
This is a repository copy of Constant optimization and feature standardization in
multiobjective genetic programming.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/176445/

Version: Published Version

Article:

Rockett, P. orcid.org/0000-0002-4636-7727 (2022) Constant optimization and feature
standardization in multiobjective genetic programming. Genetic Programming and
Evolvable Machines, 23 (1). pp. 37-69. ISSN 1389-2576

https://doi.org/10.1007/s10710-021-09410-y

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Vol.:(0123456789)

Genetic Programming and Evolvable Machines

https://doi.org/10.1007/s10710-021-09410-y

1 3

Constant optimization and feature standardization
in multiobjective genetic programming

Peter Rockett
1

Received: 5 January 2021 / Revised: 20 July 2021 / Accepted: 22 July 2021

© The Author(s) 2021

Abstract

This paper extends the numerical tuning of tree constants in genetic programming

(GP) to the multiobjective domain. Using ten real-world benchmark regression data-

sets and employing Bayesian comparison procedures, we first consider the effects of

feature standardization (without constant tuning) and conclude that standardization

generally produces lower test errors, but, contrary to other recently published work,

we find much less clear trend for tree sizes. In addition, we consider the effects of

constant tuning – with and without feature standardization – and observe that (1)

constant tuning invariably improves test error, and (2) usually decreases tree size.

Combined with standardization, constant tuning produces the best test error results;

tree sizes, however, are increased. We also examine the effects of applying constant

tuning only once at the end a conventional GP run which turns out to be surprisingly

promising. Finally, we consider the merits of using numerical procedures to tune

tree constants and observe that for around half the datasets evolutionary search alone

is superior whereas for the remaining half, parameter tuning is superior. We identify

a number of open research questions that arise from this work.

Keywords Multiobjective genetic programming · Constant optimization · Feature

standardization · Bayesian testing

1 Introduction

Traditionally, the empirical modeling of data proceeds by a human analyst select-

ing models from some family (or families), and then optimizing a given model’s

parameters, typically using a maximum likelihood formulation, to obtain a ‘best

fit’ to the data; in the case of regression problems, this usually takes the form of

 * Peter Rockett

 p.rockett@sheffield.ac.uk

1 Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street,

Sheffield S1 3JD, UK

http://orcid.org/0000-0002-4636-7727
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-021-09410-y&domain=pdf

 Genetic Programming and Evolvable Machines

1 3

minimizing a least-squares measure over a set of training data. Unless there is

any good, a priori reason to adopt a specific model, the human analyst typically

repeats this exercise for a range of models, and selects a final model using the

candidates’ performance over a validation set disjoint to the training set. Finally,

predictive performance is estimated over a test set that is disjoint to both the

training and validation sets.

In practice, human analysts tend to consider only a limited range of potential

data models since the process of parameter fitting and model comparison is tedi-

ous and time-consuming, a difficulty that has given rise to automated machine

learning (AutoML) that seeks to mechanize this data fitting process [14] with-

out relying on an expert analyst; in the context of the present paper, the genetic

programming-based TPOT system [24] is noteworthy although it selects (albeit

automatically) over a family of existing pre-processing and classification models

rather than synthesizing entirely novel classifiers.

One of the promises of genetic programming (GP) is its ability to generate

novel model structures driven by optimization of fitness over the dataset at hand

rather than restricting the search for a data model to some prescribed set of can-

didates. In this context, the usual motivation of GP is slightly different from

AutoML approaches although it shares the same objectives. It is widely consid-

ered, however, that while GP has the potential to synthesize data-driven model

structures, optimization of that model’s parameters – the second part of the tra-

ditional, human-centered workflow – is a weak point that has received relatively

limited attention in the GP community compared to areas like novel genetic oper-

ators, bloat, etc. More formally, a predictive model has the form of ŷ = f (�;�)

where ŷ is the model’s prediction, � is the vector of independent variables, and

� is the real vector of model parameters. GP is well suited to searching over the

space of functions f ∈ F , but is widely regarded as being poor at optimizing � .

