

5

Equipped with joint configurations and sign/directions of the torques, we can build the matrix of
maximum torque elements 𝜫 (𝒒

h
,𝝉 h ) and compute the muscular activation (8). The main advantage

of the solution (8) compared to (7) is the reduced computational complexity obtained from removing
the redundancy.

Other Methods for Muscular Activity Estimation

In addition to optimization and model-reduction based strategies, it is worth mentioning the work
[40] which similarly to (8) also presents an efficient and fast solution to output muscular activity
estimation based on the user configuration and external forces. In contrast to previous methods,
the work in [40] addresses the problem from a machine learning point of view by means of a
GPR-based learning algorithm combined with a simulated dataset of arm joint configurations,
endpoint forces and resulting muscular forces from Saul et al. musculoskeletal model [45] and
the OpenSim simulator [21]. In this context, the resulting metric provides approximate, but faster
results compared to (7), and could be straightforwardly used with our comfort-based planning
without loss of generality. Notice that, if well-trained, any similar strategy will lead to the same
results as in (7).

5 PREDICTING THE HUMAN KINEMATIC CONFIGURATION Ð THE KINEMATIC
MINIMUM-EFFORT ASSUMPTION

For a given forceful task, our goal is to plan robot joints and grasp configurations, and an object
pose that optimizes human comfort according to muscleAct in (4). However, as stressed in the
problem definition, Section 3, the robot can only shape the set of all feasible human configurations

5Experimental data to compute the maximum torque matrix 𝜫 (𝒒
h
,𝝉h ) in (8) is found in [51]. Proportions for maximum

joint-torques follow a similar pattern across individuals and, even for different body weights, differing only in magnitude.
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Fig. 4. Muscle effort variation within human’s kinematic redundancy: worst-case for 𝒒
h
(light-blue) compared

to KMEA configuration for same end-pose and force. Two different arm postures for cutting force 𝑓6 (with

direction shown by the red arrows) are shown in [A] and [B] for worst-case and KMEA, respectively.

Qh (𝒒r
, o𝒙rg, 𝒙h ,

w𝒙𝑡 ,
o𝒙 t), which in turn raises the question of how the human will choose their

configuration and if that will satisfy our comfort metric.
In biomechanics literature, e.g., [5, 26, 27, 52], it is often assumed that humans resolve this

redundancy consistently in the most efficient manner in terms of minimizing the muscle activa-
tion required to transmit a given task-space force. We call this the Kinematics Minimum Effort
Assumption (KMEA) and adopt this assumption in this work.

In other words, KMEA relies on human’s innate self-motion optimization scheme in the integrated
joint-muscle nullspace, that is, the nullspace projection from task-space to muscle-space. The self-
motion optimization can therefore be described by

𝒒̂
h
= arg min

𝒒
h
∈Qh,lim

{

𝜶̂𝑇
(

𝒒
h
,𝝉 h (𝒒h

)
)

𝜶̂
(

𝒒
h
,𝝉 h (𝒒h

)
)}

𝑠 .𝑡 . 𝜶̂ ← biomecConstraints
(

𝒒
h
, o𝒇

)

,

𝒒
h
∈ Qh (𝒒r

, o𝒙rg, 𝒙h ,
w𝒙𝑡 ,

o𝒙 t),

𝜶̂ ∈ M𝑚,

(9)

where biomecConstraints refers to the equality constraint defined either by (7), for static optimiza-
tion solutions, i.e., 𝜶̂ SO , or by (8), for model-reduction approaches, 𝜶̂ MR . The constraint 𝜶 ∈ M

𝑚

also ensures the optimal result is well posed. The set Qh is defined over (2a) and 𝝉 h is obtained in
(6) based on the joint configuration.

To better understand KMEA, take for example a task of cutting off a circular piece off a board,
shown in Figure 4. The board configuration is pre-set and the circle is divided into 16 discrete (also)
pre-set points and forces (15 N along the cutting direction). We computed feasible IK solutions for
such task satisfying the constraints in (9) with (7b). The dark blue curve depicts the optimization
following (9), that is, when human is at the most comfortable configuration (KMEA), whilst the light
blue depicts the worst (most uncomfortable) configurationÐi.e., the argmax from (9) which yields
the highest muscular activity. For two possible configurations Figure 4, A and B, our experience
is that configuration [B] is much more comfortable than [A], which coincides with the comfort
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metric assessment and experiments in Section 8. Moreover, at the proximity of joint-limits (position
𝑓11 has no feasible IK solution), we observe the soaring muscular activity cost (degradation in
comfort) as expected. Also, note the consistency of the metric at the circular closing (positions 𝑓16
to 𝑓1). Figure 4 also shows the importance of planning and control strategies in shaping the human
feasible response to comfortable configurations.

6 ENSURING GRASP AND ROBOT STABILITY

From the robot’s point of view, quasi-static forceful interaction imposes constraints over reachability
in terms of coupled kinematics and stability in terms of static equilibrium. The former ensures
the existence of a joint configuration 𝒒

r
satisfying (2) within the joint limits, that is, 𝒒

r
∈ Q𝒓 ,lim.

