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THE MANY INTEGRAL GRADED CELLULAR BASES

OF HECKE ALGEBRAS OF COMPLEX REFLECTION GROUPS

C. BOWMAN

We settle several long-standing problems in the theory of cyclotomic Hecke algebras: for each charge
we construct the integral cellular basis predicted by Ariki’s categorification theorem. We hence prove
unitriangularity of decomposition matrices and Martin–Woodcock’s conjecture.

Introduction

There are two remarkably successful approaches to the study of Hecke algebras of symmetric
groups: the first is via geometry and the second is via categorical Lie theory. The Kazhdan–Lusztig
basis has deep geometric origins (arising as the shadow of an intersection cohomology sheaf on a
variety); this basis enjoys many positivity properties, however it is inhomogenous with respect to
the Hecke algebra’s graded structure. The graded Murphy basis arises in categorical Lie theory, it
encodes the graded induction and restriction along the tower of Hecke algebras, and it is simpler
and more explicit. The most important property shared by the Kazhdan–Lusztig and graded
Murphy bases is that they are both integral cellular bases [KL79, HM10].

The complex reflection groups were classified into the infinite series G(ℓ, d, n) and 34 exceptional
cases by Shephard–Todd [ST54]; their corresponding Hecke algebras were later defined by Ariki
and Koike [AK94, Ari95], for the infinite families, and Broué–Malle–Rouquier [BMR98], in general.
For every real reflection group, Lusztig has constructed many different Kazhdan–Lusztig bases for
the associated Hecke algebras [Lus83, Lus03]. However, this is as far as the geometric picture (and
the underlying Kazhdan–Lusztig bases!) can be pushed: there do not exist Kazhdan–Lusztig bases
for complex reflection groups or their Hecke algebras.

Categorical Lie theory picks up where geometry leaves off (one of the most spectacular examples
to-date being [EW14]). In particular, while complex reflection groups do not possess Kazhdan–
Lusztig bases, Ariki’s categorification theorem suggests that every choice of charge should give rise
to a corresponding cellular structure on the Hecke algebra of type G(ℓ, 1, n) [Ari02]. We prove
that every charge does indeed give rise to an integral cellular basis on the Hecke algebra of type
G(ℓ, 1, n), as has long been hoped and expected. Namely we generalise the graded Murphy bases
from asymptotic charges [HM10] to all possible charges on all Hecke algebras of type G(ℓ, 1, n).
(Corresponding bases for type G(ℓ, d, n) can be constructed from ours via Clifford theory [HMR].)

In order to state our main result, we first require some notation. For the purposes of the
introduction, we let k be a field. Given σ = (e;σ0, σ1, . . . , σℓ−1) ∈ N>1 × Zℓ, we define the
cyclotomic Hecke algebra to be the k-algebra generated by T0, T1, . . . Tn−1 subject to the relations

(Ti + q)(Ti − 1) = 0 (T0 − qσ0)(T0 − qσ1) . . . (T0 − qσℓ−1) = 0

TiTj = TjTi TiTi+1Ti = Ti+1TiTi+1 T0T1T0T1 = T1T0T1T0

for q an eth root of unity and 1 6 i, j < n, |i − j| > 1. The starting point for this paper is
the observation that this presentation depends only on the reduction of σ modulo e (which we
denote by s ∈ N>1 × (Z/eZ)ℓ). We denote the cyclotomic Hecke algebra by Hk

n(s) in order to
emphasise the independence of the actual charge. For each distinct integral lift σ ∈ N>1 × Zℓ of
s ∈ N>1 × (Z/eZ)ℓ, we have a corresponding aσ-order on Pℓ

n (the ℓ-multipartitions of n) due to
Lusztig and an aσ-grading on standard tableaux due to Uglov.

Theorem A. The algebra Hk
n(s) has many graded cellular structures, one for each integral lift

σ ∈ N>1 × Zℓ. The basis
{Aσ

st | λ ∈ P
ℓ
n, s, t ∈ Stdσ(λ)}

is cellular with respect to Lusztig’s aσ-order on Pℓ
n and Uglov’s aσ-grading on standard tableaux.
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2 C. BOWMAN

The algebra Hk
n(s) has many (non-isomorphic) quasi-hereditary covers (one for each integral lift

σ ∈ N>1 × Zℓ) and we shall see (in Theorem 6.23) that each of the bases of Theorem A arises by
idempotent truncation of a cellular basis of the corresponding quasi-hereditary cover. (In exactly
the same manner that Murphy’s basis of kSn is obtained from Green’s co-determinant basis of the
Schur algebra.)

Theorem A allows us prove that the decomposition matrices are unitriangular with respect to
all Lusztig aσ-orderings on Pℓ

n over any field and explicitly construct the irreducible modules
parameterised by Ariki’s categorification theorem. This completes a long history of work on this
topic [Ari01, Ari96, AM00, BI03, BGIL10, BJ09, CJ11, CJ12, CJ16, CGG12, DJM95, DJM98,
Gec98, Gec07b, CJ16, CGG12, GJ11, GM09, GR01, GJ06, Jac04, Jac05, Jac07, Jac11].

Theorem B. Let k be a field. For each integral lift σ ∈ N>1 × Zℓ, the irreducible Hk
n(s)-modules

are explicitly constructible as canonical quotients of the cell modules Skσ(λ) labelled by the associated
set of Uglov ℓ-partitions Σℓ

n (see Section 10 for definition) and the decomposition matrix is uni-
triangular with respect to Lusztig’s aσ-ordering on Pℓ

n.

It is worth stressing that there do not exist Kazhdan–Lusztig bases for complex reflection groups
(in particular for type G(ℓ, 1, n) for ℓ > 2). The Spets programme seeks to generalise the Kazhdan–
Lusztig theory, existence of finite groups of Lie type, and the structural properties of Hecke algebras
from Weyl groups to the wider family of complex reflection groups. Our integral cellular bases
generalise one tranche of this theory (the strong structural properties of Hecke algebras which
normally depend on the existence of Kazhdan–Lusztig bases) to type G(ℓ, 1, n).

Each of the integral graded cellular bases we construct provides us with a new viewpoint from
which to study the Hecke algebra: a new family of Specht modules, a new filtration on the pro-
jective modules (this was Geck–Rouquier’s motivation for instigating this research programme in
[Gec98, GR01]), a new grading and new unitriangular ordering on the decomposition matrix, and
most importantly a new Z-lattice on the Hecke algebra. Therefore our many different integral cel-
lular bases provide us with many new ways to study the modular representations of Hecke algebras
by “reduction modulo p”. Each of our new Z-lattices gives us a new way of factorising represen-
tation theoretic questions (e.g. decomposition numbers) via a two step process: first calculate the
decomposition numbers of the Hecke algebra over Q in terms of Kazhdan–Lusztig polynomials and
then calculate the corresponding ‘p-modular adjustment matrices’. All known results on Hecke
algebras in positive characteristic have been proven within the framework of the asymptotic cel-
lular structure of [DJM98, HM10] (e.g. the Jantzen sum formula [JM00], homological structure
[LM07, LM14, LM10, FS16], branching rules [Ari06], and decomposition numbers [RW, EL]). We
vastly generalise this framework from asymptotic charges to all weightings and hence prove:

Theorem C (Martin–Woodcock’s conjecture). There is a square submatrix of the decomposition

matrix of HQ
n (s) with entries given by the non-parabolic Kazhdan–Lusztig polynomials of type Âℓ−1.

Finally, we generalise all the results of Brundan–Kleshchev–Wang [BKW11] to arbitrary weight-
ings; in particular the graded branching rule. Fix a weighting σ ∈ N>1×Zℓ and the corresponding
sets of Specht and irreducible modules {Skσ(λ) | λ ∈ Pℓ

n} and {Lk
σ(λ) | λ ∈ Σℓ

n ⊆ Pℓ
n}. We

would like to understand the structure of the restrictions of these modules to the subalgebra
Hk

n−1(s) ⊂ Hk
n(s) (see also [FLOTW99, Ari96, Ari06, AM00, BKW11, Mat18]).

Theorem D. Let λ ∈ Pℓ
n and let α1 �σ α2 �σ · · · �σ αz denote the removable boxes of λ. Then

the restriction of Skσ(λ) has an Hk
n−1(s)-module filtration

0 = Sz+1,λ
σ ⊂ Sz,λσ ⊂ · · · ⊂ S1,λσ = ResHk

n−1(s)
(Skσ(λ))

such that for each 1 6 r 6 z, we have Skσ(λ− αr)〈deg(αr)〉 ∼= Sr,λσ /Sr+1,λ
σ .

Antecedents: We re-iterate that there are many different Kazhdan–Lusztig bases on a given Hecke
algebra of a real reflection group, one for each choice of weighting [Lus03, Lus83]; the “canonical”
basis of [KL79] is then obtained by restricting ones attention to the trivial weighting. These many
weightings have applications in Schubert varieties [Lus83] statistical mechanics [MS94, MW03] and
provide many different lenses through which to view and understand a given Hecke algebra.
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• Canonical basic sets and cellularity: The search for a proof of Theorems A and B was the principal
focus of a book by Geck–Jacon [GJ11] and a multitude of conjectures [DJM95, BGIL10, BJ09,
AJ10] as well as being one of the motivating factors for the recent surge of interest in Cherednik
algebras [CGG12, GM09, BR12, BR13] and [GGOR03, Section 6]. Over a field of characteristic
zero, a huge literature has focussed on constructing the combinatorial shadows of our bases
in Theorem A; these shadows are called “canonical basic sets” and were first introduced by
Geck–Rouquier [GR97, GR01]. These combinatorial shadows have been intensely studied [BI03,
BGIL10, BJ09, CJ11, CJ12, CJ16, CGG12, GIP08, GI13, Gec98, Gec07b, GJ11, GM09, GR01,
GJ06, Jac04, Jac05, Jac07, Jac11] and have been used to prove unitriangularity of decomposition
matrices with respect to the Lusztig aσ-orderings overQ. Our Theorems A and B lift these results
to a higher structural level and extend them to arbitrary fields.

In the case of asymptotic charges (for which σi ≫ σi+1 for 0 6 i < ℓ−1) the combinatorics and
basis of Theorem A coincides with that of [HM10, Main Theorem] and Theorem A generalises
the main results of [HM10] to all possible charges. The existing results on cellular bases of Hecke
algebras of type G(ℓ, 1, n) form along two axes: for ℓ ∈ {1, 2} cellular Kazhdan–Lusztig theoretic
bases exist for all charges [Lus03, Lus83, Gec07a]; for asymptotic charges cellular Murphy-type
bases exist for all types G(ℓ, 1, n) [HM10]. This paper completes the cellularity picture along
both these axes by constructing cellular bases for all charges on all cyclotomic Hecke algebras.

• Parameterising and constructing irreducible modules: Ariki’s categorification theorem gives rise
to many abstract parameterisations of irreducible Hk

n(s)-modules [Ari02]. The aforementioned
asymptotic cellular structure of [HM10] is the key ingredient in the explicit construction of ir-
reducible modules as canonical quotients of Specht modules labelled by Kleshchev ℓ-partitions
in [Ari01, AM00]. However, the Kleshchev ℓ-partitions provide just one of many possible la-
bellings of the nodes in the crystal graph [CGG12]; each such labelling should give rise to an
explicit construction of the irreducible modules. In Section 10, we provide these many different
constructions of the irreducible modules (one for each possible charge) and over arbitrary fields.
For each charge, we shall see that the corresponding irreducibles are those which survive under
the associated KZ functor.

This paper has gone through many iterations over the past few years, we have provided a
discussion of how to pass between these versions at the end of the current paper. In particular,
earlier versions of this paper did not use Theorem A (in conjunction with results of Jacon [Jac07])
in order to deduce that the Uglov multipartitions label the irreducible modules of cyclotomic
Hecke algebras (see Theorem B). Using our results, Kerschl has independently used our Theorem
A in order to deduce this labelling result [Ker]. Our proof is simpler (as it makes use of earlier
results [Jac07]) but Kerschl’s proof has the added advantage of providing new lower bounds for
the dimensions of these irreducible modules.

1. Weighted combinatorics of complex reflection groups

For the remainder of the paper, unless otherwise specified, let k be an arbitrary integral domain.

We let Sn denote the symmetric group with the usual Coxeter generators si,i+1 for 1 6 i < n.
Given parameters q and (Q0, Q1, . . . , Qℓ−1) we define the Hecke algebra of (Z/ℓZ) ≀Sn to be the
k-algebra Hk

n(q;Q0, . . . , Qℓ−1) generated by T0, T1, . . . Tn−1 subject to the relations

(Ti + q)(Ti − 1) = 0 (T0 −Q0)(T0 −Q1) . . . (T0 −Qℓ−1) = 0

TiTj = TjTi TiTi+1Ti = Ti+1TiTi+1 T0T1T0T1 = T1T0T1T0
(1.1)

for 1 6 i, j < n and |i − j| > 1. We set Xj = q1−jTj−1 . . . T1T0T1 . . . Tj−1. Given a charge

σ = (e;σ0, σ1, . . . , σℓ−1) ∈ N>1×Zℓ we are interested in the specialisation of the parameters q = ξ a
primitive eth root of unity andQm = qσm for 0 6 m < ℓ. Given σ = (e;σ0, σ1, . . . , σℓ−1) ∈ N>1×Zℓ,
we define the e-charge to be s = (e; s0, s1, . . . , sℓ−1) ∈ N>1 × (Z/eZ)ℓ obtained by reducing the
ℓ-tuple modulo e. After specialisation we obtain the algebra Hk

n(s) := Hk
n(ξ; ξ

σ0 , . . . , ξσℓ−1) which
we defined in the introduction; the notation has been chosen to emphasise that, after specialisation,
the definition of the Hecke algebra depends only on the e-charge.
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1.1. Charged ℓ-partitions. Fix a charge σ = (e;σ0, . . . , σℓ−1) ∈ N>1 × Zℓ. We define a configu-
ration of boxes to be a subset of

{(r, c,m) | r, c,m ∈ N, 1 6 r, c 6 n, 0 6 m < ℓ} (�)

and we let C ℓ
n denote the set of all configurations of n boxes. We refer to a box (r, c,m) as being

in the rth row and cth column of the mth component of the configuration. Given a box, (r, c,m),
we define the content of this box to be ct(r, c,m) = σm + c − r and we define its residue to be
res(r, c,m) ≡ ct(r, c,m) (mod e). We refer to a box of residue i ∈ Z/eZ as an i-box.

We define a partition, λ, of n to be a finite weakly decreasing sequence of non-negative integers
(λ1, λ2, . . .) whose sum, |λ| = λ1 + λ2 + . . . , equals n. An ℓ-partition λ = (λ(0), . . . , λ(ℓ−1)) of n is

an ℓ-tuple of partitions such that |λ(0)|+ · · ·+ |λ(ℓ−1)| = n. We denote the set of ℓ-partitions of n

by Pℓ
n. Given λ = (λ(0), λ(1), . . . , λ(ℓ−1)) ∈ Pℓ

n, the Young diagram is the configuration of boxes,

[λ] = {(r, c,m) | 1 6 c 6 λ(m)
r }.

We now recall Lusztig’s aσ-ordering on ℓ-partitions and Webster’s coarsening of this ordering.

Definition 1.1. Given σ ∈ N>1 × Zℓ a charge, we write (r, c,m) <σ (r′, c′,m′) if either

(i) ct(r, c,m) < ct(r′, c′,m′) or
(ii) ct(r, c,m) = ct(r′, c′,m′) and m > m′

We write (r, c,m) �σ (r′, c′,m′) if both (r, c,m) <σ (r′, c′,m′) and res(r, c,m) = res(r′, c′,m′).

The following formulation of the Lusztig aσ-ordering is given in [CGG12, 5.6 Proposition].

Definition 1.2 (Lusztig’s aσ-ordering). For λ, µ ∈ Pℓ
n, we write µ 6σ λ if there is a bijective map

A : [λ] → [µ] such that either A(r, c,m) <σ (r, c,m) or A(r, c,m) = (r, c,m) for all (r, c,m) ∈ λ.

We now rephrase Webster’s ordering on Pℓ
n in such a way that it is easily seen to be a coarsening

of Lusztig’s aσ-ordering. We reconcile this with Webster’s original diagrammatic definition shortly.

Definition 1.3 (Webster’s ordering). For λ, µ ∈ C ℓ
n, we write µ Pσ λ if there is a residue preserving

bijective map A : [λ] → [µ] such that either A(r, c,m) ⊳σ (r, c,m) or A(r, c,m) = (r, c,m) for all
(r, c,m) ∈ λ.

We now discuss how Definition 1.1 and the ensuing orderings on Pℓ
n can be visualised diagram-

matically. Given λ ∈ Pℓ
n, the associated (mirrored) σ-Russian array is defined as follows. (We drop

the prefix “mirrored” for the remainder of this paper, we just highlight now for the reader that our
conventions are the opposite of the usual definition of a Russian diagram.) For each 0 6 m < ℓ,
we place a point on the real line at σm− m

ℓ and consider the region bounded by half-lines at angles
3π/4 and π/4. (Compare the m/ℓ removed from the charge with condition (ii) of Definition 1.1.)
We tile the resulting quadrant with a lattice of squares, each with diagonal of length 2 (this will
be important!). We place the box (1, 1,m) at the point σm − m

ℓ on the real line, with rows going

northeast from this node, and columns going northwest. Given a fixed charge σ ∈ N>1 × Zℓ and
λ ∈ Pℓ

n, we do not distinguish between the configuration of boxes and its σ-Russian array.

Proposition 1.4. We have that (r, c,m) <σ (r′, c′,m′) if and only if the box (r, c,m) appears
strictly to the left of the box (r′, c′,m′) in the σ-Russian array.

Proof. This is clear from the definitions. Notice that the subtraction −m/ℓ ensures that (ii) of
Definition 1.1 matches the diagrammatic ordering. �

Example 1.5. A charge is said to be asymptotic if σm − σm+1 > n for all 0 6 m < ℓ − 1. For
σ ∈ N>1 × Zℓ a asymptotic charge and λ, µ ∈ Pℓ

n, it is easy to see that if λ >σ µ if and only if

k−1∑

i=1

|λ(i)|+

j∑

i=1

λ
(k)
i >

k−1∑

i=1

|µ(i)|+

j∑

i=1

µ
(k)
i

for all 1 6 k 6 ℓ and 1 6 j 6 n.
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Figure 1. We picture the 2-partition ((4, 12) | (3, 2, 1)) for (e;σ0, σ1) = (e; 0, 1) and
(e;σ0, σ1) = (e; 0, 4) respectively for e ∈ N>1. In each box we have placed the content of
the box. Notice that the boxes of content 1 in the second component appear to the left
of those of content 1 in the first component (by half a unit).

Example 1.6. In the case σ = (e;σ0, σ1, . . . , σℓ−1) ∈ N>1 × Zℓ is such that 0 < σi − σj < e for

0 6 i < j < ℓ, the σ-dominance order coincides with the ordering on Pℓ
n considered in [FLOTW99].

This charge is considered in greater detail in Section 13.

1.2. Charged standard tableaux. Given λ ∈ Pℓ
n, we let Rem(λ) (respectively Add(λ)) denote

the set of all removable (respectively addable) boxes of the Young diagram of λ so that the resulting
diagram is the Young diagram of a ℓ-partition. We extend the residue and dominance notation
above in the obvious fashion. Given i ∈ Z/eZ, we let Remi(λ) ⊆ Rem(λ) and Addi(λ) ⊆ Add(λ)
denote the subsets of boxes of residue i ∈ Z/eZ.

Definition 1.7. Fix σ ∈ N>1 × Zℓ. Given λ ∈ Pℓ
n, we define a σ-tableau of shape λ to be a

bijective map from the boxes of the σ-Russian array of λ to the set {1, . . . , n} (depicted as a filling
the boxes with the corresponding integers). We define a standard tableau to be a tableau in which
the entries increase along the rows and columns of each component. We let Stdσ(λ) denote the
set of all standard tableaux of shape λ ∈ Pℓ

n. Given t ∈ Stdσ(λ), we set Shape(t) = λ. Given
1 6 k 6 n, we let t↓{1,...,k} be the subtableau of t whose entries belong to the set {1, . . . , k}. For

s, t ∈ Stdσ(λ) we write s Pσ t if Shape(s↓{1,...,k}) Pσ Shape(t↓{1,...,k}) for 1 6 k 6 n (one can define

6σ on Stdσ(λ) similarly).
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Figure 2. Tableaux s ∈ Std(3;0,1)(λ) and t ∈ Std(3;0,4)(λ) for λ = ((4, 12), (3, 2, 1)).

Definition 1.8. We define a residue sequence to be an element ı = (i1, . . . , in) ∈ (Z/eZ)n. Given
t ∈ Stdσ(λ) we define the residue sequence, ıt, as follows,

res(t) = (res(t−1(1)), res(t−1(2)), . . . , res(t−1(n))) ∈ (Z/eZ)n.
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Example 1.9. The algebras Hk
12(3; 0, 1) and H

k
12(3; 0, 4) are isomorphic. For λ = ((4, 12), (3, 2, 1))

we have pictured a tableau s ∈ Std(3;0,1)(λ) and t ∈ Std(3;0,4)(λ) in Figure 2. The residue sequences
s and t from Figure 2 are all the same and are equal to (0, 1, 0, 2, 1, 2, 1, 2, 0, 0, 2, 1).

