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Abstract

Quality Estimation (QE) is the task of automat-

ically predicting Machine Translation quality

in the absence of reference translations, mak-

ing it applicable in real-time settings, such

as translating online social media conversa-

tions. Recent success in QE stems from the

use of multilingual pre-trained representations,

where very large models lead to impressive re-

sults. However, the inference time, disk and

memory requirements of such models do not

allow for wide usage in the real world. Mod-

els trained on distilled pre-trained representa-

tions remain prohibitively large for many us-

age scenarios. We instead propose to directly

transfer knowledge from a strong QE teacher

model to a much smaller model with a differ-

ent, shallower architecture. We show that this

approach, in combination with data augmenta-

tion, leads to light-weight QE models that per-

form competitively with distilled pre-trained

representations with 8x fewer parameters.

1 Introduction

Quality Estimation (QE) aims to predict the quality

of the output of Machine Translation (MT) systems

when no gold-standard translations are available.

It can make MT useful in real-world applications

by informing end-users on the translation quality.

We focus on sentence-level QE, usually formulated

as a regression task where quality is required to be

predicted on an continuous scale, e.g. 0-100.

The high performances achieved in the most re-

cent shared task on sentence-level QE (Specia et al.,

2020) have been attributed to the use of strong pre-

trained language models, namely BERT (Devlin

et al., 2018) and its multilingual variants, especially

XLM-Roberta (Conneau et al., 2020a). These mod-

els have an extremely large number of parameters

and, since they are required at training and infer-

ence time, they are very disk and RAM-hungry,

also making inference slow. This poses challenges

for real-time inference, and prohibits deployment

on client machines with limited resources.

Making models based on pre-trained representa-

tions smaller and more usable in practice is an ac-

tive area of research. One approach is Knowledge

Distillation (KD), aiming to extract knowledge

from a top-performing large model (the teacher)

into a smaller (in terms of memory print, com-

putational power and prediction latency) yet well-

performing model (the student) (Hinton et al., 2015;

Gou et al., 2020). KD techniques have been used to

make BERT and similar models smaller. For exam-

ple, DistilBERT (Sanh et al., 2019) and TinyBERT

(Jiao et al., 2020) follow the same general archi-

tecture as the teacher BERT, but with a reduced

number of layers. However, these student models

are also based on Transformers and, as such, they

still have too large memory and disk footprints. For

instance, the number of parameters in the multilin-

gual DistilBERT-based TransQuest model for QE

(Ranasinghe et al., 2020) is 135M.

In this paper, we propose to distill the QE

model directly, where the student architecture can

be completely different from that of the teacher.

Namely, we distill a large and powerful QE model

based on XLM-Roberta into a small RNN-based

model. Existing work along these lines has applied

KD mainly to classification tasks (Tang et al., 2019;

Sun et al., 2019). We instead explore this approach

in the context of regression. In contrast to clas-

sification, where KD provides useful information

on the output distribution of incorrect classes, for

regression the teacher predictions are point-based

estimates, and as such have the same properties as

gold labels. Therefore, it is not obvious whether

teacher-student learning can be beneficial. The

few existing works on KD for regression (Chen

et al., 2017; Takamoto et al., 2020) use the teacher

loss to minimise the impact of noise in the teacher
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Figure 1: KD with data augmentation and noise filter-

ing based on teacher uncertainty.

predictions on the student training. However, this

approach requires access to gold labelled exam-

ples to train the student, which in our case are very

limited in number.

Our approach allows for much larger unlabelled

student training datasets, built only from source-

MT pairs and labelled by the teacher model. We

study the performance of student models under dif-

ferent training data regimes: standard training with

gold labels, training with teacher predictions on

the same data, training with teacher predictions

on augmented in-domain and out-of-domain data,

as well as augmented data filtered based on uncer-

tainty of teacher predictions. Interestingly, we find

that (i) training with teacher predictions results in

better performance than training with gold labels;

and (ii) student models trained with augmented

data perform competitively with DistilBERT-based

TransQuest predictors with 8x fewer parameters.