On the other hand, the grasp stability constraint describes the relationship between the force
applied on the object and its counterpart at joint-space with respect to the robot capability to
resist it. Given our assumption of a bimanual cooperative robot, 𝒒

r
= [𝒒𝑇

r
[1] 𝒒𝑇

r
[2]]𝑇 ∈ R𝑛 , where

𝒒
r
[1], 𝒒

r
[2] refer to the left and right arm configuration, the grasp stability can be computed from

the symmetric formulation from [54]. This formulation, however, leaves the forces at the grip
contacts unconstrained. Herein, we are also interested in checking the stability against insufficient
forces at the gripper contacts (e.g., if the frictional forces between fingers can prevent the object
from sliding) and deformation due to contact compliance. Imposing this additional constraint onto
the symmetric formulation [54], the robot stability against human exerted forces is checked by
graspStability:

𝑾 r𝒇 r
= −𝒇 ,

𝑱𝑇
r
𝒇

r
= 𝝉 r ,

|𝝉 r | ≤ 𝝉max
r

,

|𝒇 𝑟 | ≤ 𝒇𝑚𝑎𝑥
𝑟

(10)

where 𝒇
r
=[𝒇𝑇

r
[1],𝒇𝑇

r
[2]]𝑇 ∈ R12 is wrench vector at each robot gripper, and 𝑾 r ∈ R

6×12 is the
grasp matrix that maps the wrenches at the grippers to the reactive resultant task-space force and
torques on the object, that is, 𝒇Ðthis refers to the human applied force in the world frame, which
depends on the input force task o𝒇 and the planned object pose 𝒙o.

Similarly, 𝑱
r
∈ R12×𝑛 is a block diagonal matrix with both arms geometric Jacobians used to map

the wrenches at robot grippers into the joint-space manifold yielding the augmented joint-torque
value 𝝉 r=[𝝉

𝑇
r
[1],𝝉 r [2]

𝑇 ]𝑇 ∈ R𝑛 . The robot cooperative stability is thus secured if the required
joint-torque, 𝝉 r , and wrench at gripper point, 𝒇 𝑟 , are respectively within the torque limits 𝝉max

r
∈ R𝑛

and gripper force limits 𝒇𝑚𝑎𝑥
𝑟 = [𝒇𝑚𝑎𝑥

𝑟1
,𝒇𝑚𝑎𝑥

𝑟2
]𝑇 ∈ R12. We skip further details on the mathematical

formulation as they lie beyond the scope of this work, yet can be found in our previous work [16].

7 PLANNING ś QUANTITATIVE ANALYSIS

This section explores quantitative aspects of the proposed comfort-based planning strategies under
different scenarios (exerted force (o𝒇 ), human-robot positioning (𝒙h ), tool transformation (w𝒙𝑡 ),
weight (𝑚t) and tooltip position on the object, o𝒙 t). In all scenarios, the simulated Baxter Robot
needs to plan to grasp and to position an object in the human’s workspace to perform a fHRC task,
as shown in Figure 2. Planning decisions were made according to the following planners:

• Random-planner: Given a forceful operation, the robot randomly picks an object pose
within the reachable human-robot space (2) and only checks for static stability (10) and
cooperative geometric constraints (2). This planner acts as a baseline;
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Table 1. Average muscular activity effort (lower the better) normalized with Random-Planner (RndP) results

for 45 puncturing, 45 pulling and 45 cutting operations.

Musc. Act. Effort (




𝜶̂MR





) Musc. Act. Effort (




𝜶̂ SO





)

RndP Fixed-Pose MR-Comf-Planner RndP Fixed-Pose SO-Comf-Planner

puncturing 1 .920 ± .310 .606 ± .342 1 1.279 ± .517 .341 ± .145

Pulling 1 1.189 ± .445 .371 ± .141 1 1.073 ± .336 .262 ± .087

Cutting 1 1.164 ± .434 .817 ± .205 1 2.340 ± .953 .610 ± .193

• SO-Comf-Planner: Our comfort-based planner from (1) withmuscular activity effort (




𝜶̂ SO





)
computed from static optimization (7);
• MR-Comf-Planner: Similarly, this planner optimizes (1) but with muscular activity effort
(




𝜶̂ MR





) computed from the model-reduction strategy (8);

In addition to the above planners, we also defined a fixed-pose configuration inbetween human
and robot (more specifically, 40 cm in front of the shoulder)Ðand, the robot plans grasps such that
both geometric and stability constraints are satisfied for all scenarios.

The scenarios included the human performing puncturing, pulling and cutting operations with
the aid of the robot. The force directions for puncturing and pulling were taken normal to the
board in opposite directions, while for the cutting task, it was aligned with the cutting direction.
For each forceful task, we also designed different simulations based on varying the force magnitude
(o𝒇 ), human-robot positioning (𝒙h ) and tool weight (𝑚t) and length (which gives way different
poses of the tooltip w.r.t. the wrist frame, i.e., w𝒙𝑡 ). To obtain a realistic representation of the
required forces during planning stage, before the experiments, we estimated force magnitudes using
a force-torque sensor. For quantitative purposes, planning algorithms were executed in Matlab
using multistart SQP-solver and scatter-search-based surrogate [55] for global optimization. For
the muscular effort assessment with





𝜶̂ SO





 and computing the biomechanics constraints (7), we
also exported musculoskeletal model parameters from [45] using OpenSim simulator [21].