Definition 1.10. Let λ ∈ Pℓ
n and t ∈ Stdσ(λ). We let t−1(k) denote the box in t containing the

integer 1 6 k 6 n. Given 1 6 k 6 n, we let At(k), (respectively Rt(k)) denote the set of all addable
res(t−1(k))-boxes (respectively all removable res(t−1(k))-boxes) of the ℓ-partition Shape(t↓{1,...,k})

which are less than t−1(k) in the σ-dominance order (i.e those which appear to the left of t−1(k)).

Definition 1.11. Let λ ∈ Pℓ
n and t ∈ Stdσ(λ). We define the degree of t as follows,

deg(t) =

n∑

k=1

(|At(k)| − |Rt(k)|) .

Remark 1.12. For σ ∈ N>1 × Zℓ an asymptotic charge, our tableaux and grading coincide with
those of [HM10, Section 3] and [BKW11, Section 1].

Example 1.13. We continue with the example above specialising e = 3, and σ = (3; 0, 1) versus
σ = (3; 0, 4). The tableau s of Figure 2 has degree 5: the boxes with entries 5, 7, 8, 9, 10 and
11 have degrees 1, 1, 1, 2, 1,−1 respectively and all other boxes have degree 0. The tableau t of
Figure 2 has degree 0: the boxes with entries 2, 3, 4, 9 have degrees 1,−1, 1,−1 respectively and
all other boxes have degree 0. We note that the boxes of t with entries 6, 7, 8, 10 all have degree
zero because they have both an addable and a removable node to their left which cancel out.

1.3. Charged semistandard tableaux. We first tilt the σ-Russian array of λ ∈ C ℓ
n ever-so-

slightly in the anticlockwise direction so that the top vertex of the box (r, c,m) has x-coordinate

Iσ(r,c,m) = ct(r, c,m)−m/ℓ− (r + c)ε

for ε ≪ 1
2nℓ (up to small angle approximation). Our assumption that ε ≪ 1

2nℓ implies that no

two boxes in the σ-charged Young diagram of λ ∈ C ℓ
n can have the same x-coordinate and thus

we have refined the ordering 6σ of Definition 1.1 to a total ordering on boxes. Given λ ∈ C ℓ
n, we

let Iσλ denote the ordered set of the Iσ(r,c,m) for (r, c,m) ∈ λ. Given λ ∈ C ℓ
n, the associated residue

sequence, res(λ), of λ is given by reading the residues of the boxes of λ according to the natural
ordering on x-coordinates.

Definition 1.14. Given λ, µ ∈ C ℓ
n we define a tableau, T, of shape λ and weight µ to be a bijective

map T : [λ] → Iσµ. We say that a tableau is semistandard if it also satisfies the following properties

(i) T(1, 1,m) < σm,
(ii) T(r, c,m) < T(r − 1, c,m)− 1,
(iii) T(r, c,m) < T(r, c− 1,m) + 1,

for (r, c,m) ∈ λ. We denote the set of all semistandard tableaux of shape λ and weight µ by
SStdσ(λ, µ). Given T ∈ SStdσ(λ, µ), we write Shape(T) = λ.

−2ε

−1− 3ε
−2− 4ε

1− 3ε

−3− 5ε

Figure 3. A semistandard tableau S ∈ SStd(3;4,0)(((1
2), (2, 1)), (∅, (2, 13))). We have tilted the

components of this 2-partition ε units anti-clockwise so that the x-coordinate of a box (r, c,m) is
equal to ct(r, c,m) −m/ℓ − (r + c)ε. Two possible corresponding basis elements for this tableau
are depicted in Figure 15.
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2. Graded cellular algebras and canonical basic sets

Let R be an integral domain with field of fractions F. Let AR be an associative R-algebra
which is finitely generated and free over R and ϑ : R → K a ring homomorphism into a field
K such that K is the field of fractions of ϑ(R). We obtain an F-algebra AF = AR ⊗R F and a
K-algebra AK = AR ⊗R K. We let Irr(AK) (respectively Irr(AF)) denote the set of all irreducible
representations of AK (respectively AF) up to isomorphism. The following generalises the definition
of [GJ11, Section 3.1.7] to more general modular systems.

Definition 2.1. Let AR be an algebra with representations {V R
λ | λ ∈ Π}. Suppose that AF is

semisimple and {V F
λ := V R

λ ⊗R F | λ ∈ Π} = Irr(AF). Let � be a partial order on Π such that:

(i) Given LK
λ ∈ Irr(AK), let SQ(L

K
λ ) = {V F

µ | µ ∈ Π, V R
µ ⊗R K has LK

λ as a composition factor}.

Then the set SQ(L
K
λ ) contains a unique minimal element, V F

λ , with respect to �.

(ii) There exists an injective map Irr(AK) → Irr(AF).
(iii) For all LK

λ ∈ Irr(AK), we have that LK
λ appears exactly once as a composition factor of V R

λ ⊗RK.

If this holds, we say that BK
�
= {λ | Lλ ∈ Irr(AK)} is a canonical basic set for AK and that

MK
A = (mλ,µ)λ∈Π,µ∈BK

�

mλµ = [V K
λ : LK

µ ]

is the modular decomposition matrix; this matrix is uni-triangular with respect to � by (i) and (iii).

Definition 2.2 ([HM10, Definition 2.1]). Suppose AR is a Z-graded R-algebra of finite rank over
R. We say that A is a graded cellular algebra if the following conditions hold. The algebra is
equipped with a datum (Π, T , C, deg), where (Π,Q) is the weight poset. For each λ ∈ Π we have
a finite set, denoted T (λ). There exist maps

C :
∐

λ∈Π T (λ)× T (λ) → AR; and deg :
∐

λ∈Π T (λ) → R

such that C is injective. We denote C(S,T) = cλST for S,T ∈ T (λ), and

(1) Each cλST is homogeneous of degree deg(cλST) = deg(S) + deg(T), for λ ∈ Π and S,T ∈ T (λ).

(2) The set {cλST | S,T ∈ T (λ), λ ∈ Π} is a R-basis of AR.

(3) If S,T ∈ T (λ), for some λ ∈ Π, and a ∈ AR then there exist scalars rSU(a), which do not
depend on T, such that

acλST =
∑

U∈T (λ)

rSU(a)c
λ
UT (mod A⊲λ),

where A⊲λ is the R-submodule of AR spanned by {cµ
QR

| µ ⊲ λ and Q,R ∈ T (µ)}.

(4) The k-linear map ∗ : AR → AR determined by (cλST)
∗ = cλTS, for all λ ∈ Π and all S,T ∈ T (λ),

is an anti-isomorphism of AR.

Given λ ∈ Π, the graded cell module ∆R
A(λ) is the graded left AR-module with basis {cλS | S ∈

T (λ)}. The action of AR on ∆R
A(λ) is given by

acλS =
∑

U∈T (λ) rSU(a)c
λ
U,

where the scalars rSU(a) are the scalars appearing in condition (3) of Definition 2.2. Suppose that
λ ∈ Π. There is a bilinear form 〈 , 〉λ on ∆R

A(λ) which is determined by

cλUSc
λ
TV ≡ 〈cλS, c

λ
T〉λc

λ
UV (mod A⊲λ),

for any S,T,U,V ∈ T (λ). For every λ ∈ Π, we let 〈 , 〉λ denote the bilinear form on ∆R(λ) and let
radRA〈 , 〉λ denote the radical of this bilinear form. We define ∆K

A(λ) = ∆R
A(λ) ⊗R K and extend

all the notation above in the obvious manner. We set ΛK
�
= {λ | radK〈 , 〉λ 6= ∆K

A(λ)} and we set

LK
A(λ) = ∆K

A(λ)/rad
K〈 , 〉λ. By [HM10, Lemma 2.7], each module LK

A(λ) is graded and simple,
and in fact every irreducible module is of this form, up to grading shift. The passage between the
(graded) cell and irreducible modules is recorded in the (graded) cellular decomposition matrix,

DK
A(t) = (dλµ(t))λ∈Π,µ∈ΛK

�

dλµ(t) =
∑

k∈R[∆
K
A(λ) : L

K
A(µ)〈k〉] t

k ∈ N[t, t−1].
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This matrix is uni-triangular with respect to Q; thus if AF is semisimple, we have that ΛK
�

is a
canonical basic set for AK. By Definition 2.1(i) canonical basic sets are unique and so, matching-up
the labelling sets of semisimple modules and cell-modules, we immediately deduce the following:

Proposition 2.3. Suppose that AR is graded cellular with respect to �. Suppose further that AF

is a semisimple F-algebra and that AR ⊗ K has canonical basic set BK
�
. If V F

λ
∼= ∆F

A(λ) for all

λ ∈ Π, then ΛK
�
= BK

�
and DK

A(t)|t=1 = MK
A.

3. The quiver Hecke algebras

Let k be an arbitrary integral domain. We emphasise that the following presentation of the
(quiver) Hecke algebra only depends on the reduction of the charge modulo e.

Definition 3.1 ([BK09a, KL09, Rou08]). Fix e ∈ N>1 and s ∈ (Z/eZ)ℓ. The quiver Hecke algebra,
Hk

n(s), is defined to be the unital, associative, finite-dimensional k-algebra with generators

{e(ı) | ı = (i1, . . . , in) ∈ (Z/eZ)n} ∪ {y1, . . . , yn} ∪ {ψ1, . . . , ψn−1}, (3.1)

subject to the relations

e(ı)e() = δı,e(ı); (3.2)
∑

ı∈(Z/eZ)n

e(ı) = 1; (3.3)

yre(ı) = e(ı)yr; (3.4)

ψre(ı) = e(sr,r+1ı)ψr; (3.5)

yrys = ysyr; (3.6)

ψrys = ysψr if s 6= r, r + 1; (3.7)

ψrψs = ψsψr if |r − s| > 1; (3.8)

yrψre(ı) = (ψryr+1 − δir,ir+1)e(ı); (3.9)

yr+1ψre(ı) = (ψryr + δir,ir+1)e(ı); (3.10)

ψ2
re(ı) =





0 if ir = ir+1,

e(ı) if ir+1 6= ir, ir ± 1,

(yr+1 − yr)e(ı) if ir+1 = ir − 1 & e 6= 2,

(yr − yr+1)e(ı) if ir+1 = ir + 1 & e 6= 2,

(yr+1 − yr)(yr − yr+1)e(ı) if ir+1 6= ir & e = 2;

(3.11)

ψrψr+1ψr =





(ψr+1ψrψr+1 + 1)e(ı) if ir = ir+2 = ir+1 + 1 & e 6= 2,

(ψr+1ψrψr+1 − 1)e(ı) if ir = ir+2 = ir+1 − 1 & e 6= 2,

(ψr+1ψrψr+1 + yr − 2yr+1 + yr+2)e(ı) if ir = ir+2 6= ir+1 & e = 2,

(ψr+1ψrψr+1)e(ı) otherwise;

(3.12)

for all admissible r, s, i, j. Finally, the cyclotomic relation: for ı ∈ (Z/eZ)n, we have that

y
♯{sm|sm=i1}
1 e(ı) = 0. (3.13)

For ease of notation, we have excluded the e = ∞ case from the usual definition of the quiver
Hecke algebra (note that the e = ∞ and e > n algebras are isomorphic and so this is not important).

Theorem 3.2 ([BK09a, KL09, Rou08]). We have a grading on Hk
n(s) given by

deg(e(ı)) = 0 deg(yr) = 2 deg(ψre(ı)) =





−2 if ir = ir+1

1 if ir = ir+1 ± 1

2 if e=2 and ir+1 6= ir

0 otherwise

Theorem 3.3 ([BK09a, Main Theorem]). Let k be a field. The algebras Hk
n(s) and Hk

n(s) are
isomorphic as k-algebras.
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For the remainder of the paper, we will work in the graded setting of Hk
n(s). This is because

we wish to prove Theorem A in the generality of an arbitrary integral domain k (for which the
isomorphism of Theorem 3.3 fails).

4. Quiver Cherednik algebras

We now recall Webster’s definition of the quiver (or diagrammatic) Cherednik algebra Ak
n(σ) for

n ∈ N and σ ∈ N>1×Zℓ. We shall see that the representation theoretic structure of Ak
n(σ) is heavily

dependent on the charge σ ∈ N>1 ×Zℓ. This is in stark contrast with the structure of the (quiver)
Hecke algebra which we have seen is dependent only on the modulo e reduction: (s0, . . . , sℓ−1) ∈
(Z/eZ)ℓ. In other words, the quiver Cherednik algebras have the extra combinatorial information
of Section 1 baked into their definition. In Section 7, we shall apply the many “charged” Schur
functors to these quiver Cherednik algebras in order to obtain many new presentations of the
quiver Hecke algebra which encode the richer structures which cannot be detected using either
the classical or KLR presentations. We have written this section in the style of a self-contained
beginner’s guide to the diagrammatic theory and have included many examples.

012 0 00

Figure 4. A σ-diagram, A ∈ Ak
5(3; 0), with northern and southern loading Iσω for ω = (15).

Definition 4.1. We define a σ-diagram of rank n ∈ N and type (µ, λ) to be a frame, R × [0, 1],
with n distinguished solid points on the northern and southern boundaries given by Iσµ and Iσλ for

λ, µ ∈ C ℓ
n and a collection of solid strands each of which starts at a northern point and ends at a

southern point. Each solid strand carries a residue, i ∈ Z/eZ, say (and we refer to this as a solid
i-strand). We further require that each solid strand has a mapping diffeomorphically to [0, 1] via
the projection to the y-axis. Each solid strand can carry a finite number of dots. We draw

(i) a “ghost i-strand” 1 unit to the right of each solid i-strand and a a “ghost dot” 1 unit to
the right of each solid dot;

(ii) vertical red lines with x-coordinate σm−m/ℓ ∈ Q each of which carries a residue sm ∈ Z/eZ
for 1 6 m 6 ℓ which we call a red sm-strand.

Finally, we require that there are no triple points or tangencies involving any combination of
strands, ghosts or red lines and no dots lie on crossings. We consider these diagrams equivalent if
they are related by an isotopy that avoids these tangencies, double points and dots on crossings.

Definition 4.2. We define the degree of a σ-diagram to be the integer obtained by summing over
the degrees of all the local neighbourhoods of the diagram, with each neighbourhood contributing
to the degree as follows:

deg
i

= 2 deg
i j

= −2δi,j deg
i j

= δj,i+1 deg
i j

= δi,j

and their mirror images.

Definition 4.3. Let D be a σ-diagram. We define the northern (respectively southern) ordered
residue sequence of D to be the element of (Z/eZ)n given by reading the residues of the solid
strands in D from left to right along the northern (respectively southern) edge of the frame.
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Definition 4.4. Let D be a σ-diagram. Suppose D has distinguished solid points on the northern
and southern boundaries given by Iσµ and Iσλ and northern and southern residue sequence given
by ı and  ∈ (Z/eZ)n respectively. We say that a diagram D is reduced if (i) when read from
south-to-north D traces out a bijection : [λ] → [µ] using the minimal number of crossings between
strands and (ii) D has no dots on any strands. We let ı

µR

λ denote the set of all such reduced

diagrams.

Example 4.5. Let σ = (3; 0) ∈ N>1 × Z and λ = µ = (15). In Figure 4 we picture a σ-diagram.

Definition 4.6. The quiver Cherednik algebra, Ak
n(σ), is the associative k-algebra generated (as a

k-module) by all inequivalent σ-diagrams modulo the local relations (A1) to (A13) below (here a
local relation means one that can be specified by its effect on an arbitrarily small region of the
diagram). The product a1a2 of two diagrams a1, a2 ∈ Ak

n(σ) is then given by putting a1 on top of
a2. This product is defined to be 0 unless the southern border of a1 is given by the same loading
as the northern border of a2 with residues of strands matching in the obvious manner, in which
case we obtain a new diagram with loading and labels inherited from those of a1 and a2.

Isotopy and dots through crossings. These are the easiest relations in the quiver Cherednik
algebra. They also serve as a reminder that when we apply a relation in a region containing a
solid/ghost strand, we must also also has an effect on its corresponding ghost/solid strand 1 unit
to the right/left.

(A1) Any diagram may be deformed isotopically; that is, by a continuous deformation of the
diagram which avoids tangencies, double points and dots on crossings.

(A2) Any solid dot can pass through a crossing of solid i- and j-strands for i 6= j or an arbitrary
crossing involving a ghost strand. Namely:

ij

=

ij ij

=

ij ii

=

ii

and their mirror images through reflection in the vertical axis hold.
(A3) We can pass a solid dot through a crossing of two like-labelled solid or ghost strands at the

expense of an error term:

i i

=

i i

+

i i i i

=

i i

+

i i

Ghost dots can pass through any crossing of strands (regardless of their residue) freely.

Example 4.7. For example in Figure 5 we apply relation (A3) locally to a region of the diagram
containing the dot in Figure 4; however, moving the dot means we must also move the ghost dot
(which must always be 1 unit to the right) and undoing the crossing of solid 0-strands means we
must undo the corresponding crossing of ghost strands as in Figure 4.

012 0 00

+

020 1 00

Figure 5. We apply relation (A3) to Figure 4 in order to move the dot through the crossing at
the expense of an error term.
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Undoing double-crossings. Now we consider how one can undo a pair of strands which cross
and then cross again. The first of these relations, relation (A4), should be familiar from the classical
KLR algebra.

(A4) For double-crossings of solid strands with i 6= j, we have the following local relations:

ii

=0

i j

=

ji

Performing relation (A4) implicitly involves undoing the corresponding double-crossing of ghost
strands at the same time (which we do not picture) and vice versa.

Example 4.8. The leftmost diagram in Figure 5 has a double-crossing of two solid 0-strands and
therefore this leftmost diagram is zero by relation (A4). (The observant reader might worry about
the fact that a red 0-strand crosses the ghosts of these 0-strands — however, we shall see that this
is not a problem in relation (A9).)

(A5) If j 6= i − 1, then we can freely pass ghosts through solid strands. That is, we have the
following local relations:

ij

=

j i ji

=

i j

(A6) On the other hand, in the case where j = i− 1, we have the following local relations:

i–1 i

=

i–1 i

−

i–1 i i i–1

=

i i–1

−

i i–1

Remark 4.9. It is worth noting that the local diagrammatic regions pictured in the left and right
hand sides of relation (A6) do not have the same degree. This is because black dots carry degree
2 and ghost dots carry degree 0. However, we emphasise that by creating a ghost dot (in the local
region pictured) we also create de facto solid dot (not pictured!) elsewhere in the diagram. Thus
the overall degree of the diagrams is preserved (as one should expect!). An example of how this
works in a wider diagram is pictured in Figure 6.

0000 12

−

0000 12

Figure 6. Undoing the double-crossing of the ghost 1-strand and a solid 2-strand in the rightmost
diagram of Figure 5 using relation (A6)

Example 4.10. The rightmost diagram in Figure 5 has a double-crossing of a ghost 1-strand and
a solid 2-strand. We can continuously deform these strands until they are infinitesimally close
together (without creating any tangencies of double points elsewhere in the diagram) and hence
undo this double-crossing using relation (A6). This is depicted in Figure 6. (The other diagram
in Figure 5 has this same double-crossing, but we have already seen that this diagram is zero
using relation (A3).) We emphasise that there is a 0-ghost strand which passes through the region
between the solid 1-strand and its ghost. It is clear that this does not hamper our ability to apply
relation (A6) to the region containing the double-crossing of a ghost 1-strand and a solid 2-strand.
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Pulling a strand through a crossing. We now consider the effect of pulling a strand through
a pair of crossing strands. In other words, our graded versions of the classical braid relation.

(A7) We can pull a solid i-strand through a (i−1)-ghost-crossing (or a ghost (i−1)-strand through
a i-solid-crossing) at the expense of an error term.

i–1i–1 i

=

i–1i–1 i

+

i–1i–1 i ii i–1

=

ii i–1

−

ii i–1

(A8) All other triples of solid and ghost strands satisfy the naive braid relation. Diagrammatically,
we have that

ki j

=

ki j ki j

=

ki j ki j

=

ki j

for any i, j, k ∈ Z/eZ and their mirror images through reflection in the vertical axis hold.
Performing the leftmost relation (A8) implicitly involves manipulating a braid of three ghost
strands at the same time (which we do not picture) and vice versa. Furthermore,

ca b

=

ca b zx y

=

zx y

and a, b, c, x, y, z ∈ Z/eZ such that δa,b−1,c = 0, δx,y+1,z = 0.

Example 4.11. We now illustrate the effect of relations (A7) and (A8) by moving the 1-strand in
the leftmost diagram in Figure 6 rightwards. We can do this (without incurring any error terms)
until the solid 1-strand meets the crossing pair of ghost 0-strands. This is illustrated in Figure 7.
We then apply relation (A7) to the diagram in Figure 7 to obtain the sum of diagrams in Figure 8.

00 112 00

Figure 7. This diagram is obtained from the leftmost diagram in Figure 6 using non-interacting
relations (isotopy, and moving the solid (respectively ghost) 1-strand rightwards without crossing
any ghost 0-strand (respectively solid 2-strand) neither of which produces an error term.

00 12 00

−

00 12 0 0

Figure 8. We apply relation (A7) to the diagram in Figure 7 thus passing the solid 1-strand
through the crossing ghost 0-strands at the expensive of an error term.
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The red strands. We now consider the interactions between the red strands and the ghost and
solid strands. One should think of these red strands and playing the analogue of the role of the
cyclotomic relation for the classical KLR algebra.