Typical GP operations such as crossover and tree mutation are usually consid-

ered unlikely to determine optimal values of � , for which sensitivity criteria may

require close to the maximum available floating-point precision for good perfor-

mance.Work on parameter tuning (also known as model calibration) in GP has

been comprehensively reviewed in a recent paper by Kommenda et al. [17]. Most

of the previous GP parameter tuning work has been carried out on regression

problems, and this too is the focus of the present paper.

Kommenda et al. [17] used the well-known Levenberg-Marquardt (L-M) algo-

rithm to optimize the constants in a GP tree with an algorithm that hybridized

evolutionary and conventional numerical procedures to minimize the Pearson R2

correlation coefficient over a training set instead of the mean squared error met-

ric that is more conventionally used in regression problems. Overall, Kommenda

et al. concluded that conventional GP with nonlinear least-squares optimization

of the constants was a (tied) top-ranking performer among a number of alterna-

tive GP and other models, hence we explore GP with constant tuning here. The

present paper extends the work reported in [17].

On a closely related theme, Owen et al. [25] considered the effect of standard-

izing the features in GP to zero-mean/unit variance for a range of regression prob-

lems, a procedure widely used in other sub-areas of machine learning, but hitherto

1 3

Genetic Programming and Evolvable Machines

little-used in GP. These authors concluded that “the performance of GP can be

greatly improved simply through z-score standardization of variables prior to train-

ing” with this “typically resulting in models that were smaller and generalized better

than using unscaled variables”. These authors conjectured that placing all explana-

tory variables on the same scale made it easier for the GP search process to evolve

appropriate values of tree constants. In a subsequent paper [7], the same authors

extended their analysis to performing a single round of stochastic gradient optimiza-

tion (1-SGD) on GP with and without feature standardization; we explore a wider

combination of more extensive constant tuning in the present paper. In addition,

Dick et al. [7] observed that GP with standardized inputs tended to evolve smaller

trees, but once 1-SGD was included, standardization tended to produce trees larger

than the baseline (unstandardized) GP. In the light of a number open issues iden-

tified in [7, 25], we therefore also consider the effects of dataset standardization

alongside constant optimization, but extend this to the multiobjective framework.

The motivation of this paper has been to attempt to further align GP and tradi-

tional empirical data modeling, in particular, by exploring the factors involved in the

parameter optimization phase of the modeling workflow described at the start of this

section.

In terms of the original contributions of this paper:

– We extend the results of [7, 25] on feature standardization to the multiobjec-

tive GP domain, and report its effects on testing error and tree size in Sect. 3.1.

Extension to multiobjective GP stands in contrast to previous work on constant

tuning that has, as far as we are aware, exclusively used single-objective GP.

– We report a comprehensive exploration of the influence of optimizing the tree

constants on the performance of GP models – both with and without feature

standardization – by embedding the constant optimization inside the evolution-

ary loop which is presented in Sects. 3.2 and 3.3.

– Most previous work on constant tuning in GP has embedded these optimization

stages within the evolutionary loop. In Sect. 3.4 we revisit the effect of perform-

ing the constant optimization only at the end of a conventional GP run, some-

thing previously investigated (and dismissed) in very early work on constant tun-

ing in GP [32].

– We introduce a Bayesian statistical comparison of results; as far as we are aware,

this is the first use of such methods in the GP literature.

Section 2 describes the methodology we have employed: the datasets, multiobjective

genetic programming, formulation of the numerical optimization, and statistical test-

ing. Section 3 presents the results of the paper, while Sect. 4 discusses the results’

implications and identifies possible future work and open research questions. Sec-

tion 5 concludes the paper.

 Genetic Programming and Evolvable Machines

1 3

2 Methodology

2.1 Datasets

The datasets used in this study are shown in Table 1 having been used extensively

in the past in the GP and wider machine learning literature. All bar one have been

obtained from the UCI Repository [9]; the dow-chemical dataset was used as a com-

petition at the EuroGP Conference in 2010.

For convenience, we have standardized all the predicted (i.e. dependent) vari-

ables for ease of comparison, what Owen et al. [25] termed partial standardization.