7.1 Optimization Performance

This subsection illustrates the comfort gains, in terms of reduced muscle-activity, from both comfort-
based planners in contrast to random and fixed-pose configurations. To this aim, we devised 135
different scenarios for each plannerÐinvolving 45 puncturing, 45 cutting and 45 pulling tasks with

• Three different force magnitudes {7.5, 15, 30}N;
• Three human-robot positioning (𝒙h ): {[0, 1.2], [0.2, 1.4], [−0.2, 1.0]}m along the floor plane
with constant height and orientation (human-robot facing each other);
• Five tools (weight (kg), length (m) ∈ {[.35, .1], [.1, .1], [.7, .1], [.35, .5], [.35, .15]}).

Table 1 shows the statistics of the three planners and the fixed-pose results for the puncturing,
pulling and cutting forceful tasks. For each output, we computed the muscular activity effort from




𝜶̂ SO





 and




𝜶̂ MR





 using KMEA based on the corresponding muscle-activity prediction criteria.
For the first part of the table (first three columns), we computed the human kinematics that

minimize (9) according to 𝜶̂ MR , i.e., biomecConstraints defined in (8) and compute the corresponding
muscular activity effort according to





𝜶̂ MR





. The same steps are taken for the second part (last three

columns), i.e., we computed KMEA and muscular activity effort according to




𝜶̂ SO





. To improve
readability, results from the random-planner were used as baseline to normalize the results of other
planners.

ACM Trans. Hum.-Robot Interact., Vol. , No. , Article 1. Publication date: August 2021.



1:14 Figueredo, et al.

Table 2. Muscular activity effort (lower the better) for min-max optimization over 5 puncturing and 10
sequential cutting operations normalized with Random-Planner (RndP) results.

𝑓1

𝑓2

𝑓4

𝑓5

𝑓3

𝑓6

𝑓10

𝑓15





𝜶̂ MR











𝜶̂ SO







RndP 1 1

Fixed-Pose 0.785 0.504

MR-Comf-Planner 0.344 0.425

SO-Comf-Planner 0.465 0.300

As expected, SO-Comf-Planner outperforms others for comfort-metric based on




𝜶̂ SO





, while

MR-Comf-Planner yields superior results when using




𝜶̂ MR





. In a practical application this implies

that, for




𝜶̂ SO





, the random-planner and fixed-pose configuration compared to our comfort-planner
respectively demand in average up to 2.9× and 3.8× more muscular activity for puncturing, 3.8×
and 4.1×more for pulling; and 1.6× and 3.8× for cutting tasks. This corroborates with our argument
and validates the performance both comfort-based planners. Another point to highlight is that the
improvements from the SO-Comf-Planner are more noticeable w.r.t. to other planners.

On the other end, the fixed-position often yields worst results with large uncertaintyÐreflected
in the large standard deviation. This is due to the fact that a simple pose as intuitive as it is (a board
positioned in front of a user) cannot cover all different interaction possibilities comfortably which
calls for an optimization method that guarantees reduced muscular requirements.

The consistency of our approach and results, particularly for the static optimization, is reflected
by the lower standard deviation. While one limitation is the required planning time. To compute
one solution, the SO-Comf-Planner took 32.2 seconds on average while the MR-Comf-Planner took
23.9 seconds.

7.2 Optimization Performance: Multiple-Tasks

We also assessed planning performance to address multiple tasks producing a configuration that
minimizes the worst muscular activity effort among those tasks. This is done by extending the
comfort-based planner from one task in (1) to a min-max optimization-based planner, that is,

𝒒opt
r
, o𝒙

opt
rg = arg min

𝒒
r ,

o𝒙rg

max
ℓ∈{1,..., |ℓ | }

{

muscleAct
ℓ

(

𝒒̂h,ℓ ,
o𝒇 ℓ

)}

𝑠 .𝑡 . same constraints from (1b) − (1d) for each task ℓ .

Here, we considered fifteen sequential tasks, i.e., |ℓ |=15, involving 5 puncturing operations followed
by a straight line cutting divided in 10 discrete operations, as shown in the top-left figure in Table 2.
Similarly to the previous analysis, both comfort-based planners produced a robot response

capable of reducing the muscular-activity of the human counterpart. Particularly, SOComf-Planner
outperforms others for





𝜶̂ SO





 comfort-metric, whilst MRComf-Planner for




𝜶̂ MR





. The values in
gray corresponds to one comfort-based planner with a different assessment metric, e.g., evaluating
the SOComf-Planner with





𝜶̂ MR





. The Random-Planner yields the worst results and demands up
to 3.3× more muscular activity compared to SOComf-Planner. The fixed pose scheme, in this
case, provides better results compared to the purely Random-Planner, yet it demands at least 1.7×
more muscle activation than our comfort-based planners. This highlights that it is possible to plan
for multiple operations with human comfort in mind, ensuring no operation demands too much
muscular activity. This result paves the way for integrating more elaborate motion/task planners
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Puncturing: Comfort-Planner Puncturing: Random-Planner Puncturing: UserDef-Pose

Cutting: Comfort-Planner Cutting: Random-Planner Cutting: UserDef-Pose

Fig. 5. Experiments showing forceful human-robot collaborative puncturing (top row) and cutting (bottom

figures with cutting direction indicated by the red arrows) and robot configurationsÐestablished by the

Comfort-Planner, Random-Planner, and UserDef-Pose.

that consider continuous and/or sequential forceful interactions, e.g., [15, 17], while minimizing
the total muscular activity required from the human co-worker.