(A9) Ghost strands and ghost dots may pass through red strands freely. For i 6= j, the solid
i-strands may pass through red j-strands freely. If the red and solid strands have the same
label, a dot is added to the solid strand when straightening. Diagrammatically, we have that

i i

=

i i i j

=

i j i i

=

i i i j

=

i j

for i 6= j and their mirror images through reflection through the vertical axis hold.
(A10) Solid crossings and dots can pass through red strands, with a correction term

k ij

=

k ij

+

k ij

δi,j,k

(A11) Any braid involving a red strand and not of the form in (A10) can be undone without cost.
Diagrammatically, we have that

kji

=

kji kji

=

kji kji

=

kji

jki

=

jki jki

=

jki jki

=

jki

for any i, j, k and their mirror images through reflection in the vertical axis hold.
(A12) Finally, any solid or ghost dot can be pulled through a red strand without cost. Diagram-

matically, we have that

kj k

=

j k j

=

k j

for any j, k and their mirror images through reflection in the vertical axis hold. (We have
not added the residues as they play no role here.)

The unsteady relation. Finally, we have the following non-local idempotent relation. Before
doing so, we note that the unique (up to equivalency) element of ı

µR
ı
µ with no crossing strands is

an idempotent by construction. We refer to any such diagram as the weight idempotent, 1ıµ. When
the northern (equivalently, southern) residue sequence of the weight idempotent is that of the box

configuration, we simply write 1µ := 1
res(µ)
µ .

(A13) Any weight idempotent in which a solid strand is at least n units to the right of the rightmost
red-strand is referred to as unsteady and set to be equal to zero.

Example 4.12. Consider the leftmost diagram in Figure 8. This diagram has a solid 1-strand
which can be passed through the red 0-strand (without any error term) using relation (A9). This
strand can then be pulled arbitrarily far to the right and hence is unsteady. Thus the leftmost
diagram in Figure 8 is zero by relations (A9) and (A13).

Remark 4.13. We refer to relations (A1), (A2), (A5), (A8), (A11) and (A12), the latter relation
in (A4), and the three rightmost relations in (A9) as non-interacting relations. These relations pull
strands through one another in the näıve fashion (without acquiring error terms or dots).
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5. The combinatorics of diagrams and box configurations

In this section we introduce the combinatorial language and corresponding diagrammatic rela-
tions needed for proving the main results of this paper.

5.1. The Bruhat ordering. We define a subword of w = sr1,r1+1sr2,r2+1 . . . srℓ,rℓ+1 to be a se-

quence t = (t1, t2, . . . , tℓ) ∈ {0, 1}ℓ and we set wt := st1r1,r1+1s
t2
r2,r2+1 . . . s

tℓ
rℓ,rℓ+1. We let 6 denote

the strong Bruhat order: namely y 6 w if for some (or equivalently, every) reduced expression w
there exists a subword t and a reduced expression y such that wt = y. We are now ready to define
a new ordering on σ-diagrams; this ordering will be the key to our inductive proofs.

Definition 5.1. Let σ ∈ N>1 × Zℓ and λ, µ ∈ C ℓ
n. Given A ∈ 1ıλA

k
n(σ)1


µ, we let [A] ∈ S2n+ℓ

denote the underlying word (in the Coxeter generators of S2n+ℓ) given by forgetting the types
(solid, dashed, red) of strand and the distances between end points — in other words, simply
viewing the diagram as a permutation in S2n+ℓ. Given two diagrams A,A′ ∈ 1ıλA

k
n(σ)1


µ we write

A′ Qσ A if [A] 6 [A′] in the Bruhat ordering on the permutations [A], [A′] ∈ S2n+ℓ. We let ℓ[A]
denote the length of a reduced expression of [A].

Remark 5.2. If A,A′ ∈ 1ıλA
k
n(σ)1


µ are equivalent diagrams, then the words [A′] and [A] differ

only by application of the commuting Coxeter relations (si,i+1sj,j+1 = sj,j+1si,i+1 for |i− j| > 1).
Therefore if two words differ by only the commuting Coxeter relations, we do not distinguish
between these words.

For n ∈ N and σ ∈ N>1 × Zℓ we emphasise that a σ-diagram from Ak
n(σ) has n solid strands, n

ghost strands and ℓ red strands; and our ordering considers all possible crossings of these 2n + ℓ
strands.

Example 5.3. The diagram from Ak
5(0) in Figure 7 has 14 crossings between its 5 solid, 5 ghost,

and 1 red strands. The underlying word is s8,9s4,5s3,4s5,6s6,7s4,5s5,6s7,8s8,9s7,8s6,7s7,8s9,10s10,11s9,10s8,9 ∈
S11. The righthand diagram of Figure 8 is obtained from the previous diagram by undoing a cross-
ing of solid strands (and the corresponding crossing of their ghosts); this diagram has 12 crossings
and the underlying permutation is s8,9s4,5s3,4s5,6s6,7s4,5s6,7s7,8s9,10s10,11s9,10s8,9 ∈ S11. Thus the
latter diagram dominates the former in the Bruhat ordering.

5.2. Brick combinatorics. We require a language for discussing the effect of moving a single
i-strand (and its ghost) through an idempotent 1λ for λ ∈ Pℓ

n. We can restrict our attention to
understanding the boxes (r, c,m) ∈ λ of residue j ∈ Z/eZ such that |j − i| 6 1. This leads us to
introduce a combinatorial language of i-diagonals and bricks. This will be essential for the proofs
of Theorems 6.8, 7.1 and 12.1, but can be skipped by the light-touch reader.

Definition 5.4. Let λ ∈ C ℓ
n. Given κ ∈ N and 0 6 m < ℓ, we refer to the set of boxes

Dm,κ = {(r, c,m) ∈ λ | ct(r, c,m) ∈ {κ− 1, κ, κ+ 1}}

as the associated diagonal. If κ is greater than, less than, or equal to σm, we say that the diagonal
is a right, left, or centred diagonal respectively. If λ ∈ Pℓ

n, we say that a diagonal is addable,
removable, or invisible if D contains an addable box of λ of content κ, a removable box of λ of
content κ, or no such box respectively. Given i ∈ Z/eZ we refer to any diagonal Dm,κ such that
i ≡ κ modulo e as an i-diagonal.

We shall now describe all ways of building i-diagonals of ℓ-partitions from the set of bricks
Bk for k = 1, . . . , 6 depicted in Figure 10 and the empty brick, B7. We shall also require three
distinct bricks M1,M2,M3 which represent the important box-configurations in which some boxes
are missing. Namely, for a given i-box (r, c,m) ∈ λ the cases M1,M2,M3 correspond to a missing
box in λ to the south-west, south-east, or both respectively. These are depicted in Figure 10.

Fix λ ∈ Pℓ
n and consider some fixed component 1 6 m 6 ℓ. We build an addable i-diagonal,

D, in this component by placing a a B4, B5, or B7 at the base (for diagonals to the right, left,
or centred on the node (1, 1,m)); we then place some number (possibly zero) of B1 bricks on top.
If D is invisible then we place either a B2 or B3 brick on top of the addable i-diagonal. If D is
removable then we place a B6-brick on top of the addable i-diagonal. Examples of how to construct
such an i-diagonal are depicted in Figure 9.
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Figure 9. Examples of 0-diagonals for e = 5 (4 are addable and 1 is invisible). On the left we
highlight all boxes in all 0-diagonals in the partition. On the right we illustrate how these diagonals
are built up from bricks. Here B1 is pink, B3 is cyan, B4 is yellow, and B5 is green.
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Figure 10. The bricks Bi and Mj for 1 6 i 6 6 and 1 6 j 6 3. The B7 brick is a single red
i-strand (i.e., it corresponds to an empty box configuration).

5.3. Brick diagrams. We gather some easy results concerning the effect of pulling an i-strand
through the diagram corresponding to one of these i-bricks. In order to go back and forth between
σ-diagrams and box configurations, we make the following intuitive definition.

Definition 5.5. Associated to λ ∈ C ℓ
n, ı ∈ (Z/eZ)n, we have an idempotent 1ıλ given by the

diagram with northern/southern points Iσλ, no crossing strands, and northern/southern residue
sequence given by ı ∈ (Z/eZ)n. Each brick, Bi, is itself a box-configuration with associated
idempotent 1Bi

for 1 6 i 6 6 (similarly for Mj for 1 6 j 6 3). For (r, c,m) ∈ λ, we let y(r,c,m)1
ı
λ

be the diagram obtained by adding a dot to 1ıλ on the strand labelled by the box (r, c,m).

Definition 5.6. For λ ∈ C ℓ
n and  ∈ (Z/eZ)n, we let Y

λ denote the subalgebra 〈1λ, y(r,c,m)1

λ |

for (r, c,m) ∈ [λ]〉 ⊂ Ak
n(σ).

i+ 1ii−1 i i+1i iii−1

Figure 11. The diagrams 1B1 , 1M1 and 1M2 respectively. We have applied isotopy to the strands
to make it clearer which ghost belongs to which solid strand.

Definition 5.7. Given an i-diagonal, D, we enumerate the bricks in D according to their height
within the i-diagonal starting with the brick at the base of D first (which is one of B4, B5, or B6)
and finishing with the top brick.

Remark 5.8. For ease of discussion, we assume e > 2 (the e = 2 case is similar, but the i-diagonals
overlap and one must consider the diagonals in turn). Let S be a solid i-strand and suppose we
wish to pull S and its ghost S′ through an i-diagonal D. One can factorise this calculation by
considering each brick in the diagonal in turn. This is immediate from the definitions, but is
slightly non-intuitive because we visualise the (i−1)-boxes as being to the left of the i-boxes which
are in turn to the left of the (i+ 1)-boxes. However a momentary glance at Figure 12 reveals that



16 C. BOWMAN

this intuition is wrong: we will not encounter two successive i-strands at any point in the process,
as they are separated by a ghost (i− 1)-strand (and recall that S and S′ both commute with the
solid (i− 1)-strand, it is only the ghost (i− 1)-strand that is of interest!).

Indeed, the only strands of interest in D are the ghost (i−1)-strands, the solid i-strands, and the
solid (i+ 1)-strands. For D as pictured in Figure 12, the ghost (i− 1)-strands have x-coordinates
−3ε,−5ε, the solid ghost i-strands have x-coordinates −2ε,−4ε and the solid (i+ 1)-strands have
x-coordinates 1− 3ε, 1− 5ε. As we pull the strand S and its ghost through the strands labelled by
boxes with x-coordinate x−kε, the order in which these interactions occur is determined by k ∈ N

and is independent of x ∈ N. Thus one can factorise the calculation by considering each brick in
the diagonal in turn, as claimed.

−2ε
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i+1ii−1 i+1ii−1

Figure 12. On the left we picture two B1 bricks (within the partition (32, 2)) with the x-
coordinates of their top nodes recorded in each box (we have assumed for ease of notation that
the bottom of the lowest node has x-coordinate x = 0). On the right we picture the corresponding
idempotent corresponding to this i-diagonal, emphasising (with bolder colour) the strands which
do not commute with an i-strand S or its ghost S′ (for e > 2). Notice that the i-strands are not
adjacent, but rather they are separated by a ghost (i− 1)-strand.

We will need to work by induction along the dominance ordering on box configurations. In
order to do this, we need to be able to apply relations locally in a diagram and hence rewrite local
regions of diagrams in terms of box configurations. The key to doing this is the following relations:

ii

= −

ii ii

=

ii

−

i i

(5.1)

Both these relations follow by multiple applications of relation (A3). Let M1 be a brick containing
the nodes {(r, c − 1,m), (r + 1, c − 1,m), (r + 1, c,m)}. Figure 13 illustrates how we can rewrite
the diagram 1M1 by first applying the leftmost equality in relation (A7) followed by the leftmost
equality in equation (5.1) (applied to both diagrams). We hence obtain the following:

ii i+1

=

ii i+1

−

ii i+1

(5.2)

Consider the idempotent corresponding to any 2× 2 square of boxes {(r, c,m), (r− 1, c,m), (r, c−
1,m), (r − 1, c − 1,m)} and place a dot on the strand labelled by (r, c,m); the diagram and the
2× 2-array is depicted on the lefthand-side of the equation in Figure 14. We can pull this dotted
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i-strand and its ghost rightwards through the ghost (i− 1)-strand using relation (A6) to obtain a
dotted and an undotted diagram. We hence obtain the following:

i+1ii−1i

=

i+1ii−1i

+

ii−1 i+1

(5.3)

In order to associate equation (5.2) and (5.3) to manipulations of brick diagrams, we must consider
the intersection of the line y = 1/2 with these diagrams. These are idempotents corresponding to
certain bricks; we depict the corresponding bricks in Figures 13 and 14.
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Figure 13. The brick diagrams depict the intersection of the σ-diagrams in equation (5.2) with
the line y = 1/2. We shade the box corresponding to the decorated strand in each case.
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Figure 14. The brick diagrams depict the intersection of the σ-diagrams in equation (5.3) with
the line y = 1/2. We shade the box corresponding to the decorated strand in each case.

The following technical definition will allow us to handle the inductive error terms of equa-
tion (5.2) and (5.3) by induction on the dominance ordering. In particular, notice that if we set
the node (r, c,m) to be the missing node in the M1 brick in equation (5.1) then the maps φX1

r,c,m

and φX2
r,c,m describe the intersection of the line y = 1/2 with the two terms on the righthand-side

of equation (5.2). Similarly φB1

(r,c,m) describes the second term on the righthand-side of Figure 14.

Definition 5.9. Let 1 6 r, c 6 n and 0 6 m < ℓ. Given λ ∈ C ℓ
n, we set φ(λ) ∈ C ℓ

n to be the box
configuration φ(λ) = {φ(r′, c′,m′) | (r′, c′,m′) ∈ λ} for φ any one of the three following maps:

φN(r,c,m)(r
′, c′,m′) =





(r′ + 1, c′ + 1,m′) if m = m′ and r′ > r and c′ > c

(r′ + 1, c′ + 1,m′) if (r′ + 1, c′ + 1,m′) = (r, c,m)

(r′, c′,m′) otherwise.

φNE
(r,c,m)(r

′, c′,m′) =





(r′ + 1, c′ + 1,m′) if m = m′ and r′ > r and c′ > c

(r′ + 1, c′ + 1,m′) if (r′ + 1, c′ + 1,m′) = (r, c,m)

(r′, c′,m′) otherwise.

φNW
(r,c,m)(r

′, c′,m′) =





(r′ + 1, c′ + 1,m′) if m = m′ and r′ > r and c′ > c

(r′ + 1, c′ + 1,m′) if (r′ + 1, c′ + 1,m′) = (r, c,m)

(r′, c′,m′) otherwise.
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6. The integral cellular basis of the quiver Cherednik algebra

In this section, we prove that Ak
n(σ) is cellular for any σ ∈ N>1 × Zℓ and over k an arbitrary

integral domain, we define the associated Schur functor Eσ
ω relating the quiver Cherednik and

Hecke algebras, and we generalise and strengthen the structural results of [BKW11, Web17] and
[KL09, Section 2.3]. The framework we developed in Subsections 5.2 and 5.3 allows us to proceed by
induction on (C ℓ

n,�σ). In Theorem 6.17 we directly match-up the presentations of the KLR algebra
and (a subalgebra of) the quiver Cherednik algebra for the first time, this should be of independent
interest. Over C, cellularity of AC

n(σ) is proven in [Web17] by applying the isomorphism in [Web17,
Theorem 4.5] to the ungraded versions of these algebras (this isomorphism generalises that of
[BK09a] and only holds for C). We take this opportunity to add a little flesh to the bones of
the ideas [Web17]. We also prove a number of new structural results concerning the action of the
algebra Ak

n(σ) on the cellular basis (generalising [BKW11]).

Figure 15. Two distinct diagrams AS and A′
S associated to the tableau S ∈

SStd(3;4,0)(((1
2), (2, 1)), (∅, (2, 13))) as in Figure 3.

Definition 6.1. Given S a tableau of shape λ and weight µ, we let AS ∈ 1ıµA
k
n(σ)1

res(λ)
λ denote

any reduced diagram tracing out the bijection S : [λ] → [µ]. Given S, T a pair of tableaux of shape
λ (and possibly distinct weights) we set AST = ASA

∗
T where A∗

T is the diagram obtained from AT

by flipping it through the horizontal axis.

6.1. Right justification. The following total order refines the dominance order from Section 1.
Given i ∈ Z/eZ and (r, c,m) and (r′, c′,m′) two i-boxes, we write (r, c,m) � (r′, c′,m′) if

(i) ct(r, c,m) < ct(r′, c′,m′) or
(ii) ct(r, c,m) = ct(r′, c′,m′) and either m > m′ or m = m′ and r + c 6 r′ + c′.

For λ, µ ∈ C ℓ
n, we write µ �σ λ if there is a bijective map A : [λ] → [µ] such that A(r, c,m) �σ

(r, c,m) for all (r, c,m) ∈ λ. Given λ, µ ∈ C ℓ
n we note that λ �σ µ implies λ ≺σ µ. We write

(r, c,m) ≺co (r′, c′,m′) if (r, c,m) ≺co (r′, c′,m′) and there does not exist any (r′′, c′′,m′′) such
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that (r, c,m) ≺ (r′′, c′′,m′′) ≺ (r′, c′,m′). In which case, we say that (r, c,m) and (r′, c′,m′) are
consecutive and say that the latter immediately follows the former.

Remark 6.2. Recall the definition of φ from Definition 5.9. We have that λ ≻σ φ(λ), however λ
and φ(λ) are not relatable in the dominance ordering. In particular µ�σ λ if and only if µ�σ φ(λ).

Definition 6.3. Given ξ ∈ Pℓ
n and (r, c,m) ∈ ξ we say that (r, c,m) is right-justified if one of the

following holds: (i) (r − 1, c,m) ∈ ξ (ii) (r, c− 1,m) ∈ ξ (iii) (r − 1, c− 1,m) ∈ ξ (iv) r = c = 1.
We say that ξ ∈ C ℓ

n is right-justified if and only if every (r, c,m) ∈ ξ is right justified.

Let ξ ∈ C ℓ
n and suppose that (r, c,m) ∈ ξ is not right justified. We set (r′, c′,m′) equal to the

box immediately following (r, c,m) in the order ≺σ and ξ′ = (ξ ∪ {(r′, c′,m′)}) \ {(r, c,m)}. We
say that ξ′ is obtained from ξ by right-justifying the box (r, c,m). More generally, suppose there
exists a chain

ξ = ξ(0) ≺σ ξ
(1) ≺σ · · · ≺σ ξ

(r) = ξ′

and suppose that ξ(i+1) is obtained from ξ(i) by right-justifying some box (ri, ci,mi) ∈ ξ(i); then
we say that ξ′ is is obtained from ξ by right-justification.

0 1−1−2 2 3 4

1

2

0

2

2

0

02

1

1

0 1−1−2 2 3 4

1

2

2

0

2

2

0

0

2

1

1

0

Figure 16. For e = 3 and σ = (0, 1) ∈ Z2 we depict a box configuration and its right
justification, respectively.

6.2. A spanning set of the algebra. In this subsection we provide a spanning set for Ak
n(σ) and

provide analogues of a number of results from [BKW11]. This section is inspired by the ideas of
[Web17, BKW11]. In this section we shall assume, without loss of generality, that s1 > s2 > . . . >
sm (this is simply for ease of notation when describing the maximal and minimal elements of the
dominance order and one can simply reorder the charge if necessary).

Proposition 6.4. Any σ-diagram A ∈ 1ıλA
k
n(σ)1


µ can be written in the form A = a1ξa

′ for ξ

a right-justified box configuration such that ξ �σ λ, µ. Moreover any idempotent 1ξ for ξ ∈ C ℓ
n

belongs to Ak
n(σ)1ξ′A

k
n(σ) for ξ

′ � ξ obtained from ξ by right justification.

Proof. Let y ∈ [2ε, 1− 2ε]. Let S denote a solid or red strand in the diagram and let x(S) denote
the x-coordinate of this strand at the point where it intersects the line {y} ×R. We write S1 ⋖ S2
if

(i) S1 and S2 are solid-strands of the same residue and 0 < x(S1)− x(S2) 6 2ε;
(ii) S1 is a solid (i+ 1)-strand S2 is a solid i-strand and 1 < x(S1)− x(S2) 6 1 + ε;
(iii) S1 is a solid (i− 1)-strand S2 is a solid i-strand and −1 6 x(S1)− x(S2) < ε− 1;
(iv) S1 is a red i-strand S2 is a solid i-strand and 0 < x(S1)− x(S2) 6 2ε.
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We extend this to a partial ordering on strands by taking the transitive closure. We first explain
how, applying only the non-interacting relations to our diagram A, we can group the strands into
⋖-equivalence classes. We then show that these equivalence classes correspond to the components
of a box-configuration. The reader might already see how the definition of right justification of
boxes intuitively captures this process (such a reader is invited to skip the rest of this proof, as it
is merely an in depth description of this process). We remark that cases (i) to (iii) correspond to
i-bricks M3, B3, B2.

Consider the region A∩ (R× [y − 2ε, y + 2ε]) of our diagram A. We may assume that there are
no crossing strands in this region and moreover that all strands in this region are vertical lines (by
applying local isotopy (A1) if necessary, we can move any crossings above or below the region and
straighten all the strands within the region).