2 Approach

Figure 1 summarises our approach, with the follow-

ing main components:

Teacher-student training. We use predictions

from a SoTA QE model to train a light-weight stu-

dent with a different architecture. Specifically, as

the teacher model we use the recently proposed

TransQuest QE system (Ranasinghe et al., 2020)

that fine-tunes multilingual pre-trained representa-

tions from XLM-Roberta-Large (Conneau et al.,

2020a) to predict a continuous sentence-level qual-

ity score. For the student model, we rely on the

BiRNN QE architecture proposed by Ive et al.

(2018).1 The BiRNN model encodes both source

and translation sentences independently using two

bi-directional Recurrent Neural Networks (RNNs).

The two resulting sentence representations are con-

1The implementation of our student models is available at
https://github.com/sheffieldnlp/deepQues

t-py.

Inference

Name #params Speed
(secs.)

RAM
(MiB)

Disk
(M)

TQXLM−R−Large 561M 0.82 9,263.5 2140
TQDistilBERT 135M 1.09 1,979.2 517
BiRNN 18M 0.39 155.6 132

Table 1: Efficiency. Inference speed and RAM for pre-

diction are for 1 sentence on CPU (Intel Xeon Silver

4114 CPU @ 2.20GHz).

catenated as the weighted sum of their word vec-

tors, generated by an attention mechanism. For

predictions at sentence-level, the weighted rep-

resentation of the two input sentences is passed

through a dense layer with sigmoid activation to

generate the quality estimates. Table 1 shows the

number of parameters, memory and disk space

requirements, as well as inference speed for the

teacher model (TQXLM−R−Large), student model

(BiRNN) and TransQuest system built on Distil-

BERT (TQDistilBERT). We refer the reader to Ap-

pendix A for the details on the architecture and

implementation for these models.

In classification tasks, KD benefits learning as it

uses information on the output distribution and has

an effect akin to label smoothing (Tang et al., 2020).

In regression, teacher labels are instead point-wise

estimates just like the gold labels. Existing work

on KD for regression uses teacher loss to minimise

the impact of noise in the teacher predictions on

student training (Takamoto et al., 2020). However,

this approach is not suitable for QE as we have

access to a very limited number of gold-labelled

examples. We propose a simple strategy that re-

lies directly on teacher predictions for training the

student model.

Data augmentation. The power of QE mod-

els based on pre-trained representations is due

to the rich knowledge that comes from training

Transformer-based language models on very large

amounts of data. Typically, much smaller datasets

are available for downstream tasks, which suffice

for fine-tuning but that are hardly suitable for train-

ing a neural model from scratch. We exploit the

teacher-student framework to produce additional

training data. Specifically, we first generate MT

outputs for a set of sentences in the source language

and domain of interest using the same MT system

that was used for generating the test data. Second,

we use the teacher model described above to pro-
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duce predictions. These predictions are then used

as labels for training the student.

Noise filtering. The benefits of data augmenta-

tion can be hampered by noise in teacher predic-

tions. In a classification setting, where the student

loss is computed with respect to the output distribu-

tion of the teacher model, this issue is ameliorated

by the example re-weighting effect where teacher

predictions with higher confidence have an overall

higher impact on learning (Furlanello et al., 2018).

Previous work has used teacher loss to address this

issue for regression (Chen et al., 2017). However,

this strategy is not suitable for data augmentation as

it requires both gold labels and teacher predictions.

As an alternative, we propose a mechanism to

filter-out noisy examples in the augmented dataset

based on uncertainty quantification. Recent work

has shown that ensembles produce accurate uncer-

tainty estimates (Lakshminarayanan et al., 2017).

We exploit this idea by training a set of additional

teacher models independently on the same training

data using random initialisation, and using the vari-

ance of their predictions as an indicator of predic-

tive uncertainty.2 Intuitively, examples with very

high variance would correspond to noisy teacher

predictions. We filter out from the student train-

ing data the instances where the variance is more

than one standard deviation away from its mean

value. This is expected to have a higher impact on

the results in the out-of-domain setting where the

performance of the teacher model is less stable and

teacher predictions can contain more noise.