8 HUMAN-ROBOT EXPERIMENTS

This section presents a series of human-robot experiments focused on validating comfort assump-
tions and evaluating the performance of the proposed comfort-based planning scheme during
forceful cooperative motor tasks in unconstrained real-world scenarios with the Baxter robot. The
experimental setup6 used in our study is illustrated in Figure 5.
Healthy Participants (A to E, 5, 1 female) of an average age of (30.5 ± 6.5) were recruited. All

participants but one was right hand dominant. Participant A was used to conduct the pilot studies,
and the data is not included here. To reduce stress of interacting with the robot participants,
on arrival, were suggested to actively engage with the Baxter robot to familiarize them with it.
This commonly involved the participants manipulating Baxter’s arms and exploring its gravity
compensation mode. Participants were then briefed on the two fHRC tasks they would conduct:

• Puncturing (Figs. 1 and 5):
ś A hard foam board (2.5 cm depth), designed for resisting puncturing actions, was prepared
for each of the participants;

ś Equidistant locations are marked on each board, representing puncturing targets;
ś The participant begins the task by moving their dominant arm towards the target while
holding the puncturing tool in a power grip;

6Experiments were approved by the ethics committee of the University of Leeds (ID: MEEC 17-034) respecting the Declaration
of Helsinki. An exclusion criteria was applied, ensuring that people with known neurophysiological disorders or injuries
were not selected. All participants were in good physical condition, followed experimental guidelines (e.g., use of sports gear,
avoid caffeine or exercise in both days prior to the experiment) and provided their full consent towards the experiments.
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ś The participant then proceeds to puncture the target, and subsequently removing the tool
from the board, lowering their arm to a neutral position close to the body;

• Cutting (Figs. 1 and 5):
ś A craft foam board (0.5 cm depth) is prepared for the participants to cut through;
ś Similar to the puncturing task, a target cut pattern is designed for each trial and board, by
preparing the board with two hollow squares per trial. Each square indicates the start and
finish location for the cut line. For safety, participants do not cut across the board;

ś With a precision grip, the participants initiate the task by raising their dominant arm
towards the "Start" square of the indicated trial;

ś The participant then proceeds to cut the board, within the space between the hollow
squares, until he/she reaches the "End" square;

ś The participant then removes the cutting tool from the board and returns their arm to a
neutral, close to body position;

For planning purposes, we assumed a puncturing force, normal into the board, with magnitude
15N, and a cutting force, aligned with the cutting direction, with maximum magnitude 10N.

Prior to beginning the task, the participants positioned themselves in the work space in their
desired position. This position was marked on the floor, to ensure in each trial a quasi equal
positioning of the participant. To mitigate any possible effects of fatigue, adequate rest periods was
ensured between trials. The tasks were designed to measure different levels of comfort in three
distinct conditions as defined by the robot planner strategy. Each participant completed a minimum
of 42 trials in all (7 trials per condition). The three different configurations were offered in a random
order to avoid any bias:

• Comfort-Planner: Our comfort-based planner from (1) with muscular activity effort (




𝜶̂ SO





)
was computed from static optimization (7). 7 The planned object pose and robot configuration
are shown in Figure 5 (left) for the two operations.
• Random-planner: Similar to the Random-Planner defined in Section 7. Yet, all users had the
same human to board pose transformation, which was selected randomly prior to the start of
the experiments. The robot planned grasps and configurations accordingly. This was done to
maintain consistency between participants’ performance across the experiments. This object
pose and robot configuration can be seen in Figure 5 (centre), for the two operations.
• UserDef-Pose: Similar to the fixed-pose in Section 7, but different for puncturing and cutting.
Also, instead of taking a heuristic-based approach, the configurations were selected based on
previous human-robot experiments where six different participants were asked to identify
preferred (comfortable) positions for both operations. The userDef-Pose was built on the mean
pose of the board w.r.t. the human, after outliers removal. Similar to the Random-Planner, for
consistency, all users had the same human to board pose transformation. This object pose
and robot configuration can be seen in Figure 5 (right), for the two operations.

In addition to the above operations, participants performed similar tasks at maximum voluntary
contraction (MVC) before and after the experiments which served as a baseline assessment of
forces and to confirm that there were no changes in the force capability during the experiment.
For the human kinematics tracking, we used Optitrack system (at 120Hz) synchronized with the
force acquisition (at 1 KHz) from the robot and the electromyography (EMG) recording system
(Noraxon wireless DTS sensors, model 546 with 10Hz high-pass filter and low-pass at 1.5KHz).
Recorded data were further processed with Spike2 and Matlab. Each individual muscle activity was
normalized against the summed muscle activity and generated force of each trial. The resulting

7Given the forceful nature of the tasks, it was seen in the pilot experiments that participants were fatigued when performing
too many trials. Hence, only one comfort-based planner was implemented which suffices to illustrate its advantages.
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Fig. 6. Measured summed muscle activity (lower the better) and respective task-space force values; each

marker represents a trial from the corresponding subject. The colour shaded areas represents a cluster

of trials with similar characteristics under the same conditionÐas established by the Comfort-Planner,

Random-Planner, and UserDef-PoseÐwithout the outliers (defined as those over 3 scaled median abso-

lute deviations from the remaining points). For simplicity, units are displayed as arbitrary units (a.u.).