Let S2 denote a strand in the diagram A∩(R× [y−2ε, y+2ε]). We pull the strand S2 rightwards
under the process outlined above. Let S1 denote any strand in A ∩ (R× [y − 2ε, y + 2ε]) which S2
interacts with during this process of being pulled rightwards. Then either (i) the S2-strand passes
through the S1-strand using the non-interacting relations or (ii) the S2-strand comes to a halt at
a point such that the strands S1 and S2 are in one of cases (i) to (iv) above. Having obtained
A′ (which we assume is not zero under relation (A13)) by pulling all solid strands as far right as
possible in this manner (while keeping the red strands fixed) we find that the solid and red strands
in the diagram A′ have naturally gathered into ℓ distinct ⋖-connected components (each containing
precisely 1 red strand). This is simply because (i) the difference between the x-coordinates of two
red strands is equal to an element of 1

ℓZ (ii) ε≪ 1
2nℓ (iii) if S1 ⋖S2 ⋖ . . .⋖Sk for 1 6 k 6 n, then

|x(Sk)− x(S1)| 6 2nε (mod Z) using (i) to (iv).

We now consider the mth ⋖-connected component, denoted Θm, of strands containing the
vertical red-strand with x-coordinate σm − m/ℓ and residue sm ∈ (Z/eZ). If Θm contains no
vertical strands, then this ⋖-connected component corresponds to an empty component of the box
configuration and we are done. Assume Θm contains at least one solid strand (i.e. |Θm| > 1). Then
by (i) to (iv) there exists at least one solid sm-strand, S1 ∈ Θm, in the region [σm−m/ℓ−2ε, σm−
m/ℓ). If |Θm| > 2, then by (i) to (iv) there exists S2 ∈ Θm such that one of the following holds
(i) S2 is a solid sm-strand with x(S2) ∈ [σm −m/ℓ− 4ε, σm −m/ℓ) or (ii) S2 is a solid (sm − 1)-
strand with x(S2) ∈ [σm −m/ℓ− 1− 3ε, σm −m/ℓ− 1) or (iii) S2 is a solid (sm + 1)-strand with
x(S2) ∈ [σm −m/ℓ− 1− 3ε, σm −m/ℓ− 1). Continuing in this fashion, we find that for x ∈ Z/eZ
the solid strands in the region ∪k∈N[ke + x − m/ℓ − 2nε, ke + x − m/ℓ) are precisely the solid
x-strands in Θm. By isotopy, we can assume that each strand in Θm has maximal x-coordinate
such that the strands are still related under ⋗. In so doing, we find that each i-strand intersects
the line y at some point equal to Iσ(r,c,m) for some i-box (r, c,m). We now restrict to the region

X = A′ ∩ (R × [y − ε, y + ε]) and by isotopy we can assume that all strands in this region are
vertical. We hence have that X = 1ξ for some ξ ∈ C ℓ

n and that any pair of vertical strands in
X = 1ξ is of the form (i), (ii), (iii), or (iv) above. In particular if (r, c,m) ∈ ξ then this implies
that at least one of (r − 1, c,m), (r, c− 1,m), (r − 1, c− 1,m) ∈ ξ or r = c = 1 as required.

For the second claim, let X = 1ξ for ξ ∈ C ℓ
n. Moving a strand corresponding to (r, c,m) ∈ ξ

rightwards using non-interacting relations (in the process above!) corresponds to the process of
right-justifying the box (r, c,m) ∈ ξ. The result follows. �

Corollary 6.5. The algebra Ak
n(σ) is finitely generated by the set of all reduced diagrams and the

elements y(r,c,m)1µ for µ ∈ C ℓ
n.

Proof. As in the proof of Proposition 6.4, we can make successive horizontal cuts to any A ∈ Ak
n(σ)

until we have rewritten A = A1A2 . . . Ak such that each Ai is either reduced (with northern and
southern loadings given by box configurations) or is obtained by adding a single dot to a strand in
a weight idempotent. �

Remark 6.6. The upshot of Proposition 6.4 is that we can organise our proofs (which will involve
manipulating σ-diagrams) by induction on the dominance order on box-configurations. In future
proofs, we can gloss over any steps involving the non-interacting relations and instead focus on
manipulating σ-diagrams corresponding to right-justified box-configurations.
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Proposition 6.7. For µ ∈ C ℓ
n with (r, c,m) ∈ µ and λ ∈ C ℓ

n \ Pℓ
n, we have that

y(r,c,m)1µ ∈ A�µ
n (σ) 1λ ∈ A�λ

n (σ)

where A
�µ
n (σ) = Ak

n(σ)〈1ν | ν ∈ Pℓ
n, ν � µ〉Ak

n(σ) and the elements are defined in Definition 5.5.

Proof. We shall prove both statements simultaneously by (intertwined) reverse induction on the
dominance ordering on box-configurations. Let ξ := ((n),∅, . . . ,∅) ∈ C ℓ

n. If ξ′ ∈ C ℓ
n is such that

ξ′ ⊲ ξ, then it easy to see that 1ξ′ = 0 under relation (A13). Applying relation (A6) or (A9) to
y(r,c,m)1ξ as necessary, we have that y(r,c,m)1ξ = 0 by relation (A13). Therefore the base case for

induction holds. Now, assume that ξ ∈ C ℓ
n is right-justified (by Proposition 6.4) and suppose that

the result has been proven for all box-configurations strictly more dominant than ξ. We refine our
induction by the natural ordering on r + c > 2. We assume that for all r′ + c′ < r + c, we have

(α) if (r′, c′,m′) 6∈ ξ this implies (r′ + 1, c′,m) 6∈ ξ and (r′, c′ + 1,m) 6∈ ξ.

(β) y(r′,c′,m′)1ξ ∈ A
�ξ
n (σ).

We first check the base case for our inductive assumptions for which r + c = 2.

(a) We have that r + c = 2 and (1, 1,m) 6∈ ξ for some 0 6 m < ℓ. We can pull the strand labelled
by (1, 2,m) or (2, 1,m) to the right using the non-interacting relations until the strand labelled
by (1, 2,m) or (2, 1,m) encounters the (i + 1)- respectively (i − 1)-box immediately following
(1, 2,m) or (2, 1,m). The resulting diagram factors through an idempotent 1ξ′ for ξ

′ ∈ C ℓ
n such

that ξ′ � ξ and the result follows by induction on the dominance ordering on box-configurations.
(b) We have that r+c = 2, (1, 1,m) ∈ ξ, and we have that a dot on the strand labelled by (1, 1,m) ∈ ξ

for some 0 6 m < ℓ. We apply relation (A9) to the solid strand labelled by (1, 1,m) and the red
strand with x-coordinate σm −m/ℓ. We can now pull the solid strand rightwards to obtain a
more dominant box configuration; the result follows by induction on the �σ ordering on C ℓ

n.

Now for the inductive step.

(A) We have that (r, c,m) 6∈ ξ for some r + c > 2, but that (a, b,m) ∈ ξ for all 2 6 a+ b < r + c. If
(1, c + 1,m) ∈ ξ and (1, c,m) 6∈ ξ (similarly if (r + 1, 1,m) ∈ ξ and (r, 1,m) 6∈ ξ) then then one
can argue as in the r = c = 1 case above. We now assume this is not the case. Since ξ is right
justified, there are three cases to consider (corresponding to the M1, M2, and M3 bricks).

(M1) Suppose (r− 1, c+1,m), (r, c+1,m) ∈ ξ (and note that (r− 1, c,m) ∈ ξ by induction). We
apply the relation depicted in equation (5.2) and Figure 13 to the the triple of strands in
1ξ labelled by (r, c+1,m), (r− 1, c+1,m) and (r− 1, c,m). We hence obtain a sum of two

diagramsX2−X1. We have thatX1∩(R×{1/2}) = y(r−1,c,m)1ξ′ for ξ
′ = φNE

(r−1,c+1,m)(ξ). We

have that X2∩(R×{1/2}) = 1ξ′′ where ξ
′′ = φNr−1,c,m(ξ) and we note that (r − 1, c,m) 6∈ ξ′′.

Therefore X1 and X2 factor through idempotents strictly more dominant than ξ′ and ξ′′

respectively (by induction on r+c) and therefore both factor through an idempotent strictly
more dominant than ξ by Remark 6.2.

(M2) Suppose (r + 1, c,m) ∈ ξ and and (r + 1, c− 1,m) ∈ ξ (and (r, c− 1,m) ∈ ξ by induction).
This case is similar to (M1) except that we use the rightmost (not the leftmost) relation
(A6) in the analogue of equation (5.2).

(M3) Now suppose that (r − 1, c + 1,m) 6∈ ξ (the case (r + 1, c − 1,m) 6∈ ξ is identical). We
apply the rightmost equation of equation (5.1) to the strands labelled by (r − 1, c,m) and
(r, c+1,m) to obtain a sum of two diagrams Y ′

1−Y
′
2 which both factor through the diagram

y(r−1,c,m)1ξ. Therefore both factor through an idempotent strictly more dominant than ξ
by induction on (r + c).

(B) If r = 1 or c = 1 then one can argue as in the r = c = 1 case above with the exception that we
replace the reference to relation (A9) with (A6). For r, c > 1, our inductive assumption implies
(r − 1, c,m), (r, c− 1,m), (r − 1, c− 1,m) ∈ ξ. We apply the relation depicted in equation (5.2)
to the the quadruple of strands in 1ξ labelled by (r− 1, c,m), (r, c− 1,m), (r− 1, c− 1,m), and
(r, c,m). We hence obtain a sum of two diagrams Z1 + Z2. We have that Z1 ∩ (R × {1/2}) =
y(r,c−1,m)1ξ. We have that Z2 ∩ (R × {1/2}) = 1ξ′ where ξ′ = φNW

r,c−1,m(ξ) and we note that

(r, c− 1,m) 6∈ ξ′. Therefore Z1 and Z2 factor through idempotents strictly more dominant than
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ξ and ξ′ respectively (by induction on r + c) and so both factor through an idempotent strictly
more dominant than ξ (by Remark 6.2). �

Theorem 6.8. We let λ(0) > λ(1) > λ(2) > . . . > λ(m) denote any total refinement of the order,
�σ, on Pℓ

n. The k-algebra Ak
n(σ) has a filtration

0 ⊂ A>λ(0)

n (σ) ⊆ A>λ(1)

n (σ) ⊆ · · · ⊆ A>λ(m)

n (σ) = Ak
n(σ).

where A>λ
n (σ) = Ak

n(σ)〈1ν | ν ∈ Pℓ
n, ν > λ〉Ak

n(σ).

Proof. This follows immediately from Propositions 6.4 and 6.7 �

Proposition 6.9. Let λ, µ ∈ C ℓ
n with (r, c,m) ∈ [µ], ı,  ∈ (Z/eZ)n, and A ∈ ı

µR

λ. We have that

y(r,c,m)1
ı
µA = Ay(r′,c′,m′)1

ı
λ +

∑

A′∈ı
µR


λ

A′
�σA

A′.

Here (r′, c′,m′) ∈ [λ] on the southern edge is connected to (r, c,m) on the northern edge.

Proof. Now consider a general diagram A ∈ 1ıµA
k
n(σ)1


λ. If there is a dot placed at the top of

the strand labelled by (r, c,m) ∈ [µ] we move this dot along the strand towards the bottom of
the diagram using (homogenous) relations (A2), (A3) and (A12). We hence rewrite A as a linear
combination of diagrams A′ ∈ 1ıµA

k
n(σ)1


λ where each A′ differs from A only in that one or zero

crossings of like-labelled strands have been undone and there is either zero or one dots along the
southernmost edge. This amounts to removing zero or one of the Coxeter generators in the reduced
expression [A] to obtain a reduced expression of [A′]. Hence this sum is over diagrams A′ such that
A′

�σ A, as required. �

Example 6.10. A step in the procedure outlined in the proof of Proposition 6.9 is carried out in
obtaining Figure 4 from Figure 5.

Proposition 6.11. Let λ, µ ∈ C ℓ
n and ı,  ∈ (Z/eZ)n. If w = st1,t1+1 . . . stm,tm+1 and w =

sr1,r1+1 . . . srm,rm+1 are two reduced expressions and A,A′ ∈ ı
µR


λ are two reduced diagrams with

[A] = st1,t1+1 . . . stm,tm+1 and [A′] = sr1,r1+1 . . . srm,rm+1, then

A = A′ +
∑

A′′∈ı
µR


λ

A′′
�σA′

A′′fA′′(y) ∈ 1ıµA
k
n(σ)1


λ for some fA′′(y) ∈ Y

λ.

Proof. Recall Matsumoto’s theorem states that any two reduced expressions for w ∈ Sn differ only
by applying a sequence of the relations si,i+1si+1,i+2si,i+1 = si+1,i+2si,i+1si+1,i+2.

By assumption neither A nor A′ contains a double crossing or a dot on any strand. Therefore
we can obtain A from A′ by applying only the strand-through-crossing relations (A8), (A7), and
(A10) successively. These are precisely the relations which rewrite a subproduct si,i+1si+1,i+2si,i+1

in [A′] in the form si+1,i+2si,i+1si+1,i+2±1Sn+2ℓ
. Thus one can rewrite the diagram in the required

form at the expense of some error terms A′′ such that [A′′] = u < w, however we note that A′′ may
no longer be reduced. If A′′ is reduced, then gA′′(y) = ±1. If A′′ is not reduced, then rewriting
A′′ as a linear combination of reduced diagrams involves reapplying some combination of relations
(A8), (A7), (A10), or (A5) (which simply creates more error terms A′′′ with [A′′′] = v 6 u <
w and gA′′′(y) = ±1) and (A6) (which creates error terms A′′′ with [A′′′] = v < u < w and
gA′′′(y) a polynomial of degree 1). Once this process terminates we are left with a combination
of more dominant diagrams, but with dots in the middle of the diagram (which we now need to
move southwards). We can isotope the neighbourhood of any diagram (in particular any region
containing a dot) so that it is of the form 1ν for some ν ∈ C ℓ

n; we then apply Proposition 6.9 to
deduce the result. �

Proposition 6.12. Let λ, µ ∈ C ℓ
n and ı,  ∈ (Z/eZ)n. Let A ∈ 1ıµA

k
n(σ)1


λ be a diagram which is

not reduced, then

A =
∑

A′∈ı
µR


λ

A′
�σA

A′fA′(y) ∈ 1ıµA
k
n(σ)1


λ for some fA′′(y) ∈ Y

λ.
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Proof. Any non-reduced diagram A ∈ 1ıµA
k
n(σ)1


λ contains either a double-crossing of strands or

a dot on a strand. By Proposition 6.9 we can restrict our attention to the former case. We
choose y ∈ [ε, 1 − ε] minimal such that Y = A ∩ (R × (y, 1]) contains this double crossing. We
have that X = A ∩ (R × [0, y)) does not contain this double-crossing and so X is a reduced
diagram. By Proposition 6.11 we can assume that the northern most crossing of strands in X is
equal to the crossing of strands in Y modulo a combination of diagrams X ′

�σ X. We have that
A = Y X =

∑
X′�X Y X ′ = Y X +

∑
A′�AA

′ where the second term in the sum is of the required
form. We are now free to undo the double-crossing in Y X ∩ [R× (y− ε, y+ ε)] using relation (A5),
(A6), (A9). In any case, the result is either 1 or 2 diagrams with this crossing undone (possibly at
the expense of acquiring some dots) and so both diagrams are strictly more dominant than A in
the Bruhat ordering. By Proposition 6.9 we can remove any dots to obtain a linear combination
of diagrams A′′ which strictly dominate A and such that A′ ∩ (R× [0, y]) is reduced. If each A′ is
reduced the result follows; if not, then there exists some 1 > y′ > y > 0 for which A′∩(R× [0, y)) is
not reduced and we can repeat the above argument. Repeating as necessary, the result follows. �

We hence immediately generalise the spanning set of [KL09, Section 2.3] to our algebras. Namely,
we can write any element of Ak

n(σ) as a linear combination of reduced diagrams with dots along
the southernmost edge.

Corollary 6.13. The algebra Ak
n(σ) is free as a k-module and spanned by

{AfA(y) | λ, µ ∈ C
ℓ
n, ı,  ∈ (Z/eZ)n, A ∈ ı

µR

λ, fA(y) ∈ Y

λ}

We view the following theorem as the “2-sided” version of Corollary 6.13.

Theorem 6.14. Let k be a integral domain. The k-algebra Ak
n(σ) is spanned by

{AST | S ∈ SStdσ(λ, µ),T ∈ SStdσ(λ, ν), λ ∈ P
ℓ
n, µ, ν ∈ C

ℓ
n}.

Proof. In Theorem 6.8 we saw that any diagram A ∈ Ak
n(σ) can be written as a linear combination

of elements of the form xλ1λy
∗
λ for xλ, yλ ∈ Ak

n(σ)1λ and λ ∈ Pℓ
n. It remains to show that the

elements xλ and yλ can be chosen so that (i) xλ and yλ are reduced diagrams (neither has a dot
on any strand, or contains any “double-crossing”), (ii) the span of these elements is independent
of the choices of reduced expression for [xλ] and [yλ]. We shall then conclude that the algebra is
spanned by AST for tableaux S,T of shape λ ∈ Pℓ

n. Finally it will remain to show that the set of
AST for a pair of semistandard tableaux S,T span the algebra.

The result for λ = ((n),∅, . . . ,∅) is trivial. We assume that (i) is proven for all partitions strictly
more dominant than λ. For the remainder of the proof, we refine our induction by proceeding along
the Bruhat order on xλ and yλ and consider the span of elements modulo

Spank{AST | AS �σ xλ or AT �σ yλ}+ A�λ
n . (6.1)

If xλ or yλ has a dot or a double crossing, then xλ1λy
∗
λ is zero modulo equation (6.1) by

Proposition 6.9 and Proposition 6.12. Similarly, given any two reduced diagrams xλ and x′λ tracing
out the same bijection : [λ] → [µ], we have that xλ1λyλ − x′λ1λyλ belongs to equation (6.1) by
Proposition 6.11. Thus (i) and (ii) hold by induction.

We note that any bijection : [λ] → [µ] is encoded as a tableau of shape λ and weight µ and
so {AST | S,T are tableaux of shape λ} is a spanning set by definition and our proof of (i) and
(ii). It only remains to show that the subset of semistandard tableaux (within the wider class
of tableaux) index a spanning set. We consider AS (or A∗

T) such that S (or T) violates the
semistandardness condition. In other words, one of the following holds: (i) S(1, 1,m) > sm (ii)
S(r, c,m) > S(r− 1, c,m) + 1 or (iii) S(r, c,m) > S(r, c− 1,m)− 1. In each case, we obtain a “bad
crossing”. We can choose to draw our diagram AS so that this crossing appears at the bottom of
the diagram using Proposition 6.12 and induction on the Bruhat ordering. These crossings are as
follows,

(i) the solid strand corresponding to (1, 1,m) passes to the right of the red σm-strand,
(ii) the ghost strand corresponding to (r, c,m) passes to the right of the solid strand corre-

sponding to (r − 1, c,m),
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(iii) the solid strand corresponding to (r, c,m) passes to the right of the ghost strand corre-
sponding to (r − 1, c,m).

In each case the strand labelled by the box (r, c,m) is now free to move right wards using the
process outlined in Theorem 6.8 and hence belongs to A�λ

n (σ). �

6.3. The Schur functor. We define the Schur or KZ functor relating the quiver Hecke and Chered-
nik algebras. We let ω ∈ Pℓ

n denote the unique element which is minimal in the σ-dominance order.
For weakly decreasing s1 > s2 > . . . > sℓ we have that ω = (∅,∅, . . . ,∅, (1n)). We let Eσ

ω denote
the associated Schur idempotent Eσ

ω =
∑

ı∈(Z/eZ)n 1
ı
ω.

Definition 6.15. Given T ∈ SStdσ(λ, ω) (respectively t ∈ Stdσ(λ)) we define the reading word
R(T) (respectively r(t)) to be the ordered sequence of boxes (rk, ck,mk) for 1 6 k 6 n under
the ordering (rk, ck,mk) < (rk′ , ck′ ,mk′) if and only if T(rk, ck,mk) < T(rk′ , ck′ ,mk′) (respectively
t(rk, ck,mk) < t(rk′ , ck′ ,mk′)).

Proposition 6.16. Let σ ∈ (Z/eZ)ℓ and σ ∈ N>1 × Zℓ be a charge. For λ ∈ Pℓ
n, we have a

bijection
ϕ : Stdσ(λ) → SStdσ(λ, ω).

given by ϕ(t) = T if and only if r(t) = R(T).

Proof. We order the boxes (r, 1, ℓ) for 1 6 r 6 n of the ℓ-partition ω ∈ Pℓ
n by the natural numbering

on {1, . . . , n}. Clearly Iσ(r,1,ℓ) < Iσ(r′,1,ℓ) if and only if 1 6 r′ < r 6 n. Therefore the set of maps

{T | T : [λ] → Iσω} is in bijection with the set of tableaux of shape λ. This map is simply given by
identifying the entry Iσ(r,1,ℓ) ∈ R in a box of T with the entry r ∈ N in a box of t. It remains to

show that T is semistandard if and only if t is standard. Condition (i) of Definition 1.14 is empty
as I(r,1,ℓ) < sm for all 1 6 m 6 ℓ. Conditions (ii) and (iii) of Definition 1.14 simply correspond
to the conditions that t(r, c,m) > t(r − 1, c,m) and t(r, c,m) > t(r, c− 1,m) respectively and the
fact that Iσ(r+1,1,ℓ) < Iσ(r,1,ℓ) − 1 for 1 6 r 6 n. �

Over a field, the theorem below follows from [Web17, Theorem 4.5] and [Web20, Theorem 5.3].
Our proof proceeds by matching-up the presentations in Definition 3.1 and Definition 8.2 and is
valid over a integral domain. By matching up these presentations explicitly, we see how Webster’s
diagrammatics generalises that of Khovanov–Lauda [KL09]. We also generalise Webster’s results
to an arbitrary integral domain.