3 Experiments

MLQE Dataset. For training the teacher and for

evaluation, we use the MLQE dataset (Fomicheva

et al., 2020), same as in the WMT2020 QE Shared

Task (Specia et al., 2020). This dataset con-

tains sentences extracted from Wikipedia translated

to and from English for a total of six language

pairs: English–German (En-De),3 English–Chinese

(En-Zh), Romanian–English (Ro-En), Estonian–

English (Et-En), Sinhala–English (Si-En) and

Nepali–English (Ne-En). Each translation was

produced with a SoTA Transformer-based NMT

model and manually annotated for quality using

2Here we use ensemble only as a way of estimating the er-
ror in the predictions and leave distillation based on ensemble
predictions to future work.

3We skip this language pair as the performance of the
teacher model for it is too weak.

Language Sentences

Estonian 25,176

Romanian 372,690

Sinhala 139,406

Nepalese 85,343

English 1,563,519

Table 2: Number of sentences extracted from

Wikipedia for data augmentation.

an annotation scheme inspired by the Direct As-

sessment methodology (Graham et al., 2013). The

scores are produced on a continuous scale indicat-

ing perceived translation quality in 0-100. For each

language pair, this dataset contains partitions for

training (7K), dev (1K), and test (1K).

Distilled dataset. Monolingual data for data aug-

mentation was sampled from Wikipedia follow-

ing the procedure described in Fomicheva et al.

(2020) to preserve the domain of the MLQE

dataset. Specifically, we sampled documents from

Wikipedia for English, Estonian, Romanian, Sin-

halese and Nepalese and selected the top 100 docu-

ments containing the largest number of sentences

that are: (i) in the intended source language ac-

cording to a language-id classifier and (ii) have

the length between 50 and 150 characters. Table 2

shows the total amount of sentences in the mono-

lingual Wikipedia dataset collected for data aug-

mentation.

To test the impact of data domain on the perfor-

mance of the student QE models, we also collect

out-of-domain data for the Et-En language pair.

The out-of-domain data is sampled from Common

Crawl. We use the version of Common Crawl dis-

tributed by the WMT2018 News Translation Task4.

The total amount of sentences in this dataset is

100,779,314.

To translate the data, we used the same MT

models that generated the test data, built with

fairseq (Ott et al., 2019) and made available by

the WMT2020 QE Shared Task organisers.5 Sen-

tences that were part of the training data for the

MT models or part of the MLQE dataset were ex-

cluded. We generate quality predictions for the

remaining sentences using the teacher models, as

4http://www.statmt.org/wmt18/translati

on-task.html
5https://github.com/facebookresearch/

mlqe/tree/master/nmt models.
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Name Training data Et-En Ro-En Si-En Ne-En En-Zh

TQTEACHER MLQE-gold 0.77 0.88 0.60 0.75 0.44

BiRNNSTUDENT MLQE-dist 0.45 0.62 0.44 0.46 0.18
BiRNNSTUDENT+AUG Wiki-dist 0.50 0.69 0.45 0.54 0.17

BiRNN MLQE-gold 0.37 0.60 0.40 0.42 0.15
Predictor-Estimator MLQE-gold 0.48 0.69 0.37 0.39 0.19
TQDistilBERT MLQE-gold 0.62 0.78 0.51 0.61 0.36

Table 3: Pearson correlation with human judgments on the MLQE test set. MLQE-gold: training partition of

MLQE dataset; MLQE-dist: distilled version of the MLQE training set with teacher predictions used as labels;

Wiki-dist: the Wikipedia dataset produced by data augmentation. Boldface results indicate our best student models.

described in Section 2. We used a random subset of

100K sentences from Wikipedia to train the student

model for each of the language pairs except for Et-

En where the total amount of collected in-domain

monolingual data is 25K.

Models. As teachers, we use pre-trained mod-

els from TransQuest (TQTEACHER), one of the

winning submissions in the WMT2020 QE Shared

Task, which we fine-tuned on the MLQE dataset.