The Summed Muscle Activity and Force (Mean ± SE) for the Puncturing Task for each condition are:

UserDef-Pose [877.20±480.01; 9.10±1.55], Comfort-Planner [512.69±236.77; 8.26±1.31] and Random-

Planner [868.34±545.61; 12.21±1.76]. The Summed Muscle Activity and Force (Mean ± SE) for the Cut-

ting Task are: UserDef-Pose [1076.38±419.12; 5.34±1.21], Comfort-Planner [882.86±474.94; 5.04±1.36] and
Random-Planner [1322.61±562.14; 6.80±1.05]

database was also manually scrutinised to ensure quality and experiments with data loss were
removed, e.g. camera occlusion and EMG noise.

The wireless EMG-sensors were anatomically placed over 9 different muscles selected to include
the main muscular actuators for the corresponding motor tasks across the shoulder, elbow and
wrist joints. Tables 4 and 5, both in Section 9, detail the muscles description, body functions, and
relevance to the forceful tasks.
Finally, for clarity, the following definitions will be used hereafter.

Predicted Muscle Activation Level refers to the estimated muscle activation level 𝜶̂ ∈ M𝑚 , for
the musculoskeletal model with 50-muscles from [45];
Predicted Muscle Force refers to the estimated muscle force 𝑓𝑖,𝑚=𝛼𝑖𝐹𝑖 , that is, the force at the
𝑖−th muscle given by the predicted activation 𝛼𝑖 scaled by its maximum isometric force 𝐹𝑖 ;
Measured Muscle Activity refers to the muscle activity measured from EMG recordings from
muscles, which is related to the force generated by selected muscles.

8.1 Comfort Performance from EMGs Biofeedback

As expected, the different configurationsÐestablished by the Comfort-Planner, Random-Planner,
and UserDef-PoseÐinvoked different muscle recruitment patterns from the subjects, generating
varying levels of force and muscle activity for each trial and condition. In this section, our objective
is to analyze if, during the above experiments, the comfort-planning strategy consistently reduced
muscular effort, when compared with the Random-Planner and the UserDef-Pose strategies.
We present the data we collected in our experiments in Figure 6 and in Table 3.
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Table 3. The Summed Muscle Activity of each subject presented as the Mean ± Standard Deviation for

both Puncturing and Cutting tasks. Comparison across planners is thus possible and highlights subjects’

preference to the planners. The values for Comfort-Planner for the Puncturing task were consistently the

lowest, highlighting its role in reducing muscle effort to complete the task. For the Cutting Task, such a

relationship is not as clear, with cases like Subjects C and D presenting a higher values for the Comfort-Planner.

Subject B Subject C Subject D Subject E

P
u
n
ct
u
ri
n
g UserDef 495.58 ± 132.76 1105.00 ± 475.87 1639.67 ± 430.74 526.72 ± 116.17

Comfort 361.67 ± 54.81 813.66 ± 173.86 633.52 ± 304.06 345.12 ± 102.02

Random 577.52 ± 182.18 883.16 ± 231.48 1675.83 ± 210.15 336.83 ± 123.44

C
u
tt
in
g UserDef 696.31 ± 242.30 1037.05 ± 114.04 1698.91 ± 209.35 942.67 ± 251.24

Comfort 696.43 ± 194.50 1568.48 ± 280.71 192561 ± 600.57 574.36 ± 53.29

Random 725.10 ± 124.84 713.24 ± 110.90 1882.23 ± 508.40 1380.04 ± 100.56

Figure 6 presents all the trials by all the subjects. Each point is a trial. We plot the measured
summedmuscle activity and their respective task-space force values for puncturing (left) and cutting
(right). Each point is labelled with the human subject (B to E) performing that trial. Each point is
colored according to the planner used for the trial, i.e. the Comfort-Planner (blue), Random-Planner
(grey) or UserDef-Pose (red). To make visual comparison between planners easier, a condition area
is drawn for each planner using the boundary data points from trials of that planner, excluding
outliers (i.e. those over 3 scaled median absolute deviations from the remaining points).
Table 3 presents the data focusing on each subject separately. For each subject (B to E), we

present the mean and standard deviation of the 7+ trials under each planner, for puncturing and
cutting. The lowest mean muscle activity of each subject is emphasized in bold.
Below, we discuss the data separately for puncturing and cutting. We also perform statistical

significance tests, to test for our claim that the comfort planner produces consistently lower muscle
activity when compared to the other planners.
Puncturing. For the puncturing task, the data indicates a reduction in the muscular effort when

the Comfort-Planner is used. In Figure 6, the resulting blue condition area presents the lowest
summed muscle activity and force values. It also presents a narrower area than the remaining
conditions, as expected. The Random-Planner yields the worst results (least comfortable), while the
highly scattered UserDef-Pose results reveals that general (one-fits-all) solutions do not sufficiently
constrain the forceful operation to a comfort area. This leads to a larger variability amongst
participants which in turn yields both comfortable and uncomfortable executions (even for the
same participant on different trials). The smaller variation in the Comfort-planner trials (when
compared with the variations of the UserDef and Random planners) may be suggesting that
while the UserDef and Random data points are sampled from a larger underlying distribution, the
Comfort-Planner results are sampled from the smaller subset that requires less muscular activity.
Overall, the centroid of the UserDef-Pose and Random-Planner condition areas respectively yield
muscular-activity 69.5% and 72.5% larger compared to the Comfort-Planner condition area, and
similarly 29.8% and 60.2% larger forces.
Table 3 also supports our claim that the comfort planner produces lower muscle activity at the