Theorem 6.17. Let k be a integral domain. Let s ∈ N>1 × (Z/eZ)ℓ and let σ ∈ N>1 × Zℓ be any
integral lift. We have an isomorphism of graded k-algebras

σ : Hk
n(s) → Eσ

ωA
k
n(σ)E

σ
ω

which is determined as follows

σ(e(ı)) = 1ıω

σ(yre(ı)) =

s0sℓ−1 s1i1i2ir−2ir−1irir+1ir+2ir+3in

σ(ψre(ı)) =

s0sℓ−1 s1i1i2ir−2ir−1irir+1ir+2ir+3in

Thus we obtain many distinct presentations for the same Hecke algebra, Hk
n(s), one for each possible

lift of s ∈ (Z/eZ)ℓ to the integers. While these algebras are all isomorphic, we have already seen
that each of these distinct lifts has a different combinatorial flavour. We shall see what these
different lifts tell us about the structure of Hk

n(s) in Sections 7 and 9 to 11.



THE MANY INTEGRAL GRADED CELLULAR BASES OF CYCLOTOMIC HECKE ALGEBRAS 25

Remark 6.18. The reader might think notice that the diagrams in Theorem 6.17 are only depen-
dent on s ∈ N>1 × (Z/eZ)ℓ and not on the integral lift σ ∈ N>1 × Zℓ. We remind the reader that
this is not the case because the x-coordinates of the red strands are determined by σ ∈ N>1 × Zℓ

(even though their residue-decorations, sℓ−1, . . . s0, are independent of the integral lift).

Before proving this result, we provide a new set of generators of Eσ
ωA

k
n(σ)E

σ
ω which is highly

compatible with the desired isomorphism.

Proposition 6.19. The algebra Eσ
ωA

k
n(σ)E

σ
ω is generated by

〈1ıω, σ(ys(e(ı))), σ(ψr(e(ı))) | 1 6 r < n, 1 6 s 6 n, and ı ∈ (Z/eZ)ℓ 〉 (6.2)

subject to (A1) to (A13). In particular, the k-linear map σ : Hk
n(s) → Eσ

ωA
k
n(σ)E

σ
ω is surjective.

Proof. We begin by rewriting every diagram in Eσ
ωA

k
n(σ)E

σ
ω so that the red strands are “replaced”

with something more akin to the usual cyclotomic relation for the classical KLR-algebra.

Claim: Let A ∈ 1ıωA
k
n(σ)1


ω be an arbitrary diagram. Let A be the diagram obtained from A by

the following procedure:

(1) pull each red strands sufficiently far to the right that it longer intersects any solid or ghost
strands;

(2) for each crossing involving a solid i-strand (from southwest to northeast) and a red-strand (from
southeast to northwest) place a dot at the position of the crossing in A.

We claim that A = A.

000

=

000

−

00 0

=

000

−

00 0

=

000

Figure 17. Passing a crossing through a red strand using relation (A10), then relation (A9), then
(A6)). All ghost strands commute with red strands, and so we do not picture these here.

We now prove the claim. We consider the effect of pulling the mth red strand to the right. We
can restrict our attention to the effect on the sub-diagram of Aw (with underlying word, [A], equal
to w) consisting only of the solid strands of residue sm ∈ Z/eZ which cross the mth red strand
(we can ignore their ghosts, by (A11)). We can further restrict our attention to only consider
the crossings of these strands within the region (σm −m/ℓ,∞) × [0, 1] as it is only these strands
within this region to which we need apply non-trivial relations (while pulling the mth red strand
to the right). Thus we write Aw = AuAw′Av where Aw′ consists of the sm-strands intersected with
the region (σm − m/ℓ,∞) × [y1, y2] (where y1 and y2 are chosen appropriately) and Au and Av

consist of the sm-strands with the regions (−∞, σm−m/ℓ, ]× [y2, 1] and (−∞, σm−m/ℓ, ]× [0, y1]
respectively. We set k to be the number of solid i-strands in Aw′ . We proceed by induction on
ℓ(w′).

We have that ℓ(w′) > 2k because each solid strand intersects the red strand at least twice.
If ℓ(w′) = 2k then the claim follows by k applications of the leftmost relation in (A9). We can
now suppose w′ = xs1,2y (if s1,2 does not appear in w′ then we can apply the leftmost relation
of (A9)) for x and y subwords such that ℓ(x) + ℓ(y) < ℓ(w). We pull the red-strand through the
crossing corresponding to this s1,2 at the expense of an error term (with coefficient −1) in which
we undo this crossing. By our inductive assumption we can move the red strand through Axy and

obtain AxAs1,2Ay − Axy but with the red strand all the way to the right. By construction, we

have a dot at the bottom of A′
x on the leftmost strand; using (A6) we pull this dot down to the

left through As1,2 to obtain the required diagram Aw′ at the expense of an error term equal to

Axy (with coefficient +1). The error terms cancel and the claim holds. An example is depicted in

Figure 17 (for w = w′ = s1,2).
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ii j ii j ij i j

Figure 18. Crossings within a diagram A ∈ Eσ
ωA

k
n(σ)E

σ
ω.

With the claim in place, we may now assume A ∈ Eσ
ωA

k
n(σ)E

σ
ω has no crossings involving red

strands. Any crossing in such a diagram is of one of the forms depicted in Figure 18.

We can undo any double-crossing using relation (A4) and (A5) to obtain a sum of diagrams of
the required form. We must now consider any triple-crossings as in Figure 18 and show that this
belongs to a wider product of the form

σ(ψr+1(e(ı)))σ(ψr(e(ı)))σ(ψr+1(e(ı))) or σ(ψr(e(ı)))σ(ψr+1(e(ı)))σ(ψr(e(ı))) (6.3)

for 1 6 r < n. There are precisely 4 different wider products (up to isotopy) to which such a
diagram can belong, these are depicted in Figure 19. The first and fourth of these diagrams are
already of the respective forms in equation (6.3).

ji i ji i ji i ji i

Figure 19. The wider diagrams A ∈ Eσ
ωA

k
n(σ)E

σ
ω containing a triple-crossing of the form depicted

in Figure 18. The first and final of which are already of the required form.

For the remaining two diagrams in Figure 19, we can pull the ghost j-strand (respectively, solid
j-strand) to the right (to the left) of the solid (respectively ghost) i-crossing using (A6) or (A5).
In either case, the resulting diagram is now of the required form. �

Proof of Theorem 6.14. We have already seen that Eσ
ωA

k
n(σ)E

σ
ω is generated by the elements 1ıω,

σ(ys(e(ı))), σ(ψr(e(ı))) for 1 6 s 6 n and 1 6 r < n and ı ∈ (Z/eZ)n. We define σ−1 to be the
obvious inverse map. We will now verify that σ respects 3.2 to 3.13 and that σ−1 respects relations
(A1) to (A13).

The images of relations 3.2 to 3.8 under σ follow from the diagrammatic definition of the mul-
tiplication and (A1). Conversely, the image under σ−1 of the implicit diagrammatic relations (i.e.
that strands carry residues, products are zero for non-matching residue sequences, and (A1)) im-
mediately follow from 3.2 to 3.8. The images of relations 3.9 to 3.10 under σ follow from (A2) and
(A3). Conversely the image of relations (A2) and (A3) under σ−1 follow from 3.9 and 3.10.

We shall now show that the image of 3.11 under σ holds in Eσ
ωA

k
n(σ)E

σ
ω and that the images

of (A4), (A5) and (A6) under σ−1 hold in Hk
n(s). Relation 3.11 has four parts; the images of

the ir 6= ir+1 ± 1 cases follow from relation (A4) and (A5). If ir − 1 = ir+1, then we first apply
relation (A6) to the diagram σ(ψre(ı))σ(ψre(sr,r+1ı)) in order to undo the double-crossing of the
ghost (i− 1)-strand with the solid i-strand; now if e 6= 2, then this implies that ir 6= ir+1 − 1 and
so the double-crossing of the ghost i-strand with the solid (i − 1)-strand can be undone without
cost by relation (A5). We hence obtain that σ(ψre(ı))σ(ψre(sr,r+1ı)) = σ(yr+1e(ı))− σ(yre(ı)), as
required. We now assume that ir + 1 = ir+1 with e 6= 2. Here we have that the double-crossing of
the ghost i-strand with the solid (i+ 1)-strand can be undone without cost by relation (A5); now
the double-crossing of the ghost (i − 1)-strand with the solid i-strand can be undone by relation
(A6) to obtain σ(ψre(ı))σ(ψre(sr,r+1ı)) = σ(yre(ı)) − σ(yr+1e(ı)), as required. Finally the e = 2
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case can be obtained in the same fashion as above, except noting that ir = ir+1+1 = ir+1− 1 and
so we need apply relation (A6) twice and hence obtain four terms.

Conversely, let A ∈ Eσ
ωA

k
n(σ)E

σ
ω be any diagram written as a product of the generators in

equation (6.2). Any double crossing in A of the form depicted in (A4), (A5), (A6) must occur
within a region of A of the form

σ(ψr)σ(ψr)1
(...,ir−1,ir,... )
ω . (6.4)

In particular, none of the double-crossings in (A4), (A5), (A6) ever appear by themselves; they
always appear with a complementary pair of double-crossings strands (depending on ir−1 = ir −
1, ir, ir + 1 or otherwise). Thus we do not need to show that the images under σ−1 of (A4), (A5),
(A6) themselves hold, but rather we need only check that all possible pairs of these relations (which
can appear in equation (6.4)) hold. These pairs correspond precisely to the subcases of 3.11 and
can be argued identically to the above (but backwards).

Now we consider relation 3.12 at the same time as (A7) and (A8). We first check that σ respects
3.12 for each of the four cases. In the first case of 3.12, we can move the ghost (i − 1)-strand
in σ(ψr+1ψrψr+1e(. . . , i, i − 1, i . . . )) through the solid i-crossing using (A7) at the expense of an
error term (with coefficient −1) in which we undo the solid i-crossing; we can then simplify the
former diagram using (A8) and the error diagram using (A5) in order to obtain σ((ψrψr+1ψr −
1)e(. . . , i, i + 1, i . . . )). Figure 19 depicts the three steps in this process, with only the step from
the first to the second diagram producing an error term (i.e. we can get from the second to the
third to the fourth diagram in Figure 19 using only (A8)). The second case is similar. The third
case is an amalgamation of cases 1 and 2, but the error terms must be simplified with (A6) due
to the additional residue adjacencies. The fourth case follows directly from relation (A8). Thus σ
preserves relation 3.12.

Conversely, by Proposition 6.19 any triple crossing of the form in (A7) or (A8) must occur within
a region of the diagram of the form

σ(ψr)σ(ψr+1)σ(ψr)1
(...,ir−1,ir,ir+1... )
ω or σ(ψr+1)σ(ψr)σ(ψr+1)1

(...,ir−1,ir,ir+1... )
ω (6.5)

for some ir−1, ir, ir+1 ∈ Z/eZ. In particular, none of the triple-crossings in (A7) or (A8) ever
appear by themselves; they always appear with a complementary triple-crossing strands (breaking
down into cases according to whether ir−1 = ir−1, ir, ir+1 or otherwise). Thus we do not need to
show that the images under σ−1 of (A7) or (A8) themselves hold, but rather we need only check
that the possible combinations of these relations (which can appear in equation (6.5)) hold. These
pairs correspond precisely to the subcases of 3.12 and can be argued identically to the above (but
backwards).

Finally it remains to consider relation 3.13 for Hk
n(s) at the same time as the red strand relations

in Eσ
ωA

k
n(σ)E

σ
ω. We have that

σ(y
♯{sm|sm=i1}
1 e(ı)) = 0

by ℓ applications of (A9). We now consider the image under σ−1 of the relations involving red
strands. We have shown in the proof of Proposition 6.19 that any diagram A ∈ Eσ

ωA
k
n(σ)E

σ
ω is

equal to some (decorated) diagram A with no crossings involving red strands. Thus we need only
to verify that if A is unsteady, then σ−1(A) = 0. If A is unsteady, then we can move the strands
back towards the left, with the rightmost solid strand (of residue i ∈ Z/eZ, say) picking up a
total of ♯{sm | sm = i} dots; the resulting diagram factors through an idempotent of the form

y
♯{sm|sm=i1}
(1,1,ℓ) 1ıω = σ(y

♯{sm|sm=i1}
1 e(ı)) and thus σ−1(A) = 0 by 3.13, as required. �

6.4. Cellularity and quasi-heredity of quiver Cherednik algebras. We shall now show that
the spanning set of Theorem 6.14 is in fact a cellular basis of the quiver Cherednik algebra. We
first require a new ordering on the boxes in an ℓ-multipartition.

Definition 6.20. Given S ∈ SStdσ(λ, µ) and two distinct boxes (r, c,m), (r′, c′,m′) ∈ λ we write
(r, c,m) ≻ (r′, c′,m′) if one of the following holds

(i) Iσ(r,c,m) > Iσ(r′,c′,m′) ± 1 and S(r, c,m) < S(r′, c′,m′)± 1 or

(ii) Iσ(r,c,m) > Iσ(r′,c′,m′) and S(r, c,m) < S(r′, c′,m′) or
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(iii) (r, c,m) and (r′, c′,m′) appear in the same row (respectively column) of the same component
of λ and c = c′ + 1 (respectively r = r′ + 1).

We write (r, c,m) � (r′, c′,m′) if either (r, c,m) = (r′, c′,m′) or (r, c,m) � (r′, c′,m′).

Definition 6.21. Given S ∈ SStdσ(λ, µ) and t ∈ Stdσ(λ), we say that that t factors through S if
(r, c,m) ≻ (r′, c′,m′) implies t(r, c,m) > t(r′, c′,m′) for all pairs of distinct (r, c,m), (r′, c′,m′) ∈ λ.

Proposition 6.22. Given S ∈ SStdσ(λ, µ) there exists an s ∈ Stdσ(λ) such that s factors through
S. For such a pair, (S, s), there exists a tableau Sc of shape µ and weight ω such that AScAS = Aϕ(s).

Proof. Let S ∈ SStdσ(λ, µ). Let (r1, c1,m1), (r2, c2,m2) ∈ λ be any pair of distinct boxes such that
(r1, c1,m1) ≻ (r1, c2,m2). By Definition 1.14, if (r1, c1,m1), (r2, c2,m2) are as in (iii) then

|S(r1, c1,m1)− Iσ(r1,c1,m1)
| > |S(r2, c2,m2)− Iσ(r2,c2,m2)

|

and if (r1, c1,m1), (r1, c2,m2) are as in (i) or (ii) then

|S(r1, c1,m1)− Iσ(r1,c1,m1)
| > |S(r2, c2,m2)− Iσ(r2,c2,m2)

|.

Therefore if (r1, c1,m1) ≻ (r2, c2,m2) ≻ · · · ≻ (rk, ck,mk) then

|S(r1, c1,m1)− Iσ(r1,c1,m1)
| > |S(rk, ck,mk)− Iσ(rk,ck,mk)

| (6.6)

with equality only if m1 = mk and r1 > rk, c1 > ck (and there are no crossings between the strands
labelled by these boxes).

We consider the transitive closure of the relation � (by abuse of notation we also denote
this by �); this relation is transitive and reflexive by definition. If (r, c,m) � (r′, c′,m′) and
(r, c,m) � (r′, c′,m′) then by equation (6.6) we have that (r, c,m) = (r′, c′,m′); hence the relation
is antisymmetric. Therefore � defines a partial ordering on the boxes of λ ∈ Pℓ

n.

Regard ≻ as a partial ordering on the boxes of S(λ) = µ by identifying the nodes of µ with
the corresponding nodes of λ. We can encode any total refinement, ≻t, of ≻ as a tableau, Sc,
of shape µ and weight ω. This is simply given by letting Sc(r, c,m) < Sc(r′, c′,m′) if and only if
(r, c,m) ≻t (r

′, c′,m′) for (r, c,m), (r′, c′,m′) ∈ µ.

It remains to show that AScAS = Aϕ(s) for some s ∈ Stdσ(λ). Suppose (r, c,m) and (r′, c′,m′)
are two boxes in λ whose solid or ghost strands cross in the diagram AS. In which case, (r, c,m) ≻
(r′, c′,m′) (or vice versa) and we are as in one of cases (i), (ii), or (iii) of Definition 6.20. By
definition, Sc(r, c,m) < Sc(r′, c′,m′) and so the crossing strands from AS do not cross again in
ASc . Therefore the diagram AScAS contains no double-crossings and so is equal to A

S
for S

some tableau of shape λ and weight ω. Now, by condition (iii) of Definition 6.20, we have that
S(r, c+ 1,m) < S(r, c,m) and S(r + 1, c,m) < S(r, c,m) for all 1 6 r, c 6 n and 1 6 m 6 ℓ. Since
any pair of boxes of the ℓ-partition ω are at 1 unit apart, S satisfies conditions (i) and (ii) of
Definition 1.14. Finally for any 1 6 m 6 ℓ, we have that S(1, 1,m) = (r, 1, ℓ) for some 1 6 r 6 n
and so S satisfies condition (iii) of Definition 1.14. Therefore S is semistandard. Finally, we let s
be the standard tableau determined by ϕ(s) = S and this completes the proof. �

Finally, we generalise [Web17, Theorem 4.11] to an arbitrary integral domain.

Theorem 6.23. Let k be an arbitrary integral domain. The algebra Ak
n(σ) is free as an k-module

and has a graded cellular basis

{AST | S ∈ SStdσ(λ, µ),T ∈ SStdσ(λ, ν), λ ∈ P
ℓ
n, µ, ν ∈ C

ℓ
n}

with respect to the σ-dominance order on Pℓ
n and the involution ∗ given by horizontal reflection.

We let ∆k
σ(λ) denote the corresponding cell-module for λ ∈ Pℓ

n.

Proof. We shall prove this by contradiction. By Theorem 6.8 and the fact that
∑

α∈C ℓ
n,ı∈(Z/eZ)

n 1ıα
is the identity of Ak

n(σ), it is enough to show that if there exist αUV ∈ k such that
∑

U∈SStdσ(λ,µ)
V∈SStdσ(λ,ν)

αUVAUV = 0 mod A�λ
n (σ) (6.7)
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then this implies that αUV = 0 for all U ∈ SStdσ(λ, µ),V ∈ SStdσ(λ, ν). We set ♯(S,T) = ℓ[AS] +
ℓ[AT]. We let S,T be any pair such that ♯(S,T) > ♯(U,V) for any pair of tableaux U,V with
αUV 6= 0. We let Sc (respectively Tc) denote any tableau of shape µ (respectively ν) and shape ω
as in Proposition 6.22. We shall show that the coefficient αST is necessarily zero (and so the result
immediately follows by repeating this argument). We multiply equation (6.7) on the left by A∗

Sc

and on the right by ATc ; it is enough to show that if

αSTAS T
+

∑

U∈SStdσ(λ,µ)
V∈SStdσ(λ,ν)

αUVAScAUVA
∗
Tc = 0 mod A�λ

n (σ), (6.8)

then αST = 0 (where S = ϕ(s) and T = ϕ(t) as in Proposition 6.22). There are two cases to
consider. Firstly, if one of AScAU or A∗

VA
∗
Tc contains a double-crossing, then

AScAUVA
∗
Tc =

∑

U′,V′∈SStdσ(λ,ω)
♯(U′,V′)<♯(T,V)

βU′V′AU′V′ mod A�λ
n (σ)

for some βU′V′ ∈ k, by Proposition 6.12. We now consider the case in which AScAU and A∗
VA

∗
Tc

contain no double-crossings. We have that (S,T) 6= (U,V). Assume U 6= S, then the bijection
traced out by U is different to that traced out by S; therefore the bijection traced out by AScAU

is not equal to that traced out by AScAS = Aϕ(s). In particular, if AScAU contains no double-

crossings, then it is equal to A
U
for U some (not necessarily semistandard) tableau of shape λ and

weight ω which is not equal to ϕ(s). Arguing similarly for the case V 6= T, we therefore deduce
that

AScAUVA
∗
Tc = A

U V

for U,V two (not necessarily semistandard) tableaux of shape λ such that (U,V) 6= (ϕ(s), ϕ(t)).
Now, if U and V are not semistandard, then

A
U V

=
∑

U′,V′∈SStdσ(λ,ω)
♯(U′,V′)<♯(S,T)

γU′V′AU′V′ mod A�λ
n (σ)

for some γU′V′ ∈ k, by as in the proof of Theorem 6.14. If U and V are semistandard, then we set
U = U′ and V = V′ for convenience. Putting all of this together, we have that equation (6.8) is
equivalent to

αSTAS T
+

∑

U′,V′∈SStdσ(λ,ω)
(U′,V′) 6=(S,T)

αUV(βU′V′ + γU′V′)AU′V′ = 0 mod A�λ
n (σ).

Now, the set {AQR | Q,R ∈ SStdσ(λ, ω)} is a basis of Eσ
ωA

k
n(σ)E

σ
ω by Theorem 6.17 and so αST = 0,

as required. Therefore we have verified condition (2) of Definition 2.2. Conditions (1) and (4) of
Definition 2.2 follow immediately from the diagrammatic definitions. Condition (3) follows from
Propositions 6.9 and 6.12. �

Corollary 6.24 ([Web17, Cor 2.26]). Let k be a field. The algebra Ak
n(σ) is quasi-hereditary and

the Lk
σ(λ) = ∆k

σ(λ)/rad(∆
k
σ(λ)) for λ ∈ Pℓ

n provide a complete set of non-isomorphic irreducible
modules.