For noise filtering, we train five teacher models

with random initialisation. As students, we use

BiRNN models from DeepQuest (Ive et al., 2018).

We also compare our results against the Predictor-

Estimator model (Kim et al., 2017; Kepler et al.,

2019), the baseline at the WMT2020 QE Shared

Task, and TransQuest models using multilingual

DistilBERT.6

4 Results

Table 3 shows the Pearson correlation with hu-

man judgments on the test partition of the MLQE

dataset for different models and specifies the type

of data used for training.7 The correlation for the

student models (BiRNNSTUDENT∗) does not reach

the performance of TQTEACHER. Smaller mod-

els may lack representation power for modeling

cross-lingual tasks such as QE. Also, distillation for

regression is more challenging, as discussed in Sec-

tion 2. However, training on the in-domain dis-

tilled data (BiRNNSTUDENT+AUG) allows to ob-

tain performances comparable to DistilBERT

(TQDistilBERT) with much lighter models (see Ta-

6Multilingual DistilBERT is available at https://hu
ggingface.co/distilbert-base-multilingua

l-cased. We follow the same training procedure as for the
teacher model described in detail in Appendix A.

7TQTEACHER, TQDistilBERT and Predictor-Estimator use
contextual representations trained on large amounts of addi-
tional data, which are then fine-tuned for the QE task.

Ro-En Si-En Ne-En En-Zh

10K 0.56 ±.00 0.36 ±.00 0.41 ±.00 0.09 ±.01
50K 0.64 ±.00 0.45 ±.01 0.53 ±.00 0.20 ±.03
70K 0.66 ±.00 0.46 ±.01 0.54 ±.00 0.19 ±.02
100K 0.69 ±.00 0.47 ±.02 0.54 ±.00 0.17 ±.02

Table 4: Pearson correlation on the test partition of the

MLQE dataset for BiRNN student models trained with

different amounts of distilled Wikipedia data.

ble 1).8 Furthermore, this approach results in a sub-

stantial improvement over shallow models trained

on gold data (BiRNN and Predictor-Estimator) for

all of the language pairs. The student performance

for each language pair is strongly related to the per-

formance of the teacher. Thus, the Ro-En student

achieves the highest correlation results, whereas

correlation for En-Zh is weak.

We further analyse what is the impact of different

data selection strategies on the results. First, we

sample random subsets of training instances from

the Wikipedia distilled dataset and evaluate the

performance of the student model trained with this

data. We run the training 3 times with different

random splits for training and validation and report

the mean and confidence intervals. Table 4 shows

the results for all languages where we have enough

Wikipedia data (for Et-En we only have 25K in

total). The largest boost in correlation is observed

when going from 10K to 50K.

Second, we compare student models trained on

these subsets of distilled data of different sizes, i.e.

using data extracted from Wikipedia (in-domain),

against data splits of the same size extracted from

Common Crawl (out-of-domain). For the out-of-

domain data we apply the noise filtering strategy

described in Section 2. Figure 2 shows the results

8This is true for all language pairs except Et-En and En-
Zh. For Et-En we have a considerably smaller amount of
in-domain data available for training, whereas for En-Zh the
teacher model appears to be too weak to be useful for KD.
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Figure 2: Pearson correlation results on the MLQE

test set for the student models trained with different

amounts of distilled data in-domain (Wiki-dist), out-of-

domain (CC-dist) and out-of-domain with noise filter-

ing (CC-dist-filtered), for Et-En.

Figure 3: Variance in the predictions of 6 teacher mod-

els trained with different random seed against predic-

tions error on the test partition of Ro-En MLQE dataset.

for Et-En, where our largest in-domain set has 25K

sentences. We observe that using in-domain data

appears to be much more effective than sampling

larger amounts of generic data. Noise filtering

gives some improvement in the results but its effect

appears to be marginal compared to the effect of

training with in-domain data.