subject level. The comfort planner has the lowest mean muscle activity for three of the four subjects.
For the fourth subject (E), while the Random Planner mean muscle activity is lower, the Comfort
Planner value is extremely close.
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To test our hypothesis, we have performed a repeated measures ANOVA to compare the effect
of planner-type on each subject’s performance in terms of muscle activity. Significant difference in
means was assessed posthoc, and a Bonferroni-Holm correction applied (𝑃ℎ). This was all performed
using the JASP software (JASP 0.14.1.0., University of Amsterdam). Overall, the mean measured
muscle activity was different for the puncturing task (F = 18.45, p< .001, df= 2) significantly different
between Comfort-planner (F = 10.07, df =3, p < .001) and Userdef (𝑃ℎ < .001) and also with Random
(𝑃ℎ < .001). The means of Userdef and Random were not (𝑃ℎ = 0.39) significantly different. In other
words, our hypothesis that the comfort planner produces consistently lower muscle activity is
indeed valid and statistically significant.
Cutting. Results for the cutting task are less clear. In Figure 6, different planners reveal smaller

differences when looking at the overall area per condition.
The subject-specific evaluation in Table 3 is also not completely convincing, but for two of the

four subjects (B and E) the Comfort-Planner produces minimal muscle activity. An exceptional case
was Subject-C response for the cutting task. Subject-C data shows lowest mean muscle activity for
the Random-Planner, whereas the Comfort-Planner performs worst (This result agrees with the
responses of Subject-C to the questionnaire, which we will present in Section 8.2). There are two
possible scenarios to explain this: either the musculoskeletal model didn’t properly cope with the
real muscle activity model from Subject-C or the muscle-nullspace response was not optimized
for the specific task-space. For the second possibility, it is relevant to highlight that Subject C has
expressed in the Questionnaire additional comments to be unfamiliar with DIY tasks. In this sense,
and taking note that the cutting was a harder task to understand and perform compared to the
puncturing, it is possible that the unfamiliarity prevented a proper optimization in the nullspace. In
other words, the motor control system was not aware of which forces to expect and therefore did
not respond as predicted (shown in Figure 7). From this perspective, additional executions would
likely improve the overall expected response. Yet, it is worth noticing that this effect could also be
mitigated by taking uncertainties related to human response into consideration.
There is another important difference between the Puncturing task and Cutting task: The

Puncturing task was much shorter (both in terms of the time it takes and the distance the tool needs
to travel) than the Cutting task. This has negative consequences for the Cutting results in two ways.
First, during cutting, there were more opportunities for the subject to change body posture, or the
grasp on the tool. Since our model assumes a fixed human body posture, this represented a larger
deviation from our assumptions, when compared with the Puncturing case. Second, the length of
the Cutting tasks also meant more dynamic activity of the muscles which in general results in less
reliable and more noisy readings with the EMG biosensors. These aspects of the task might have
contributed to the weaker results we observe with Cutting.
Statistical significance tests (including Subject-C) produce inconclusive results for the Cutting

task. The mean of the measured muscle activity was not significantly different for the planners
across subjects for cutting (F =0.39, p = 0.68, df =2). There was no difference in means across the three
planners - Comfort-planner to Userdef (𝑃ℎ = 1) and with Random (𝑃ℎ = 1). Also means of Userdef
and Random were not (𝑃ℎ = 1) significantly different. Still, we note that, if we exclude Subject-C,
UserDef-Pose and Random-Planner condition areas in Figure 6 respectively yield muscular-activity
26.6% and 58.6% larger compared to the Comfort-Planner condition area.

Muscle-Activity Prediction: We also analyzed the prediction capabilities of the comfort metric




𝜶̂ SO





.
Figure 7 presents the predicted summed muscle forces from the musculoskeletal model [45], i.e.,
the norm of the force generated by the𝑚=50 muscles. The values were computed by taking the
measured human kinematics, i.e., 𝒒

h
and measured task-space force o𝒇 (vertical axis in Figure 7).
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Fig. 7. Predicted muscle forces from musculoskeletal model and corresponding

task-space forcesÐcondition areas were constructed as in Figure 6

The predicted condition
areas are consistent with
the measured values in
Figure 6, particularly for
the puncturing task. The
cutting task presented
larger differences with re-
spect to the measured
data. This reflects par-
ticipants perception of
puncturing being an eas-
ier to understand/ imple-
ment task (see Subsection
8.2).

The puncturing task also presented a linear behaviour w.r.t. to the task-space force to predicted
muscle activation and forces, as expected by combining (6) with (7b). That is, a linear increase in
task-space force should reflect a linear increase in muscular activation. Similar behaviour is also
observed for the cutting task based on the Comfort-Planner scenario.

8.2 Participants’ perception of comfort

After the experiments, for each forceful task and robot configuration, participants were asked to
complete a psychometric questionnaire. Participants were asked to grade (1 to 5) the following
questions (in addition to providing further comments on the experiments):

(1) How safe have you felt during the robot interaction?
(2) How difficult was the task for you, in terms of the kinematics (reaching for the task)?
(3) How difficult was the task for you, in terms of the required force?
(4) Hownatural/fluidwas the interaction for you? (How likelywere you to choose the board/robot

pose?)
(5) Overall, how comfortable was the task for you?