The regressor (i.e. independent or feature) variables were either left unchanged or

standardized, as described in particular experiments below. We have used the same,

conventional procedure as in [25] to avoid bias by calculating any standardization

transform over the training set, and applying the same transformation to both the

validation and test sets. Both Kommenda et al. [17] and Owen et al. [25] used linear

scaling of the predicted variable [15]. We have not employed a linear scaling pro-

cedure in the present work since Owen et al. [25] noted that it sometimes produces

“erratic” predictive performance”.

We have adopted the standard machine learning procedure of partitioning each

dataset into three disjoint subsets: a training set, a validation set, and test set [12].

The training set was used only for training after which the validation set was used to

select a single, best-performing model from that GP run. Finally, the test partition

was used to produce an independent estimate of generalization performance. This

procedure is universal in mainstream machine learning, but some authors in the GP

community omit the explicit model selection stage of using a validation set because

they take the individual with the smallest training error as the selected model.

Two methods of analyzing cross-validation data simultaneously exist in the

literature: the first performs a statistical test on either the mean (or median) test

error over each fold for some number of independently initialized runs, while

the second considers only the best-performing individual from each fold again

over some number of independent runs. Both approaches are equally valid, but

Table 1 Benchmark datasets

used in this work. See text for

further details

Dataset #Features #Instances

Airfoil-self-noise 5 1503

Auto-mpg 7 392

Boston-housing 13 506

Concrete-strength 8 1030

Dow-chemical 57 1066

Energy-efficiency-cool 8 768

Energy-efficiency-heat 8 768

Qsar-aquatic-toxicity 9 546

Servo 4 167

Yacht-hydrodynamics 6 308

1 3

Genetic Programming and Evolvable Machines

explore fundamentally different issues: the first explores ‘process’, namely the

ability of, say, an evolutionary method or approach to produce good results ‘on

average’. The second is an avowedly ‘engineering’ approach that aligns strongly

with conventional machine learning practice, and focuses on the best obtainable

model. We have adopted the first approach in this paper of comparing the mean

test errors for each fold averaged over 30 repetitions since we are interested

comparing methodologies. (In other settings, however, comparison of best-per-

forming individuals may be more appropriate.)

We have used multiobjective GP (see Sect. 2.2) that produces a set of Pareto

‘equivalent’ models, and therefore we included an explicit model selection step.

How to assign percentages of data to each of the three dataset partitions above

is open to debate [12]: as an initial data pre-processing stage, we divided each

dataset into ten folds for cross validation. To create each of the ten folds, 20% of

the dataset was randomly sampled for testing. The remaining 80% was randomly

divided into two sub-groups containing 70% and 10% of the total data, respec-

tively; the former was used as the training set while the latter was used as the

validation set. These are fairly commonly-used partitionings. Further, the sam-

pling strategy employed meets the requirement of the statistical test employed

– see Sect. 2.4.

2.2 Multiobjective genetic programming

The details of the multiobjective genetic programming (MOGP) algorithm used

in this work are shown in Table 2; these parameter values have been used many

times before by the present author. We have used a steady-state, as opposed to

Table 2 Evolutionary algorithm parameters used in this work

Parameter Value

Evolutionary strategy Steady-state

Population size 100

Initialization method Uniformly-random tree node counts ∈ [1… 63]

Function set Unary minus, + , −, × , Analytic quotient [21]

Terminal set Input variables; mutable constants

Initial mutable constants ∈ {0.1, 0.2,… , 0.8, 0.9}

Objectives i) Training MSE, and ii) Tree node count

Selection Pareto ranking – see [10]

No. of children 2 children produced per breeding operation

Crossover Point crossover; Pr = 0.9 of selecting an internal node

Crossover probability 1.0

Mutation Subtree mutation [26, p.16] (full trees of depth = 4)

Mutation probability 1.0

Total number of generated children 10,000

 Genetic Programming and Evolvable Machines

1 3

generational, evolutionary algorithm since our experience is that this give superior

results – see Dou and Rockett [8] and the discussion therein for more details. Parents

were selected for breeding by: i) sorting the population by Pareto rank allowing tied

ranks, ii) mapping an individual’s rank to a scalar fitness with a linear function such

that the best-ranked individuals got the largest fitness and the worst ranked zero fit-

ness, and iii) selecting the parent stochastically biased by scalar fitness values – see

[10, p.32] for full details.