Proof. Let T denote the unique element of SStdσ(λ, λ). The element ATT = 1λ ∈ AQλ
n (σ) is an

idempotent. Therefore the radical of the bilinear form is not the whole cell module. Therefore the
algebra is quasi-hereditary with the prescribed set of irreducible modules. �

7. The many integral cellular bases of quiver Hecke algebras

We now proceed to apply the many Schur functors in order to obtain our many graded cel-
lular bases of Hecke algebras. Given s = (e; s0, s2, . . . , sℓ−1) ∈ N>1 × (Z/eZ)ℓ we let σ =
(e;σ0, σ1, . . . , σℓ−1) ∈ N>1 × Zℓ denote any choice of integral lift. We have seen that Hk

n(s)
∼=

Eσ
ωA

k
n(σ)E

σ
ω is generated by

〈σ(y1), . . . , σ(yn), σ(ψ1), . . . , σ(ψn−1), σ(e(ı)) | ı ∈ (Z/eZ)n〉
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subject to relations (A1) to (A13). This idea should be very familiar to those working with
Cherednik algebras. Given a fixed Hecke algebraHk

n(s) there are many associated quiver Cherednik
algebras Ak

n(σ) (namely, one for each integral lift σ ∈ N>1 × Zℓ). Each of these distinct quiver
Cherednik algebras casts its own “charged shadow” on the representation theory of our fixed Hecke
algebra. Given s, t ∈ Stdσ(λ) we set

Aσ
st := Eσ

ωASTE
σ
ω ∈ Hk

n(s)

where ϕ(s) = S ∈ SStdσ(λ, ω) and ϕ(t) = T ∈ SStdσ(λ, ω).

Theorem 7.1. For a charge σ ∈ N>1 ×Zℓ, the k-algebra Hk
n(s) admits a graded cellular structure

with respect to the poset (Pℓ
n,�σ) and the basis

{Aσ
st | λ ∈ P

ℓ
n, s, t ∈ Stdσ(λ)}

and the involution ∗. In particular, deg(Aσ
st) = deg(s) + deg(t) for s, t ∈ Stdσ(λ).

Proof. The elements Eσ
ωASTE

σ
ω = Aσ

ST satisfy property (2) for Eσ
ωA

k
n(σ)E

σ
ω
∼= Hk

n(s) and property
(4) immediately. We have that

(Eσ
ωAE

σ
ω)(E

σ
ωASTE

σ
ω) = (Eσ

ωA)(AST)

for S,T ∈ SStdσ(λ, ω) and therefore (3) for Eσ
ωA

k
n(σ)E

σ
ω follows from condition (3) for Ak

n(σ). To
see that condition (1) holds, we proceed by induction on n ∈ N. The n = 0 case holds trivially.
Now, let s ∈ Stdσ(λ) and let (r, c,m) ∈ λ be such that s(r, c,m) = n. By induction, we may assume
that

deg(s↓{1,...,n−1}) = deg(Aσ
s↓{1,...,n−1}

)

having trivially verified that the n = 1 case holds. Now, we have that

Aσ
s = A

σ
s↓{1,...,n−1}

× 1
λ+(n,1,ℓ)
λ+(r,c,m)

where the diagrams on the righthand-side are constructed as follows

◦ we obtain A
σ
s↓{1,...,n−1}

from Aσ
s↓{1,...,n−1}

by adding a vertical solid strand with x-coordinate Iσ(n,1,ℓ);

◦ we obtain 1
λ+(n,1,ℓ)
λ+(r,c,m) from 1λ by adding a solid strand, Sn, from (Iσ(r,c,m), 0) to (Iσ(n,1,ℓ), 1);

and both diagrams are drawn in such a way as to create no double-crossings. The degree of Aσ
s

can be calculated inductively as follows,

deg(Aσ
s ) = deg(A

σ
s↓{1,...,n−1}

) + deg(1
λ+(n,1,ℓ)
λ+(r,c,m)) where deg(A

σ
s↓{1,...,n−1}

) = deg(Aσ
s↓{1,...,n−1}

)

by construction. The degree of 1
λ+(n,1,ℓ)
λ+(r,c,m) is calculated in terms of the number of crossings as in

Definition 4.2. We calculate this brick-by-brick and diagonal-at-a-time as follows.

If Sn passes through a brickBk for k = 1, k = 2, 3, k = 4, 5 or k = 6, then the degree contribution
of this crossing is 0, −1, +1, or −2 respectively. Let D be a diagonal in the diagram 1λ and suppose
that Sn passes through D. An addable diagonal is built out of a single Bk brick for k ∈ {4, 5, 6}
and some number (possibly zero) of B1 bricks. A removable (respectively invisible) diagonal has an
extra single Bk brick for k = 6 (respectively k ∈ {2, 3}). Summing over the degrees, we conclude
that the crossing of Sn with an addable, removable, or invisible i-diagonal has degree +1, −1, or
0. Finally, we observe that the i-diagonals in 1λ which the Sn strand crosses are precisely those to
the left of Iσ(r,c,m) and so the total degree contribution of this strand is |At(n)|− |Rt(n)|. Therefore

condition (1) holds. �

Using the standard facts about cellular algebras which we recalled in Section 2, we are now
able to define the many different families of cell/Specht modules and many different parameteri-
sations/constructions of irreducible modules promised in the introduction.

Definition 7.2. Fix an e-charge s = (e; s0, s1, . . . , sℓ−1) ∈ N>1 × (Z/eZ)ℓ. For each integral lift
σ ∈ N>1 × Zℓ of the e-charge and λ ∈ Pℓ

n, we let

Skσ(λ) = {Aσ
s | s ∈ Stdσ(λ)} (7.1)
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denote the corresponding Hk
n(s) cell-module. For k a field and an integral lift σ ∈ N>1 ×Zℓ of the

e-charge, we set

Σℓ
n = {λ ∈ P

ℓ
n | rad(〈 , 〉λ) 6= Skσ(λ)} ⊆ P

ℓ
n

and we let

{Dk
σ(λ) := Skσ(λ)/rad

k(〈 , 〉λ) | λ ∈ Σℓ
n}.

Proposition 7.3. For σ0 ≫ σ1 ≫ · · · ≫ σℓ−1 an asymptotic charge, the basis

{Aσ
st | λ ∈ P

ℓ
n, s, t ∈ Stdσ(λ)}

differs from that of [HM10, Main Theorem] by �σ-unitriangular change of basis matrix. For each
µ ∈ Pℓ

n the cell module Sσ(µ) is isomorphic as a graded Hk
n(s)-module to the usual graded Specht

module (with the same label) defined in [BKW11, Theorem 4.10].

Proof. For tλ ∈ Stdσ(λ) the unique tableau satisfying tλ Q s for all s ∈ Stdσ(λ). The chain of
2-sided cell ideals in [HM10] is given by the Hk

n(s)yλH
k
n(s) for

yλ =
n∏

k=1

y
|A

tλ
(k)|

k eres(tλ) and we claim that yλ = Aσ
tλtλ

+
∑

µ�σλ
s,t∈Stdσ(µ)

αuvA
σ
st

for αuv ∈ Z. Once the claim is established, we have that the chains of two-sided ideals are
isomorphic and the result follows. We now prove the claim by induction on �σ and 1 6 k 6 n.
At the kth step, we pull the kth strand to the right using the leftmost relation in (A9) until we
encounter a solid j-strand (from some earlier step in the process) with |j − ik| 6 1. If the kth
strand is undecorated (either because |Atλ(k)| = 0 or because we have already applied (A9) a total
of |Atλ(k)| times) then the kth strand is now part of either an M2-brick or has comes to rest in
the required position (in which case we are done). In the former case, we use the M2 analogue
of equation (5.2) to move the strand rightwards at the expense of an error term (which is zero by
Proposition 6.7). Otherwise, we have that the kth strand carries a single dot (by definition of tλ)
and we use (A6) to move the strand rightwards at the expense of an error term (which is again zero
by Proposition 6.7). Repeating as necessary, the process terminates when the kth strand reaches
the x-coordinate of the box (tλ)−1(k). �

We now consider Hk
2(s) for s = (e; s0, s1) = (2; 0, 1). This algebra has two irreducible mod-

ules, Dk(0, 1) and Dk(1, 0), which are generated by e(0, 1) and e(1, 0) respectively, and which are
annihilated by all the other generators of Hk

2(s). Here we label the irreducibles by the corre-
sponding idempotents (not by ℓ-partitions) because this labelling is independent of the charge; we
will reconcile this with the charged labelings in Examples 10.6 and 10.7. There are two charges,
σ = (e;σ0, σ1) = (2; 4, 1) and σ = (e;σ′0, σ

′
1) = (2; 2, 1), which give rise to distinct cellular structures

(every other charge gives a basis equivalent to one of these). We show that there is no isomorphism
relating the sets of cell modules obtained from these distinct charges.

Example 7.4. Let σ = (e;σ0, σ1) = (2; 4, 1), we remark that this is a well-separated charge. The
σ-dominance order is as follows,

((2),∅) �σ ((12),∅) �σ ((1), (1)) �σ (∅, (2)) �σ (∅, (12)).

We let

w ∈ Stdσ((2),∅)) v ∈ Stdσ((1
2),∅) t, u ∈ Stdσ((1), (1)) s ∈ Stdσ(∅, (2)) r ∈ Stdσ(∅, (1

2)).

We choose t so that the box t−1(1) has residue 0. We leave constructing the diagrammatic version
of this basis as an exercise for the reader. Instead, we describe the basis as a linear combination
of products of the KLR generators (using the process described in Theorem 6.17) as follows,
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Aσ
rr = e(1, 0)

Aσ
ss = y2e(1, 0)

Aσ
tt = e(0, 1) Aσ

tu = ψ1e(1, 0)

Aσ
ut = ψ1e(0, 1) Aσ

tt = (y2 − y1)(y1 − y2)e(1, 0)

Aσ
vv = y2e(1, 0)

Aσ
ww = y22e(1, 0)

Example 7.5. Let σ = (e;σ0, σ1) = (2; 2, 1). The (2; 2, 1)-dominance order is given as follows,

((12),∅), (∅, (12)) �σ ((1), (1)) �σ ((2),∅), (∅, (2)).

We let

Aσ
rr =

1 00 1

Aσ
ss =

1 01 0

Aσ
tt =

1 00 1

Aσ
tu =

1 001

Aσ
ut =

1 00 1

Aσ
uu =

1 01 0

Aσ
vv =

1 00 1

Aσ
ww =

1 01 0

where we have chosen t so that the box t−1(1) has residue 1. The elements Aσ
ww, A

σ
vv are equal

to the idempotents e(1, 0) and e(0, 1) respectively. Therefore these basis elements generate the
corresponding irreducible modules Lk(1, 0) and Lk(0, 1) (modulo more dominant terms). One can
rewrite the above basis elements using relation (A1) to (A13) (as in the proof of Theorem 6.17) to
obtain a basis of this algebra in terms of a linear combination of products of the KLR-generators
as follows,

Aσ
rr = e(1, 0) Aσ

ss = e(0, 1)

Aσ
tt = y2e(1, 0)− y1e(1, 0) Aσ

tu = ψ1e(0, 1)

Aσ
ut = ψ1e(1, 0) Aσ

tt = y2e(0, 1)− y1e(0, 1)

Aσ
vv = y22e(1, 0)− y1y2e(1, 0) Aσ

ww = y22e(0, 1)− y1y2e(0, 1)

We remark that any term with a y1 in the product is zero by relation 3.13. These terms have been
included in order to facilitate comparison with the diagrams.
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Example 7.6. The graded dimension of Hk
2(2; 0, 1) can be calculated using either the (2; 4, 1) or

(2; 2, 1) cellular structure

(1)2 + (t)2 + (1 + t2)2 + (t)2 + (t2)2 = 2 + 4t2 + 2t4 = (1)2 + (1)2 + (t+ t)2 + (t2)2 + (t2)2,

respectively and is (of course!) independent of the choice of cellular structure.

In [BKW11] the authors prove a series of results on asymptotic cellular structures: they construct
graded tableaux-theoretic bases, analyse the restriction of asymptotic cell modules, and provide
quasi-Garnir relations which serve as a warm-up to [KMR12]. We have already generalised the
graded tableaux and resulting bases in Theorem 7.1 and we will prove the generalised restriction
rule in Section 12. We now generalise their quasi-Garnir relations to all charges.

Theorem 7.7. Given t a tableau of shape λ, we let At be a reduced diagram for t. We have that

e(ı)Aσ
t = δı,res(t)A

σ
t yrA

σ
t =

∑

s�σt

αsA
σ
s ψrA

σ
t =

{
Aσ

sr,r+1(t)
if t �σ sr,r+1(t) ∈ Stdσ(λ)∑

s�σsr,r+1(t)
βsA

σ
s otherwise.

Proof. This result follows directly from Propositions 6.9 and 6.12 once we have shown that the
Bruhat ordering on diagrams coincides with the dominance order on Stdσ(λ). Each solid (respec-
tively ghost) strand in Aσ

t terminates at some northern point Iσ(p,1,ℓ) (respectively Iσ(p,1,ℓ) + 1) and

the corresponding southern point Iσ
t−1(p,1,ℓ) (respectively Iσ

t−1(p,1,ℓ) + 1) for some associated integer

1 6 p 6 n. A pair of solid or ghost strands in At associated to integers 1 6 p < q 6 n crosses
if and only if Iσ(p,1,ℓ) < Iσ(q,1,ℓ). Thus undoing a crossing of strands is equivalent to swapping the

entries p and q in t to obtain a diagram As associated to s = sp,q(t). Finally, we observe that
Iσ(p,1,ℓ) < Iσ(q,1,ℓ) implies s �σ t, as required. �

8. Generic semisimplicity and the decomposition map over Q

We now recall Webster’s definition of a generically semisimple algebra which specialises to
be isomorphic to the (graded) quiver Cherednik and Hecke algebras of this paper (over Q or
C). This generic semisimplicity allows us to understand the many “charged” families of Specht
modules as specialisations of a single family of semisimple modules (via many different inte-
gral forms on these modules). In more detail, we now recall Webster’s definition of an algebra
Bk
n(σ, (q;Q0, Q1, . . . , Qℓ−1)) associated to n ∈ N and parameters q and Q0, Q1, . . . , Qℓ−1. When we

specialise q = ξ to a primitive eth root of unity and Qm = qσm for 0 6 m < ℓ we will see that
AQ
n (σ)

∼= BQ
n (σ, (ξ; ξ

σ0 , ξσ1 , . . . , ξσℓ−1)).

8.1. Algebra definition. We now define the algebra of interest. Our definition is slightly reverse-
engineered in order to make it easier to understand the isomorphism (see Remark 8.5). We first
require a “generic” versions of definitions of the residues and contents from Section 1. We assume
all the notation and definitions of Section 1. We define the (q,Q)-content of a box as follows,

ctq,Q(r, c,m) = qc−rQm

and we set ctq,Q(λ) =
∑

(r,c,m)∈λ ctq,Q(r, c,m). Upon specialisation of q = ξ and Qm = ξσm for

0 6 m < ℓ, we have
ctq,Q(r, c,m)|q=ξ,Qm=ξm := ξc−rξσm = ξres(r,c,m).

Definition 8.1. Given a σ-diagram of type (µ, λ), we define a corresponding degraded σ-diagram to
be any diagram obtained by relabelling (and recolouring) as follows. We recolour each solid strand
as a green double-edged line and replace the residue of this solid strand with some (q,Q)-content
qiQm for i ∈ Z and 0 6 m < ℓ; we relabel the residue of the σm red strand with Qm.

Definition 8.2. The associative k-algebra, Bk
n(σ, (q;Q0, Q1, . . . , Qℓ−1)), is generated (as a k-

module) by all inequivalent degraded σ-diagrams modulo the local relations (B1) to (B12) below.
The product b1b2 of two diagrams b1, b2 ∈ Bk

n(σ, (q;Q0, Q1, . . . , Qℓ−1)) is then given by putting b1
on top of b2. This product is defined to be 0 unless the southern border of b1 is given by the same
loading as the northern border of b2 with (q;Q)-contents matching in the obvious manner, in which
case we obtain a new diagram with loading inherited from those of b1 and b2.
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0 1−1−2 2 3 4

qQ0

q2Q0

q3Q0

q−1Q0

q−2Q0

Q0

qQ1

q2Q1

q−1Q1

q−2Q1

Q1

Q1

0 1−1−2 2 3 4 5

qQ0

q2Q0

q3Q0

q−1Q0

q−2Q0

Q0

qQ1

q2Q1

q−1Q1

q−2Q1

Q1

Q1

Figure 20. We picture the (q,Q)-contents of the 2-partition ((4, 12) | (3, 2, 1)) for σ =
(0, 1) and (0, 4) respectively. In each box we have placed the (q,Q)-content of the box.

Q0j2j4 j3 j1j5

Figure 21. A σ-diagram, B ∈ Bk
5(0, (q;Q0)), with northern and southern loading Iσω for ω = (15).

Here jk = qikQ0 for some ik ∈ Z and 1 6 k 6 5.

(B1) Any diagram may be deformed isotopically; that is, by a continuous deformation of the
diagram which avoids tangencies, double points and dots on crossings.

(B2) Any solid dot can pass through an arbitrary crossing involving a ghost strand. Namely:

ji

=

ji i j

=

i j

for i, j any (q,Q)-contents and their images through reflection in the vertical axis hold.
(B3) We can pass a solid dot through a crossing at the expense of an error term:

i j

=

i j

+

i j i j

=

i j

+

i j

for i, j any (q,Q)-contents. Ghost dots can pass through any crossing of strands freely.

(B4) For i, j any (q,Q)-contents, a double-crossings of solid strands is zero, that is

ji

=0
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(B5) For i, j any (q,Q)-contents, a double-crossing of ghost and solid strands can be undone as
follows:

i j

=

i j

− q

i j i j

=

i j

− q

i j

(B6) We can pull a solid strand through a ghost-crossing (or a ghost strand through a solid-
crossing) at the expense of an error term: for i, j, k any (q,Q)-contents we have

ki j

=

ki j

− q

ki j ki j

=

ki j

+

ki j

(B7) All other triples of solid and ghost strands satisfy the naive braid relation:

ki j

=

ki j ki j

=

ki j ki j

=

ki j

for any i, j, k any (q,Q)-contents and their mirror images through reflection in the vertical
axis hold. Performing the leftmost relation implicitly involves manipulating a braid of three
ghost strands at the same time (which we do not picture) and vice versa.

(B8) Double-crossings of solid and red strands can be undone at the expense of an error term

i Qm

=

i Qm

− Qm

i Qm

for 0 6 m < ℓ and i any (q,Q)-content; the mirror image through reflection through the
vertical axis also holds. Ghost strands and ghost dots may pass through red strands freely.

(B9) Solid crossings and dots can pass through red strands, with a correction term,

Qm ji

=

Qm ji

+

Qm ji

for 0 6 m < ℓ and i, j any (q,Q)-contents.
(B10) Any braid involving a red strand and not of the form in (B9) can be undone without cost:

Qmji

=

Qmji Qmji

=

Qmji Qmji

=

Qmji

jQmi

=

jQmi jQmi

=

jQmi jQmi

=

jQmi

for 0 6 m < ℓ and i, j any (q,Q)-contents; their reflections through the vertical axis hold.
(B11) Finally, any solid or ghost dot can be pulled through a red strand without cost:

Qmi Qm

=

i Qm i

=

Qm i

for 0 6 m < ℓ and i any (q,Q)-content; their reflections through the vertical axis also hold.

We note that the diagram ǫλ whose solid points along the northern and southern boundaries are
given by Iσλ for λ ∈ C ℓ

n and with no crossing strands is an idempotent by construction. We refer
to any such diagram as a degraded weight idempotent. Finally, we have the following non-local
idempotent relation.
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(B12) Any degraded weight idempotent, ǫλ, in which a solid strand is at least n units to the right
of the rightmost red-strand is referred to as unsteady and set to be equal to zero.

Remark 8.3. Given (degraded) weight idempotents ǫıλ and 1ıλ, we enumerate the solid (green or
black, respectively) strands 1, . . . , n from right-to-left. We let Xpǫ

ı
λ and yp1

ı
λ denote the diagrams

obtained by adding a single dot on the pth solid strand (and a corresponding ghost dot on its
ghost strand) and we let eyp1ıλ =

∑
i>0

1
(i!)y

i
p1

ı
λ. We set ǫ

σ
ω =

∑
ı ǫ

ı
ω where the sum is over all

(q,Q)-content sequences.