The scores are summarized in Figure 8. For questions 1, 4 and 5, the higher the grade the better the
user perception about the interaction while questions 2-3 work the other way around.

From Figures 8(a-b), it is clear that participants agreed the puncturing task was more comfortable,
safer and easier to execute (both in terms of their body posture as well as in terms of the required

Comfort

Fluidness
Perception

Safety

Difficulty:
Kinematics

Difficulty:
Force

SO-Comf-Planner
Random-Planner
User-Planner

Comfort

Fluidness
Perception

Safety

Difficulty:
Kinematics

Difficulty:
Force

Comfort

Fluidness
Perception

Safety

Difficulty:
Kinematics

Difficulty:
Force

Participant C

(a) Puncturing (b) Cutting (c) Cutting-C

Fig. 8. Average response from participants according to questions in Subsection 8.2 for (a) puncturing; (b)

cutting (excluding subject C); and (c) individual cutting task for Subject C
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Fig. 9. Norm of the kinematics error between predicted KMEA and measured joints, that is,
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were constructed as in Figure 6.

forces) compared with the cutting task. For the puncturing task, participants’ perception of the
Comfort-Planner and UserDef-Pose configurations were similar with a small improved comfort
perception to our planner. Performance for the Random-Planner was considerably worse, as
predicted by both musculoskeletal model and the measured muscle activity shown in Figures 67.
For the cutting task, participants expressed the robot behaviour w.r.t. the Comfort-Planner

to be more comfortable and safe, yet less intuitive than the UserDef-Pose. Participants graded
the UserDef-Pose response to be the less difficult (w.r.t. the kinematics) which corroborate with
participants general comments on intuitiveness. Curiously, participants also graded the UserDef-
Pose to be less force demanding which contradicts the readings from task-space force sensors and
EMGs data, shown in Figure 6.
An exceptional case was Subject C’s responses for the cutting task, as shown in Figure 8(c).

The participant expressed the Random-Planner resulting configuration as the best both in terms
of safety and comfort as well as in terms of being less difficult, whilst considered the Comfort-
Planner the worst in all questions. The results for this participant differed completely from the
other participants in this task, yet participant’s consideration was also captured from the EMGs
response as discussed previously.

All participants reported that the cutting task was more difficult to execute than the puncturingÐ
which agrees with the general response in Figure 8. Subjects C-D also commented they needed to
increase their force during task as the task was not as fluid. Subject C has additionally expressed to
have never done DIY tasks. Subject D was the only participant to have performed HRI experiments
prior to this work, yet all participants reported to have enjoyed the experience and have found the
fHRC to be safe.

8.3 Quantitative Analysis of KMEA

During fHRC experiments, participants were free to perform the tasks in the way they felt more
comfortable, which in turn implied slightly different human kinematic configurations compared to
the ones predicted and therefore different musculoskeletal response.
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Table 4. Selection of muscles and their respective functions associated with the upper-limb [8].

Code Name Function

PM Pectoralis Major Flex and medially rotate shoulder joint, horizontally adduct humerus
towards opposite shoulder

AD Anterior Deltoid Flex, medially rotate and horizontally adduct the shoulder

PD Posterior Deltoid Extend, laterally rotate and horizontally abduct the shoulder

LD Latissimus Dorsi Extend, medially rotate and adduct the shoulder joint

BB Biceps Brachii Flex the elbow, supinate the forearm, assist to flex the shoulder

LT Triceps B. (Lateral head) Extend the elbow

MT Triceps B. (Medial head) Extend the elbow, extend the shoulder, assist to adduct the shoulder

FR Flexor Carpi Radialis Extend the wrist, abduct the wrist, assist to flex the elbow

ER Extensor Carpi Radialis Flex the wrist, abduct the wrist, may assist to flex the elbow

To quantitatively analyze KMEA, for each trial, we computed the KMEA kinematics and corre-
sponding predicted muscle activity effort and compared the outputs with participants’ results. The
difference between predicted and real data is shown in Figure 9. The 𝑦−axis shows the kinematics
error norm in term of joint values from predicted KMEA (𝒒̂

h
) and real measured joints (𝒒

h
)Ðthat is,
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. The 𝑥−axis depicts the predicted muscle activity effort from all trials 𝜶̂
(

𝒒
h

)

Ðcomputed

from (7)Ðcompared to the values associated with the KMEA configuration, that is, the muscle

activity prediction error norm due to the KMEA,
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implies zero predicted muscle-activity error, i.e., 𝜶̂
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. The closer to

0, the better is the KMEA prediction.
In both puncturing (left) and cutting (right) tasks, the muscular effort, as shown in Figure 9,

remained close to predicted muscular minimum effort value. Yet, the puncturing task allowed
for a larger kinematic redundancy from participants while maintaining small variations of the
muscular effort value. This is particularly clear for configurations based on the Comfort-Planner
(blue cluster) which were able to accommodate larger joint-deviations without undermining muscle-
activity. Configurations based on the Random-Planner forced participants to larger deviations
from the KMEA assumption for both puncturing and cutting scenarios. Such behaviour may be
associated with the difficulty of visualizing the task from such non-intuitive random configurations
(as highlighted by participants). The muscular effort variation is also higher in the cutting task
compared to the puncturing and more liable to increase even with small kinematic changes.

9 INDIVIDUAL MUSCLE SELECTION AND ASSESSMENT

This section presents an additional discussion about the muscle selection, their relevance to the
task, and a thorough assessment of measured activity of individual muscles.