2.3 Numerical optimization of the constants

Whereas Kommenda et al. [17] used the well-known Levenberg-Marquardt (L-M)

algorithm to optimize the tree constants, we have chosen to use the Sequential Lin-

ear Quadratic Programming (SLSQP)1 algorithm due to Kraft [18] for a number of

reasons:

1. Our previous experience, gained over a number of diverse application areas, is

that the L-M algorithm either works very well and very quickly, or fails com-

pletely, an observation we suspect is due to the occasional pathological behavior

of the approximation to the Hessian matrix of the objective function. Our experi-

ence of the SLSQP algorithm, which was designed for control applications, is

that it is very robust, a property we consider important in the present application

where the optimizer is to be embedded inside an evolutionary loop.

2. Whereas the Levenberg-Marquardt algorithm can only minimize quadratic loss

functions (i.e. the sum of squared residuals), SLSQP can minimize arbitrary

functions requiring only the existence (but not explicit calculation) of at least the

second derivatives of the loss functional. While not a factor in the present work

on regression reported here, the use of SLSQP lays the foundations for future

work on, for example, robust regression in the presence of outliers where more

complex loss functions are generally required.

3. SLSQP can also accommodate both equality and inequality constraints, which,

again while not used in the present work, may be useful in future for constraining

the constant values to, say, physically-meaningful values.

One of the requirements of both the L-M and SLSQP algorithms is the closed-form

calculation of derivatives of the objective function w.r.t. the parameters to be opti-

mized. In this paper, we have calculated the necessary derivatives using the auto-

matic tree transformation rules described by Rockett et al. [30], which provide the

exact value of the derivative (subject, of course, to normal rounding errors). Key

to maintaining the differentiability of this automatic tree differentiation is replac-

ing the commonly-used (protected) division GP operator with the analytic quotient

(AQ) operator proposed by Ni et al. [21]. This has the advantage of guaranteeing

1 In this work, we have used the implementation of the SLSQP optimizer from the NLOpt Version 2.6.2

library. See https:// nlopt. readt hedocs. io/ en/ latest/.

https://nlopt.readthedocs.io/en/latest/

1 3

Genetic Programming and Evolvable Machines

that the function composition implemented by any GP tree is analytic, and therefore

differentiable up to at least second order. Aside from the advantages of the AQ cited

in [21], Nicolau and Agapitos [22] have recently reported that the AQ operator pro-

vides superior generalization over a range of regression problems compared to trees

using protected division. Hence, given a tree for which we require to optimize the

constant values, we can evaluate the necessary partial derivatives for SLSQP by:

i) automatically generating the derivative trees of our target tree, and ii) evaluating

those derivative trees by normal recursive tree traversals of the derivative trees for

some given specific input. See [30] for further details of the automatic tree differen-

tiation transformations.

Moreover, the work of Kommenda [17] used unprotected division which is

manifestly not analytic when the denominator is zero, and for which derivatives do

not therefore exist; how this has been handled was not discussed. Over and above

attempts to evaluate derivatives at singular points, even protected division has the

property that as x becomes very small but |x| > 0 , the quotient 1/x can become very

large leading to numerical instabilities in the values predicted by the GP tree. We

believe this is the underpinning reason for the conclusions of Nicolau and Agapitos

[22] – see Ni et al. [21] for a longer discussion; such numerical instabilities also

appear to have been evident in the results of Dick et al. [7] after (protected) division

was included in their trees.