Theorem 8.4 ([Web17, Theorem 4.6] and [Web20, Theorem 6.9] ). We have an isomorphism of
Q-algebras ζ : BQ

n (σ(ξ; ξ
σ0 , ξσ1 , . . . , ξσℓ−1)) −→ AQ

n (σ). This isomorphism is given by specifying what
happens on every local region of a diagram, as follows. We have that

ǫ
ı
λ 7→ 1ıλ Xpǫ

ı
λ 7→ eyp1ıλ

ξipξip+1

ξir

7→

ipip+1

ir

ξipξip Qmip

Qm

7→

ipip smip

sm

together with the flips of the latter two diagrams through the horizontal axis. We have that

ξipip Qmξip

Qm

7→

ipip smip

sm

ξipip Qmξip

Qm

7→
(ipe

yp −Qm)

y
δip,Qm
p

ip ip smip

sm

ξipξir

ξip

7→

ipir

ir

ξip ξir

ξip

7→
ipe

yp − qire
yr

(yr − yp)
δqir,ip

ip ir

ξip

and finally, we have that

ξipξip+1

ir

7→





ip+1 ip

ir

−1
ip+1e

yp+1−ipeyp
ip 6= ip+1

ipip+1

ir

ip+1 ip

ir

yp+1−yp
ip+1e

yp+1−ipeyp
ip = ip+1

Remark 8.5. Webster takes a slightly different approach the definition of this algebra. He defines
the algebra as above, but does not attach (q;Q)-contents to the strands. Webster then observes
the following. Let M be a finite dimensional Bk

n(σ, (q;Q0, Q1, . . . , Qℓ−1))-module, the eigenvalues
of each Xpǫλ on M are of the form qiQm for some i ∈ Z and 0 6 m < ℓ. So M decomposes as a
direct sum of its weight spaces

Mi = {v ∈M | (Xp − qipQmp)Nv = 0 for all p = 1, . . . , n and N ≫ 0}

Considering the weight-space decomposition of the regular module, one deduces that there is a
system {ǫıλ | ıp = qipQmp for some ip ∈ Z and 0 6 mp < ℓ, 1 6 p 6 n}. With this notation in
place, Webster then decomposes the identity of his algebra as a sum of these idempotents — thus
obtaining our (q;Q)-content decorated diagrams. In what follows, we will consider the summation
over all possible the (q,Q)-content decorations on any given solid green strand; we denote the
resulting diagram without decorations on solid strands.

Remark 8.6. The following proposition and theorem are due to Webster and we provide citations
here. However, we remark that, with only a few minor modifications, one can repeat all the
arguments of Section 6 almost verbatim (one simply has to “forget the residues” of solid and ghost
strands on account of relations (B1) to (B12) being residue-free). Indeed, all the results and proofs
of Section 6 were very heavily based on ideas from [Web17] and [BKW11].

There is only one significant change to the analogues of the results from Section 6. Namely, we
must replace the statement y(r,c,m)1µ ∈ A

�µ
n (σ) in Proposition 6.7 withX(r,c,m)ǫµ ∈ ctq,Q(r, c,m)ǫµ+
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B
�µ
n (σ, ((q;Q0, Q1, . . . , Qℓ−1))). To see this, one should compare the extra scalar on the righthand-

side of relation (B8) versus its analogue in relation (A9) and the scalar on the righthand-side of
relation (B5) versus its analogue, the pair of relations (A5), (A6). We revisit this idea in Proposi-
tion 8.10, below.

Proposition 8.7 ([Web20, Proposition 5.7]). Let k be a integral domain. We have an isomorphism
of k-algebras

σq,Q : Hk
n(q;Q0, Q1, . . . , Qℓ−1) → ǫ

σ
ωB

k
n(σ, (q;Q0, Q1, . . . , Qℓ−1))ǫ

σ
ω.

σq,Q(Xk) =

s0sℓ−1 s1

σq,Q(Tk + 1) =

s0sℓ−1 s1

where the dot is on the kth solid strand (from the right) and the crossing strands are the kth and
(k + 1)st solid strands from the right.

We let BST denote the degraded σ-diagram obtained from AST by relabelling each sm-strand
with the content Qm and forgetting the residues of all other strands. In other words, we sum over
all possible (q,Q)-contents on each green strand in BST.

Theorem 8.8. [Web17, Theorem 2.24] Let k be an integral domain. The k-algebra Bk
n(σ, (q;Q0, Q1, . . . , Qℓ−1))

is free as an k-module and has a cellular basis

{BST | S ∈ SStdσ(λ, µ),T ∈ SStdσ(λ, ν), λ ∈ P
ℓ
n, µ, ν ∈ C

ℓ
n}

with respect to the σ-dominance order on Pℓ
n and the involution ∗ given by horizontal reflection.

We let ∆k
σ,q,Q(λ) denote the corresponding cell-module for λ ∈ Pℓ

n.

Corollary 8.9. Specialise q = ξ and Qm = ξm for 0 6 m < ℓ and k = Q. The HQ
n (s)-modules

SQσ (λ) and ζ(ǫω∆
Q
σ,q,Q(λ)) are isomorphic.

Proof. We use the notation from the proof of Theorem 6.23 and we let S,T ∈ SStdσ(λ, ω). We let

ÂS′T′ ∈ HQ
n (s) denote some diagram obtained from the graded cellular basis element AS′T′ ∈ HQ

n (s)
by adding some number (possibly zero) of dots along the strands. By the definition of the map ζ,
we have that

ζ(BST) = AST +
∑

U′,T′∈SStdσ(λ,ω)
♯(S′,T′)<♯(S,T)

ÂS′T′ .

Therefore by Propositions 6.7 and 6.9, we have that

ζ(BST) ∈ AST +
∑

U′,T′∈SStdσ(λ,ω)
♯(S′,T′)<♯(S,T)

kS′T′AS′T′ + EωA
�λ
n (σ)Eω

for some kS′T′ ∈ k. Thus the bases {ζ(BST) | S,T ∈ SStdσ(λ, ω), λ ∈ Pℓ
n} and {AST | S,T ∈

SStdσ(λ, ω), λ ∈ Pℓ
n} differ by uni-triangular change of basis matrix and the result follows. �

Proposition 8.10. For each λ ∈ Pℓ(n), the element Xλ =
∑

(r,c,m)∈λX(r,c,m)ǫλ is central within

ǫλB
k
n(σ(q;Q0, Q1, . . . , Qℓ−1))ǫλ and acts on ǫλ∆

k
σ,q,Q(µ) as the scalar ctq,Q(µ).
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Proof. Centrality follows immediately from the relations (B1) to (B12) and therefore Xλ acts as a
scalar on any module, it remains to calculate this scalar. We have that

X(r,c,m)ǫλ =





qX(r−1,c,m)ǫλ + B�λ for r > 1

q−1X(r,c−1,m)ǫλ + B�λ for c > 1

QmX(r,c,m)ǫλ + B�λ for r = c = 1

by the first case of relation (B5), second case of relation (B5), and relation (B8) respectively. It
follows that Xλǫλ = ctq,Q(λ)ǫλ + B�λ. For a cellular basis element of ǫλ∆

k
σ,q,Q(µ), the result

follows by induction on the Bruhat order and the analogue of Proposition 6.9. �

Bringing together Propositions 8.7 and 8.10 and Theorem 8.8 we immediately deduce the following:

Theorem 8.11. For λ ∈ Pℓ
n, the H

Q
n (q;Q0, Q1, . . . , Qℓ−1)-module ǫω∆

Q
σ,q,Q(λ) is isomorphic to

the irreducible module upon which the central element X1 + · · ·+Xn acts as the scalar ctq,Q(λ).

9. The many different graded decomposition matrices

In this section let k be an arbitrary field. We now prove the first statement of Theorem B:
namely that the decomposition matrices of Hecke algebras are uni-triangular with respect to any
of Lusztig’s aσ-orderings. By Corollary 8.9 and Theorem 8.11 the modules SQσ (λ) are obtained from
the usual semisimple Specht modules after specialisation of q = ξ and Qm = ξm for 0 6 m < ℓ.
Thus by Proposition 2.3, upon forgetting the grading, the cellular decomposition matrices coincide
with the usual definition of a decomposition matrix coming from a modular system.

Theorem 9.1. Given a fixed σ ∈ N>1×Zℓ, the graded decomposition matrix of Hk
n(s) with respect

to the σ-cellular structure appears as a submatrix of the decomposition matrix of Ak
n(σ) as follows,∑

k∈Z

[Skσ(λ) : D
k
σ(µ)〈k〉] =

∑

k∈Z

[∆k
σ(λ) : L

k
σ(µ)〈k〉]

for λ ∈ Pℓ
n, µ ∈ Σℓ

n. Here Σℓ
n ⊆ Pℓ

n is the subset for which Dk
σ(µ) := Eσ

ωL
k
σ(µ) 6= 0; the set

{Dk
σ(µ) | µ ∈ Σℓ

n} provides a complete set of non-isomorphic irreducible Hk
n(s)-modules. This

matrix is uni-triangular with respect to the ordering �σ on Pℓ
n.

Proof. The unitriangularity result is immediate from Theorem 7.1 and standard results on cellular
algebras recalled explicitly in Section 2. The equality is immediate from [Gre07, (6.6b)Lemma]. �

In [Ari96, Web17, RSVV16, Los16] it is shown that the decomposition matrix of Ak
n(σ) is given

by the Kashiwara–Lusztig canonical basis for an irreducible highest weight U(ŝle)-module and
the entries are given by certain Kazhdan–Lusztig polynomials; these can be computed using an
algorithm due to Uglov [Ugl00].

One of the main advantages of our new Z-lattices is that they allow us to define generalisations
of James’ adjustment matrices. The theory of adjustment matrices gives us a way of factorising
representation theoretic questions into two steps: firstly specialise the parameter σ ∈ N>1×Zℓ and
study the non-semisimple algebra HQ

n (σ); then reduce modulo p by studying Hk
n(σ) = HZ

n(σ)⊗Z k.
This allows us to factorise the problem of understanding decomposition matrices as follows,

[Skσ(λ) : D
k
σ(µ)] =

∑

ν

[SQσ (λ) : D
Q
σ (ν)]× [DQ

σ (ν)⊗Z k : Dk
σ(µ)]. (9.1)

On the right-hand side of the equality we have two matrices: the first is the σ-decomposition matrix
for HQ

n (s) and the second is what we refer to as the generalised James’ σ-adjustment matrix Adk
σ(t).

We emphasise that the definition of Adk
σ(t) only makes sense because, by Theorem A, we have

Z-forms for the cell and irreducible modules which allow us to reduce modulo p in equation (9.1).

Example 9.2. The action of the generators on the basis of Sk(2;2,1)((1), (1)) in Example 7.5 is given

as follows,

ψ1, y1, y2, e(0, 0), e(1, 1) 7→

(
0 0
0 0

)
e(0, 1) 7→

(
1 0
0 0

)
e(1, 0) 7→

(
0 0
0 1

)
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and therefore this module is a direct sum of the irreducible modules Lk(0, 1) and Lk(1, 0). Clearly
the module Sk(2;2,1)((1), (1)) is not cyclic. The action of the generators on the basis of S(2;4,1)((1), (1))

in Example 7.4 is given as follows,

y1, y2, e(0, 0), e(1, 1) 7→

(
0 0
0 0

)
e(0, 1) 7→

(
1 0
0 0

)
e(1, 0) 7→

(
0 0
0 1

)
ψ1 7→

(
0 0
1 0

)

and therefore this module is a non-split extension of the irreducible modules Lk(0, 1) and Lk(1, 0).
All the cell-modules for the charge (2; 2, 1) are all indecomposable, whereas this is not the case for
the charge (2; 4, 1). Hence, there is no isomorphism relating the sets of cell modules from these
two distinct charges. Notice that the two modules have the same composition factors, but not the
same structure.

Example 9.3. The graded decomposition matrices with respect to these cellular bases are,

D(2;2,1)(t) =

Dk(1, 0) Dk(0, 1)
(∅, (12)) 1 0
((12),∅) 0 1
((1), (1)) t t
(∅, (2)) t2 0
((2),∅) 0 t2

D(2;4,1)(t) =

Dk(1, 0) Dk(0, 1)
(∅, (12)) 1 0
(∅, (2)) t 0
((1), (1)) t2 1
((12),∅) 0 t
((2),∅) 0 t2

.

We cannot obtain Dk
(2;2,1)(t) by permuting the rows of Dk

(2;4,1)(t). However, letting t = 1 we find

that Dk
(2;2,1)(1) can be obtained from by permuting the rows of Dk

(2;4,1)(1).

10. Uglov combinatorics and the many different

constructions of irreducible modules

In this section let k be an arbitrary field. In this section we complete the proof of Theorem B
of the introduction. Namely, we provide many explicit constructions of the irreducible modules of
(quiver) Hecke algebras (in terms of cellular bilinear forms) over arbitrary fields.

Definition 10.1. Fix σ ∈ N>1 × Zℓ. Given λ ∈ Pℓ
n and i ∈ Z/eZ, we define the i-sequence

of λ to be the sequence of addable and removable nodes (recorded by A and R respectively) in
increasing order with respect to �σ. We define the reduced i-sequence to be the sequence of the
form R,R, . . . , R,A,A, . . . , A obtained from the above by repeatedly removing all pairs of the form
(A,R). We say that the removable i-node of λ is σ-good if it corresponds to the rightmost R in
the reduced i-sequence.

Definition 10.2. Given a fixed σ ∈ N>1 × Zℓ, the set of Uglov ℓ-partitions Σℓ
n ⊆ Pℓ

n is defined
recursively as follows. We have that ∅ ∈ Σℓ

n. For λ ∈ Pℓ
n, we have that λ ∈ Σℓ

n if and only if there
exists i ∈ Z/eZ and a good i-node α ∈ Remi(λ) such that λ− α ∈ Σℓ

n.

Example 10.3. For asymptotic charges the Uglov ℓ-partitions defined above are better known as
the Kleshchev ℓ-partitions.

We now recall [Jac07, Main Theorem], modifying the statement slightly by inputting the defini-
tion of a canonical basic set (Definition 2.1) and by having explicitly defined Σℓ

n in Definition 10.2
using the “crystal combinatorics” made explicit in Definition 10.1.

Theorem 10.4 ([Jac07, Main Theorem]). For each σ ∈ N>1×Zℓ, the algebra HQ
n (s) has canonical

basic set Σℓ
n ⊆ Pℓ

n with respect to the ordering >σ.

The following theorem extends Theorem 10.4 to arbitrary fields and also gives an explicit con-
struction of the irreducible modules labelled by Σℓ

n ⊆ Pℓ
n (this is new even in the case of k = Q).

This extends Ariki–Mathas’s results for asymptotic charges [Ari01, AM00] to arbitrary charges.

Theorem 10.5. Let k be an arbitrary field and let σ ∈ N>1 × Zℓ. The irreducible Hk
n(s)-modules

are constructed as follows
Dk

σ(λ) := Skσ(λ)/rad
k(〈 , 〉λ)

are indexed by the set Σℓ
n = {Uglov ℓ-partitions with respect to the pair σ ∈ N>1 × Zℓ}.
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Proof. We first fix our field to be Q. In Theorem 8.11 and Corollary 8.9 we proved that our
cell-modules SQσ (λ) are obtained via specialisation from the irreducible modules of the semisim-
ple Hecke algebra; moreover we showed that this preserved the labelling of these modules. We
saw in Theorem 9.1 that the cellular structure of Theorem 7.1 gives rise to a unitriangular
decomposition matrix (and hence a canonical basic set) with respect to to the ordering �σ

(which is a coarsening of >σ) on Pℓ
n. By Proposition 2.3 and Theorem 10.4 it follows that

Σℓ
n = {Uglov ℓ-partitions with respect to the pair σ ∈ N>1 × Zℓ} for k = Q. It remains to prove

that the result extends to arbitrary fields, by reduction modulo p (with respect to the Z-lattices of
Theorem 7.1).

Let k be an arbitrary field. From the above, we know that radQ(〈 , 〉λ) = SQσ (λ) for any
λ 6∈ Σℓ

n. We also know that the number of irreducibles of the Hecke algebra is independent of the
characteristic of the field [AM00] and that all irreducibles (regardless of the field) are obtained as
quotients of these radicals by cellularity. Therefore, radk(〈 , 〉λ) = Skσ(λ) for any λ 6∈ Σℓ

n by base
change (as our bases are constructible over Z). �

Example 10.6. The irreducible modules for σ = (2; 2, 1) are labelled by {((12),∅), (∅, (12))}.

Example 10.7. The irreducible modules for σ = (2; 4, 1) are labelled by {(∅, (2)), (∅, (12))}.

To summarise: the parameterisations of irreducible modules given by Theorem 10.5 are pre-
cisely those of Ariki’s categorification theorem. Thus Theorem 7.1 provides the integral cellular
bases “predicted” by Ariki’s categorification theorem. Theorem 10.5 explicitly constructs these
irreducible modules in terms of radicals of cellular bilinear forms for the first time.

11. The many different filtrations of projective modules

Our many cellular bases allow us to obtain many different filtrations on any fixed projective
Hk

n(s)-module. The search for these different filtrations was initiated by Geck–Rouquier [GR01].

Theorem 11.1. Fix k a field, s = (e; s0, s1, . . . , sℓ−1) ∈ N>1 × (Z/eZ)ℓ, and let Ps be a fixed

projective indecomposable Hk
n(s)-module. For each and every integral lift, σ ∈ N>1 × Zℓ, the

projective module Ps admits a filtration

0 =Mσ
1 ⊂Mσ

2 ⊂ · · · ⊂Mσ
z = Ps

such that for each 1 6 r 6 z, we have Mσ
r /M

σ
r−1 is isomorphic to some Skσ(µ

(r)) for µ(r) ∈ Pℓ
n

up to grading shift. We have that µ(r) �σ µ
(r−1) for 1 6 r 6 z. In particular, every projective

module admits many different cell-filtrations (up to grading shift), one for each cellular structure
in Theorem A, or equivalently, one for each quasi-hereditary cover Ak

n(σ) of H
k
n(s).

Proof. Fix an arbitrary integral lift σ ∈ N>1×Zℓ. For λ ∈ Pℓ
n, let Pσ(λ) denote the corresponding

projective Ak
n(σ)-module. Then Pσ(λ) admits a cell-filtration (with respect to the cellular structure

of Theorem 6.14) by standard facts concerning quasi-hereditary algebras (and Corollary 6.24).
Therefore Eσ

ωPσ(λ) is an indecomposable Hk
n(s)-module with a filtration by Skσ(µ) such that µ Qσ

λ. Given any integral lift of our e-charge, a full set of projective Hk
n(s)-modules are given by

{Eσ
ωPσ(λ) | λ ∈ Σℓ

n} and so the result follows. �

Lk(1, 0)

Lk(1, 0)Lk(0, 1)

Lk(1, 0)

S0,3((1), (1))

S0,3(∅, (2))

S0,3(∅, (1
2))

Lk(1, 0)

Lk(1, 0)Lk(0, 1)

Lk(1, 0)

S0,1((2),∅)

S0,1((1), (1))

S0,1(∅, (1
2))

Lk(1, 0)

Lk(1, 0)Lk(0, 1)

Lk(1, 0)

Figure 22. The projective cover of the irreducible module Lk(1, 0) and its 2 distinct cell-
filtrations. As both n and ℓ increase, we obtain many more distinct filtrations on each projective
module.
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Example 11.2. The algebra Hk
2(2; 0, 1) has two indecomposable projective modules. We picture

the full submodule structure of the projective P k(1, 0) in Figure 22. We also picture the two
distinct cell-filtrations of this module for σ = (2; 4, 1) and σ = (2; 2, 1).

12. The restriction of a cell module for the quiver Hecke algebra

For every charge σ ∈ N>1 ×Zℓ, we prove that the (graded) restriction of cell-module (down the
tower of Hecke algebras) has a cell-filtration. We thus complete our program of generalising all the
results from [BKW11] to arbitrary charges. This result is to be expected, given the 2-categorical
origins of our Z-bases [Web17] (where σ-diagrams arise in categorifying quantum knot variants).
This result provides the key ingredient to the construction of resolutions of unitary modules for
Cherednik algebras and algebraic varieties in [BNS].

Theorem 12.1. Let k be a integral domain. Let λ ∈ Pℓ
n and let α1 �σ α2 �σ · · ·�σ αz denote the

removable boxes of λ, totally ordered according to the σ-dominance ordering. Then the restriction
of a cell-module has an Hk

n−1(s)-module filtration

0 = Sz+1,λ
σ ⊂ Sz,λσ ⊂ · · · ⊂ S1,λσ = ResHk

n−1(s)
(Skσ(λ)) (12.1)

such that, for each 1 6 r 6 z, we have that

Skσ(λ− αr)〈deg(αr)〉 ∼= Sr,λσ /Sr+1,λ
σ . (12.2)

Proof. For 1 6 r 6 z, we define

Sr,λσ = R{AuTλ | u ∈ Stdσ(λ) and Shape(u↓{1,...,n−1}) Q λ− αr}.

On the level of graded k-modules, the chain of inclusions in equation (12.1) is clear. For t ∈
Stdσ(λ − αr), we define ϕr(t) ∈ Stdσ(λ) to be the tableau obtained by adding the box αr with
entry n to the tableau t ∈ Stdσ(λ− αr). Abusing notation, we define

ϕr(AtT(λ−αr)) = Aσ
ϕr(t)Tλ .