9.1 Muscle Selection

For all experiments in Section 8, the wireless sensors were placed in 9 different anatomical positions
selected to include the main actuators for the corresponding motor tasks across the shoulder, elbow
and wrist joints. Table 4 details the muscle code used and their body functions. It is important to
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Table 5. The ratio between the predicted least summed muscular force







𝒇𝑚








 from the selected muscles

compared to the 50 muscle segments in [45].

Comfort-Planner Random-Planner UserDef-Pose

Puncturing 0.780 0.896 0.855

Cutting 0.654 0.609 0.537

highlight that the 9 EMGs sensors are in fact covering 16 individual muscle segments from the
model in [45]. This is due to the fact that it is difficult to fully isolate muscle segments activities from
certain muscles in real-world unconstrained applicationsÐe.g., although BIClong and BICshort
presented in [45] have different contributions, anatomically, they belong and are considered just
segments of the BB. The 16 corresponding muscle segments from the musculoskeletal system [45]
are PECM{1,2,3} DELT{1,3}, LAT{1,2,3}, BIClong, BICshort, TRIlat, TRIlong, TRImed, FCR, ECRB,
and ECRLÐmuscle code from OpenSim [21].

To better understand the relevance of the muscle selectionÐand validate their importance prior
to the real experimentsÐto the planning results, we also computed the expected muscular force for
the 50śmuscles model in [45]. The ratio between the predicted muscle force stemming from the
selected muscles compared to the total muscle force of the upper-limb (generated by the 50-muscle
segments) is shown in Table. 5. As expected the selected muscles cover most of the total force
generatedÐabout 78% to 90% of the total muscle-force for puncturing and 54% to 65% for cutting.

9.2 Individual Muscle Assessment

In this subsection, we explore specificities of the muscle activation and analyze whether the
musculoskeletal model can predict which muscles are being activated during the fHRC.
Figure 10 presents the individual muscle recruitments against the total generated force, for all

puncturing trials (different vertical lines) performed under the comfort-planner strategy. From the
results, it is clear how each participant employs different muscle configurations to complete the
tasks, with AD, ECR, PD and BB generally being the most active muscles for the puncturing task
(for the cutting task, the most activated muscles were PM, PD, MT and FCR, yet for brevity we will
focus on puncturing). The muscle codes are described in Table 4.
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Fig. 10. Puncturing task dataset for the comfort-planner: compilation of the force generated and individual

measured muscle force data for all subjects and individual trials. Vertical lines represent individual trials,

populated with the measured data of each muscle recorded
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The experiment was designed with a fixed human grasp per operation, yet there was no constraint
on the human while executing the task. An unforeseen degree of freedom rose from the hand grip
the subjects were adopting while holding the tools. While in the puncturing task there is a fairly
limited number of possible grips (typically a diagonal volar grip is used), for the cutting, we have
noticed two distinct grips (internal precision grip and the diagonal volar grip). The immediately
noticeable effect of these distinct grip modes is on the FCR and ECR muscles, altering the subject’s
grasp force on the tool itself. This grasp force does not contribute directly towards the generated
force at the end-effector of the tool. At this stage, the impact towards our algorithm development
and model verification is minimal and the individual measured muscle force normalized by the
summed force is in most cases well distributed. Still, these different grips pose an interesting new
question to solve at a later stage.

10 CONCLUSION AND FUTURE-WORK

This work provides a human-comfort-based planner that improves robot decision making capabili-
ties in shaping human musculoskeletal response during a fHRC. Our planner relies on predictions
of the human-arm configuration and muscle to task-space mapping in order to deploy robot grasps
and configurations that tailor human collaborative action towards a less muscular demanding
interaction area.

The proposed comfort planning framework, agnostic to muscular activity estimation paradigms,
enables the robot to shape human kinematics and musculoskeletal response. Effectiveness of
our algorithm were first analyzed through different simulation scenarios. Furthermore, extensive
experiments on two distinct motor tasks (puncturing and cutting) have validated our comfort
and kinematic response hypotheses. Most importantly, results demonstrated the efficiency of the
proposed Comfort-Planner which is able to identify and plan collaborative actions leading humans
to exert smaller muscular forces. Experimental results have also shown that both random and user
defined poses fail to ensure satisfactory behavior for different participants which highlights the
importance of user-tailored planning solutions in order to improve fHRC acceptance. Results also
reveal the practical potential of the proposed strategy to reduce muscular load in manufacturing
and other industries through intelligent collaborative robots.
Among possible directions the proposed framework can lead to future findings, we highlight a

few. First, possible improvements w.r.t. muscle-activity prediction. Possible research focus would
either include online learning strategies, relying on musculoskeletal model calibration, or adding
robustness to the optimization to mitigate model uncertainties. The latter is more suitable for
practical applications due to the constraints in measuring biofeedback signals outside a laboratory
environment. In future works, we aim to assess additional human factors (e.g., safety-perception
[14, 35]) and task-specific execution (e.g., visibility criterion) to improve even further human
experience during a collaborative action. We are also currently investigating methods based on
precomputing a comfort map from KMEA for the human reachable space to speed up the comfort
assessment, particularly for real-time control applications. Finally, we will also explore fHRC
positioning influence over the human grasp. For instance, taking the human grasp clustering in
[24, 47], we may explore if the robot can modify the human grasp for a given task.
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