Figure 3 provides an illustration of the relation

between the variance in the predictions of multiple

teacher models and prediction error for Ro-En lan-

guage pair on the in-domain data. We group the

sentences in the test partitions of MLQE dataset

in 10 bins according to the variance between the

predictions of the different teacher models in the

ensemble. We then calculate the average prediction

error in each bin, where the error is the absolute

difference between model predictions and human

judgements. As shown in Figure 3, higher variance

Figure 4: Distribution of teacher scores (blue) and

gold labels (orange) on the training partitions of Et-En

MLQE dataset.

in the predictions indeed corresponds to larger pre-

diction error.

Interestingly, from Table 3 we see that train-

ing with distilled data brings benefits even with-

out data augmentation for some of the language

pairs. The correlation for Et-En improves from

0.37 to 0.45 by training on teacher predictions

(BiRNNSTUDENT) instead of gold labels (BiRNN)

on the same MLQE dataset. To gain an intuition

for this improvement, Figure 4 shows the distribu-

tion of teacher predictions and human scores on the

train partition of MLQE dataset. We hypothesize

that teacher predictions having a smoother distribu-

tion with reduced variance makes learning easier.

As shown in Appendix B, we observe this trend for

all language pairs in the dataset.

5 Conclusions

In this paper, we showed that knowledge distilla-

tion, through a teacher-student approach that di-

rectly distills QE predictions, can be effective in

building a light-weight QE model with similar per-

formance to a SoTA architecture trained on distilled

yet large pre-trained representations. We also in-

troduced a noise filtering approach that leverages

the uncertainty of an ensemble of teacher models

to determine which training instances should be

discarded when training the student models, which

can be beneficial especially for data augmentation

from out-of-domain sources. This results in QE

models 4x smaller in disk space with 8x fewer pa-

rameters, and 3x faster in inference speed.
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A Teacher and student models

Teacher model For the teacher model, we use

the transformer-based MonoTransQuest (Ranas-

inghe et al., 2020) architecture of the TransQuest

framework with XLMR-large (Conneau et al.,

2020b) as the underlying pre-trained representa-

tion model. XLMR is Transformer (Vaswani et al.,

2017) based masked language model (with 24
Transformer blocks and the vocabulary size of

250K) trained on one hundred languages using ap-

proximately two terabytes of CommonCrawl data.

MonoTransQuest takes as input the concatenation

of the original sentence and its translation sepa-

rated by the the special [SEP ] token. The learned

representation of the special [CLS] token is con-

sidered as the joint representation of the original

and translated sentence. The joint representation is

then fed to the final softmax layer to predict the

quality score of the translation. For distillation we

use the models that were made available for down-

load by the authors.9 For training the additional

teacher models for data filtering we follow the train-

ing settings in Ranasinghe et al. (2020): we used a

batch size of 8, Adam optimiser with learning rate

2e-5, and a linear learning rate warm-up over 10%

of the training data. During the training process,

the parameters of XLM-R model, as well as the

parameters of the subsequent layers, are updated.

All the models were trained for 3 epochs.

Student model For the student model, we rely on

the BiRNN QE architecture proposed by Ive et al.

(2018). Our implementation of this architecture is

available for download.10 The light-weight archi-

tecture (15 layers) of this model is as follows: both

source and target sentences are independently en-

coded by a dedicated embedding layer followed by

a bi-directional Recurrent Neural Network (RNN).

The two resulting sentence representations are then

concatenated as a weighted sum of their word vec-

tors, generated by an attention mechanism. The

resulting representation is then passed through an

output dense layer with sigmoid activation to gener-

ate the quality estimates. We use the BiRNN model

in its default configuration: both source and target

embeddings are of size 300, each encoder has a

hidden size of 50. The vocabulary size is limited to

the 30k most common words. The model is trained

9https://tharindudr.github.io/TransQu

est/pretrained/#available-models
10https://github.com/sheffieldnlp/deep

Quest-py

with early stopping with a patience of 5.

B Output Distribution for Teacher

Models

Figure 5 shows the distribution of teacher scores

(blue) and gold labels (orange) on the training par-

titions for the language pairs in MLQE dataset.
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Figure 5: Distribution of teacher scores (blue) and gold labels (orange) on the training partitions for different

language pairs in the MLQE dataset.