We assume that αr is a box of residue i ∈ Z/eZ. It is clear that ϕr provides the required graded
k-module isomorphism of equation (12.2). It remains to verify that the chain of inclusions and the
resulting isomorphisms hold on the level of Hk

n−1(s)-modules. We shall prove this by downward

induction on the ordering on the removable nodes of λ. Let ρ, τ ∈ C ℓ
n and suppose that ρ\(ρ∩τ) =

�ρ := (rρ, cρ,mρ) and τ \ (ρ ∩ τ) = �ρ := (rτ , cτ ,mτ ). Let γ ∈ C ℓ
n and Given S ∈ SStdσ(ρ, τ),

t ∈ Stdσ(γ) we define

S
τ
ρ(r, c,m) =

{
Iσ(r,c,m) if (r, c,m) ∈ ρ ∩ τ

Iσ(rτ ,cτ ,mτ )
if (r, c,m) = �ρ

t(r, c,m) =

{
t(r, c,m) if (r, c,m) ∈ ν

n if (r, c,m) = �ρ

We have that

Aϕr(t) = At ×A
T
λ−αr+(n,1,ℓ)
λ

(12.3)

for t ∈ Stdσ(λ− αr). For a ∈ H k
n−1(σ) and t ∈ Stdσ(λ− αr), it follows from Theorem 7.1 that

aAt =
∑

νQλ−αr

s∈Stdσ(ν)
S∈SStdσ(ν,λ−αr)

ksSAsS (12.4)

for some ksS ∈ k. By equation (12.3), we have that

ϕr(aAt) =
∑

νQλ−αr

s∈Stdσ(ν)
S∈SStdσ(ν,λ−αr)

ksSAsSAT
ν+(n,1,ℓ)
λ

(12.5)

and so it will suffice to show that if ksS 6= 0 and ν 6= λ− αr, then

AsA
∗
SATλ

ν+(n,1,ℓ)
∈ Sr+1,λ

σ mod A�λ
n (σ). (12.6)
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By Proposition 6.7, a necessary condition for A∗
SAT

ν+(n,1,ℓ)
λ

6∈ A�λ
n (σ) is that λ Q ν + (n, 1, ℓ). On

the other hand, we have that ν ⊲ λ − αr by equation (12.4). Therefore, we need only consider
terms in the sum 12.5 labelled by ν ∈ Pℓ

n such that both

ν ⊲ λ− αr and λ Q ν + (n, 1, ℓ). (12.7)

equation (12.7) implies that λ and ν only differ by moving some number (possibly zero) of boxes of
residue res(αr) = i ∈ Z/eZ. Again by equation (12.7), this implies that ν is obtained from λ− αr

by removing a non-zero (since ν = λ− αr) set of i-boxes

R = {αi1 �σ αi2 �σ · · · �σ αiS | αr ⊲σ αis for 1 6 s 6 S} ⊂ Remi(λ− αr) (12.8)

and adding a set of i-boxes

A = {αj1 �σ αj2 �σ · · · �σ αjS | αr Qσ αjs �σ αis for 1 6 s 6 S} ⊆ Addi(λ− αr) (12.9)

such that R 6= A. We let N denote the set of all ν ∈ Pℓ
n−1 \ {λ − αr} which can be obtained

from λ − αr in this fashion. Putting all this together it will suffices to show that if ksS 6= 0 and
S ∈ SStdσ(ν, λ− αr) then in 12.5 and ν ∈ N , then

A∗
SAT

ν+(n,1,ℓ)
λ

= ATλ
ν+(n,1,ℓ)

AS ∈ A⊲λ (12.10)

where we have applied the involution ∗ to simplify notation. By Proposition 6.11, we have that

ATλ
ν+(n,1,ℓ)

AS = ASAT
ν+αr
ν+(n,1,ℓ)

+
∑

A′′

A′′fA′′(y) for some A′
�σASAT

ν+αr
ν+(n,1,ℓ)

and fA′′(y) ∈ Yν+(n,1,ℓ).

All terms on the righthand-side factor through the idempotent labelled by ν +αr which is strictly
more dominant than λ by equation (12.7) and the result follows. �

13. The generalised blob algebras and beyond

In the case of the symmetric groups modular representation theorists have long focussed on the
subcategory of representations labelled by partitions with at most h columns for some h ∈ Z>0

over a field, k, of characteristic (possibly much) greater than h. This subcategory is highest
weight and far more amenable to study via the tools of Kazhdan–Lusztig theory [AJS94, RW]

(in terms of the alcove geometry of type Ah−1 ⊆ Âh−1). However, there is no obvious analogous
subcategory/quotient algebra of Hk

n(s) in higher levels; hence almost nothing is known or even
conjectured about such Hecke algebras in positive characteristic. The purpose of this section is to
introduce a candidate for such a quotient algebra and prove Martin–Woodcock’s conjecture. The
results of this section have been used by Libedinsky–Plaza as the basis of a modular analogue
of Martin–Woodock’s conjecture [LP]. Cox, Hazi and the author have subsequently proven this
conjecture in [BCH] (using the ideas from this section).

13.1. The cylindric charge. Given h ∈ N we assume that our charge satisfies h < σi−σj < e−h

for 0 6 i < j < ℓ. Let Pℓ
n(h) ⊆ Pℓ

n denote the saturated subset consisting of all ℓ-partitions with
at most h columns in any given component, that is,

P
ℓ
n(h) = {λ = (λ(0), . . . , λ(ℓ−1)) | λ

(m)
1 6 h for all 0 6 m < ℓ}.

For such a σ ∈ N>1 × Zℓ our candidate quotient algebra is as follows:

Qℓ,h,n(σ) = Hk
n(s)/〈A

σ
st | s, t ∈ Stdσ(λ), λ 6∈ P

ℓ
n(h)〉.

We will show in future work [BC18, BCH] that the category Qℓ,h,n(σ)-mod is incredibly rich and

yet far more tractable than the category Hk
n(s)-mod: Under the restriction that e > (h + 1)ℓ, we

shall cast representation theoretic questions in terms of an alcove geometry of type

Ah−1 ×Ah−1 · · · ×Ah−1 ⊆ Âℓh−1.

In this section, we prove that Qℓ,h,n(σ)-mod is a highest-weight category over arbitrary field; thus
generalises results on symmetric groups from [Erd97, Theorem 4.4] and results on the blob algebras
of statistical mechanics [MS94, MW03]. We shall then prove Martin–Woodcock’s conjecture.
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13.2. The representation theory of the algebras Qℓ,h,n(σ). With our definitions in place, we
are now ready to prove that these algebras are quasi-hereditary and provide presentations of these
algebras solely in terms of the classical KLR generators.

Theorem 13.1. For σ ∈ N>1 × Zℓ such that h < σi − σj < e for 0 6 i < j < ℓ, the algebra
Qℓ,h,n(σ) has a presentation solely in terms of the classical KLR generators as follows,

Qℓ,h,n(σ) = Hk
n(s)/〈e(ı) | ı ∈ (Z/eZ)h+1 and ık+1 = ık + 1 for 1 6 k 6 h〉. (13.1)

Over a field, the algebra Qℓ,h,n(σ) is quasi-hereditary with irreducible modules indexed by Pℓ
n(h).

Proof. Consider an idempotent e(ı) of the form stated in equation (13.1). We pull the right
most strand in e(ı) rightwards using the non-interacting relations. If ı1 6= σm for some 1 6

m 6 ℓ and we pull this strand rightwards until it is > n units right of the red strand σ0 and
the diagram is zero by relation (A13). Otherwise ı1 = sm for some 1 6 m 6 ℓ, and this process
terminates when the solid σm-strand comes to rest upon reaching the vertical line with x-coordinate
(1, 1,m). In other words, once it is ever-so-slightly to the right of the red sm-strand with x-
coordinate σm − m/ℓ. By our assumptions on σ ∈ N>1 × Zℓ, we can pull the solid (sm + 1)-
strand rightwards until it reaches the vertical line with x-coordinate (1, 2,m). We then repeat this
process until we have moved the right most (h + 1) solid strands as far right as possible. We let
λ = (∅, . . . ,∅, (h + 1),∅, . . . ,∅, (0h+1, 1n−1−h)) where the mth and ℓth are the only non-empty
components of λ. The diagram produced by the process above is equal to Aσ

tt where ϕ(t) = T
is the tableau of shape λ and weight ω which takes T(r, 1,m) = Iσ(r,1,ℓ) for 1 6 r 6 h + 1 and

T(r, 1, ℓ) = Iσ(r,1,ℓ) for h+ 1 < r 6 n; therefore e(ı) ∈ {Aσ
st | s, t ∈ Stdσ(λ), λ 6∈ Pℓ

n(h)}.

Now for the reverse containment. By definition, there is no tableau T ∈ Stdσ(λ) for λ ∈ Pℓ
n(h)

with residue sequence (sm, sm+1, . . . , sm+h) and so e(sm, sm+1, . . . , sm+h) annihilates all these
cell-modules. Hence the ideal by which we quotient in equation (13.1) has dimension less than
or equal to

∑
λ∈Pℓ

n\P
ℓ
n(h)

|Stdσ(λ)|
2 and the reverse containment holds. Finally, the λth cell layer

contains an idempotent eTλ
for Pℓ

n(h) and so the algebra is quasi-hereditary, as required. �

Corollary 13.2. The algebra Qℓ,1,n(σ) is isomorphic to the generalised blob algebra of [MW03].

Proof. We have seen that Qℓ,1,n(σ) is the quotient of Hk
n(s) by the two-sided ideal generated by∑

06m<ℓ e(sm, sm+1). Each idempotent e(sm, sm+1) in this sum spans a 1-dimensional irreducible

Hk
2(s)-module labelled by the ℓ-partition (∅, . . . ,∅, (2),∅, . . . ,∅). The result follows. �

Corollary 13.3. The algebra Q1,h,n(σ) is isomorphic to the generalised Temperley–Lieb algebra of
[Här99, Erd97] and is Morita equivalent to the Ringel dual of the q-Schur algebra of GLh (acting
on n-fold q-tensor space).

Proof. We have seen that Q1,h,n(σ) is the quotient of Hk
n(s) by the two-sided ideal generated by

e(sm, sm + 1, . . . , sm + h) which labels the trivial representation of Hk
h+1(e; 0). The result follows

by [Här99, Theorem 4]. �

Theorem 13.4 (Martin Woodcock’s conjecture [MW03]). Let σ ∈ N>1 × Zℓ be such that 1 <
si − sj < e for 0 6 i < j 6 ℓ. The graded decomposition matrix of Qℓ,1,n(σ) appears as a square

submatrix of that of Hk
n(s) with respect to the σ-cell structure. We have that

∑

k∈Z

[SQσ (λ) : D
Q
σ (µ)〈k〉] = nλµ(t)

for λ, µ ∈ Pℓ
n(1) where nλµ(t) is equal to a non-parabolic affine Kazhdan–Lusztig polynomial of

type Âℓ−1. The action of the affine Weyl group on Pℓ
n(1) is given as in [BCS17, Section 3].

Proof. The square shape of the decomposition matrix follows from quasi-heredity Theorem 13.1.
The algebra Qℓ,1,n(σ) is the quotient of Hk

n(s) by the cell-ideal labelled by multipartitions with
more than 1 column in some component. Thus the decomposition matrix of Qℓ,1,n(σ) appears as

the submatrix of that of Hk
n(s) labelled by pairs λ, µ ∈ Pℓ

n(1). By Theorem 9.1, the decomposition
matrix of Hk

n(s) appears as a submatrix of that of Ak
n(σ). The entries of this submatrix of the

decomposition matrix of Ak
n(σ) were shown to be equal to nλµ(t) in [BCS17, Theorem 3.16]. �
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Appendix A. The many versions of this paper

This paper has gone through many arXiv iterations, through which we have developed the com-
binatorics and diagrammatics. The main results throughout versions 1 to 4 were Theorems A and
C; we added Theorem B from version 5 onwards. Throughout versions 1 to 5, the diagrammatics
and combinatorics remained very similar: we followed Webster’s conventions from [Web17] where
ghost strands are drawn on the left and we encoded the “charged” information via a weighting
ϑ ∈ Rℓ and a separate e-charge in (Z/eZ)ℓ.

The most significant changes in the presentation of this work came in version 6 of the arXiv
paper. The central idea was to dispense with Webster’s weighting ϑ ∈ Rℓ in favour of the integral
lifts (of e-charges in (Z/eZ)ℓ to charges in Zℓ) used here, this allows us to transfer between the
combinatorics of Webster, Lusztig, and Uglov seamlessly. In order to match-up this combinatorics
with the diagrammatics, we had to reflect the earlier diagrams through the vertical axis (drawing
ghost strands to the right) and hence obtained the diagrams which we work with in this paper
(which is now available as version 7 on the arXiv). This final big change in the diagrammatics
and combinatorics was inspired by the desire for an elementary proof of Theorem B and prompted
by conversations with Nicolas Jacon and Maria Chlouveraki. In version 6 we introduced the idea
of discretisation and we strengthened many of our intermediary results, hence simplifying the
presentation of Subsection 6.2 — we were inspired by (and mimicked) the presentation of similar
material from [BKW11] (for well-separated charges).

In version 6 of the paper, we chose to restrict to the reduced diagrams as our generating set for
the algebra. This was in order to highlight the fact that the algebra is finitely generated, but this
came at the cost of having to prove associativity (which then follows from Proposition 6.4). In this
paper, we have instead chosen to include all diagrams in the generating set and then deduce that
the algebra is finitely generated as a corollary of Proposition 6.4.

In this final version, we also add a new Section 8 in which we introduce the algebras Bk
n(σ, (q :

Q0, . . . , Qℓ−1) in order to explicitly match-up the cell-modules with irreducible modules in the
semisimple case.
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[BR13] C. Bonnafé and R. Rouquier, Calogero-Moser versus Kazhdan-Lusztig cells, Pacific J. Math. 261 (2013),

no. 1, 45–51.
[CGG12] M. Chlouveraki, I. Gordon, and S. Griffeth, Cell modules and canonical basic sets for Hecke algebras from

Cherednik algebras, New trends in noncommutative algebra, Contemp. Math., vol. 562, Amer. Math. Soc.,
Providence, RI, 2012, pp. 77–89.

[CJ11] M. Chlouveraki and N. Jacon, Schur elements and basic sets for cyclotomic Hecke algebras, J. Algebra
Appl. 10 (2011), no. 5, 979–993.

[CJ12] , Schur elements for the Ariki-Koike algebra and applications, J. Algebraic Combin. 35 (2012),
no. 2, 291–311.

[CJ16] , On quantized decomposition maps for graded algebras, Algebr. Represent. Theory 19 (2016),
no. 1, 135–146.

[DJM95] R. Dipper, G. James, and E. Murphy, Hecke algebras of type Bn at roots of unity, Proc. London Math.
Soc. (3) 70 (1995), no. 3, 505–528. MR 1317512

[DJM98] R. Dipper, G. D. James, and A. Mathas, Cyclotomic q-Schur algebras, Math. Z. 229 (1998), no. 3,
385–416.

[EL] B. Elias and I. Losev, Modular representation theory in type a via soergel bimodules, arXiv:1701.00560.
[Erd97] K. Erdmann, Representations of GLn(K) and symmetric groups, Representation theory of finite groups

(Columbus, OH, 1995), Ohio State Univ. Math. Res. Inst. Publ., vol. 6, de Gruyter, Berlin, 1997, pp. 67–
84.

[EW14] B. Elias and G. Williamson, The Hodge theory of Soergel bimodules, Ann. of Math. (2) 180 (2014), no. 3,
1089–1136.

[FLOTW99] O. Foda, B. Leclerc, M. Okado, J.-Y. Thibon, and T. Welsh, Branching functions of A
(1)
n−1 and Jantzen–

Seitz problem for Ariki–Koike algebras, Adv. Math. 141 (1999), no. 2, 322–365.
[FS16] M. Fayers and L. Speyer, Generalised column removal for graded homomorphisms between Specht modules,

J. Algebraic Combin. 44 (2016), no. 2, 393–432.
[Gec98] M. Geck, Kazhdan-Lusztig cells and decomposition numbers, Represent. Theory 2 (1998), 264–277.
[Gec07a] , Hecke algebras of finite type are cellular, Invent. Math. 169 (2007), no. 3, 501–517.
[Gec07b] , Modular representations of Hecke algebras, Group representation theory, EPFL Press, Lausanne,

2007, pp. 301–353.
[GGOR03] V. Ginzburg, N. Guay, E. Opdam, and R. Rouquier, On the category O for rational Cherednik algebras,

Invent. Math. 154 (2003), no. 3, 617–651.
[GI13] M. Geck and L. Iancu, Ordering Lusztig’s families in type Bn, J. Algebraic Combin. 38 (2013), no. 2,

457–489.
[GIP08] M. Geck, L. Iancu, and C. Pallikaros, Specht modules and Kazhdan-Lusztig cells in type Bn, J. Pure

Appl. Algebra 212 (2008), no. 6, 1310–1320.
[GJ06] M. Geck and N. Jacon, Canonical basic sets in type Bn, J. Algebra 306 (2006), no. 1, 104–127.
[GJ11] , Representations of Hecke algebras at roots of unity, Algebra and Applications, vol. 15, Springer-

Verlag London, Ltd., London, 2011.



46 C. BOWMAN

[GM09] I. G. Gordon and M. Martino, Calogero-Moser space, restricted rational Cherednik algebras and two-sided

cells, Math. Res. Lett. 16 (2009), no. 2, 255–262.
[GR97] M. Geck and R. Rouquier, Centers and simple modules for Iwahori-Hecke algebras, Finite reductive

groups (Luminy, 1994), Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 251–272.
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level, Algebr. Represent. Theory 13 (2010), no. 4, 467–489. MR 2660857
[JM00] G. James and A. Mathas, The Jantzen sum formula for cyclotomic q-Schur algebras, Trans. Amer. Math.

Soc. 352 (2000), no. 11, 5381–5404.
[KL79] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53

(1979), no. 2, 165–184.
[KL09] M. Khovanov and A. Lauda, A diagrammatic approach to categorification of quantum groups. I, Repre-

sent. Theory 13 (2009), 309–347.
[Ker] A. Kerschl, On simple modules of cyclotomic quiver Hecke algebras of type A, arXiv:1911.05375 , preprint.
[KMR12] A. S. Kleshchev, A. Mathas, and A. Ram, Universal graded Specht modules for cyclotomic Hecke algebras,

Proc. Lond. Math. Soc. (3) 105 (2012), no. 6, 1245–1289.
[LM07] S. Lyle and A. Mathas, Blocks of cyclotomic Hecke algebras, Adv. Math. 216 (2007), no. 2, 854–878.
[LM10] , Carter-Payne homomorphisms and Jantzen filtrations, J. Algebraic Combin. 32 (2010), no. 3,

417–457.
[LM14] , Cyclotomic Carter-Payne homomorphisms, Represent. Theory 18 (2014), 117–154.
[Los16] I. Losev, Proof of Varagnolo–Vasserot conjecture on cyclotomic categories O, Selecta Math. 22 (2016),

no. 2, 631–668.
[LP] N. Libedinsky and D. Plaza, Blob algebra approach to modular representation theory, arXiv:1801.07200.
[Lus83] G. Lusztig, Left cells in Weyl groups, Lie group representations, I (College Park, Md., 1982/1983),

Lecture Notes in Math., vol. 1024, Springer, Berlin, 1983, pp. 99–111.
[Lus03] , Hecke algebras with unequal parameters, CRM Monograph Series, vol. 18, American Mathemat-

ical Society, Providence, RI, 2003.
[Mat18] A. Mathas, Restricting Specht modules of cyclotomic Hecke algebras, Sci. China Math. 61 (2018), no. 2,

299–310.
[MS94] P. Martin and H. Saleur, The blob algebra and the periodic Temperley–Lieb algebra, Lett. Math. Phys.

30 (1994), no. 3, 189–206.
[MW03] P. Martin and D. Woodcock, Generalized blob algebras and alcove geometry, LMS J. Comput. Math. 6

(2003), 249–296.
[Rou08] R. Rouquier, 2-Kac–Moody algebras, arXiv:0812.5023v1, 2008.
[RSVV16] R. Rouquier, P. Shan, M. Varagnolo, and E. Vasserot, Categorifications and cyclotomic rational double

affine Hecke algebras, Invent. Math. 204 (2016), no. 3, 671–786.
[RW] S. Riche and G. Williamson, Tilting modules and the p-canonical basis, arXiv:1512.08296.
[ST54] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304.
[Ugl00] D. Uglov, Canonical bases of higher-level q-deformed Fock spaces and Kazhdan–Lusztig polynomials,

Physical combinatorics (Kyoto, 1999), Progr. Math., vol. 191, Birkhuser Boston, 2000, pp. 249–299.
[Web20] B. Webster, On graded presentations of Hecke algebras and their generalizations, Algebr. Comb. 3 (2020),

no. 1, 1–38.
[Web17] B. Webster, Rouquier’s conjecture and diagrammatic algebra, Forum Math. Sigma 5 (2017), e27, 71.

E-mail address: chris.bowman-scargill@york.ac.uk



THE MANY INTEGRAL GRADED CELLULAR BASES OF CYCLOTOMIC HECKE ALGEBRAS 47

Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK


	Introduction
	1. Weighted combinatorics of complex reflection groups
	1.1. Charged -partitions
	1.2. Charged standard tableaux
	1.3. Charged semistandard tableaux

	2. Graded cellular algebras and canonical basic sets
	3. The quiver Hecke algebras
	4. Quiver Cherednik algebras
	Isotopy and dots through crossings
	Undoing double-crossings
	Pulling a strand through a crossing
	The red strands
	The unsteady relation

	5. The combinatorics of diagrams and box configurations
	5.1. The Bruhat ordering 
	5.2. Brick combinatorics
	5.3. Brick diagrams

	6. The integral cellular basis of the quiver Cherednik algebra
	6.1. Right justification
	6.2. A spanning set of the algebra
	6.3. The Schur functor
	6.4. Cellularity and quasi-heredity of quiver Cherednik algebras

	7. The many integral cellular bases of quiver Hecke algebras
	8.  Generic semisimplicity and the decomposition map over Q
	8.1. Algebra definition

	9. The many different graded decomposition matrices
	10. Uglov combinatorics and the many different  constructions of irreducible modules 
	11. The many different filtrations of projective modules
	12. The restriction of a cell module for the quiver Hecke algebra
	13. The generalised blob algebras and beyond
	13.1.  The cylindric charge
	13.2. The representation theory of the algebras Q,h, n()

	Appendix A. The many versions of this paper
	References