The setting of the convergence criteria for the SLSQP optimization algorithm

requires some care since this may be embedded within an evolutionary optimizer,

and ensuring robust performance is essential. The SLSQP routine was set to termi-

nate when either: (1) the change in relative value of the objective (MSE) was > 10
−4 ,

a criterion that ensures that the around a quarter of the most significant digits of an

IEEE-754 compliant floating-point number were stable, or (2) the number of internal

evaluations of the objective function exceeded 50. In practice, a significant number of

trees would have required many more than 50 optimizer iterations to meet the conver-

gence criterion of 10
−4 although terminating after 50 iterations invariably produced

an approximate therefore useful although clearly not exactly converged solution. Our

experience is that many of the generated trees appear poorly conditioned [13] resulting

in very slow convergence. Terminating optimization of these trees after 50 iterations

was thus a compromise between accuracy and excessive run time. The iteration limit

of 50 was selected based on initial experimentation that resulted in around 80% of the

offspring converging to the 10
−4 relative convergence limit within 50 iterations. (It is

noteworthy that Kommenda et al. [17] used only a fixed number of 10 iterations for

their L-M algorithm, and did not specify a convergence criterion on the objective.)

Formally, constant optimization can be formulated by considering a mapping

implemented by a tree as ŷ = f (�,�) , where � is the input vector of features, and �

is the vector of (mutable) constants in the tree; y ∈ ℝ , � ∈ ℝ
n , and � ∈ ℝ

m , where

n, m are the numbers of input features and the number of mutable tree constants,

respectively. For the purposes of constant optimization, we can regard the input vec-

tor � as a constant2 (since, for a given data record, it is fixed by the training set), and

2 This is the classical maximum likelihood formulation.

 Genetic Programming and Evolvable Machines

1 3

the vector of parameters � as the variables in the minimization problem, the values

of which can be optimized using the gradient-based SLSQP routine.

2.4 Statistical testing

Traditionally, the comparison of machine learning results has been carried out using

a null hypothesis statistical test (NHST) [5]. NHSTs, however, have received con-

siderable criticism – see, for example, Benavoli et al. [2] and references therein. In

essence, an NHST calculates the ‘wrong’ sort of probability to be able to definitively

judge differences between two methods: it calculates Pr(data given an assumed null

hypothesis) thereby requiring a contentious threshold (�) on the calculated p-value

in order to make a judgment on the statistical significance or otherwise of a dis-

crepancy with the null hypothesis. Furthermore, a positive outcome from an NHST

is commonly misinterpreted as somehow ‘proving’ superiority rather than being a

highly conditioned inference on the supportability of a null hypothesis. In contrast,

a Bayesian procedure that estimates Pr(a difference given the data) is what is really

needed, and facilitates much more useful statements along the lines of “method A

is superior to method B with a probability of x”. An NHST, on the other hand, only

permits the much weaker statement that any differences between the methods are not

consistent with the null hypothesis at the (1 − �) confidence level. Consequently, in

this work we have employed the Bayesian hypothesis testing procedures of Benavoli

and co-workers [2]. In particular, we have used the Bayesian correlated t-test [3] to

compare pairs of methods; the implementation used was taken from the baycomp

Python package3.

Conventionally, the research question such as exploring the significance of the

difference in mean errors over a cross-validation test has been addressed using a

non-parametric test such as the Wilcoxon signed-rank test [5]. The motivation for

using a signed-rank test as opposed to a parametric t-test (which generally exhibits

greater statistical power) is that the ‘textbook’ t-test requires that the samples are

independent; in cross-validation, of course, the samples are correlated because the

training sets across different folds overlap [3]. In a frequentist setting, Nadeau and

Bengio [20] proposed a correlated t-test that compensates for these correlations, a

correction that was subsequently used by Corani and Benavoli [3] to devise a Bayes-

ian correlated t-test. It is the Bayesian correlated t-test of Corani and Benavoli that

we use here.

The other technical requirement of a t-test is that the samples are normally dis-

tributed, which can usually be ensured by averaging over some modest number of

repetitions and appealing to the central limit theorem.

Interpretation of the Bayesian test requires some clarification: since it estimates

the posterior probability of a difference (conditioned only on the data), the (some-

what arbitrary) NHST criterion of a “95% significance level” is of no relevance

here. Rather, the Bayesian test returns a direct measure of belief in there being a

3 https:// github. com/ jaezd/ bayco mp.

https://github.com/jaezd/baycomp

1 3

Genetic Programming and Evolvable Machines

difference between the two methods. There is, however, inevitably some element of

subjectivity in interpreting posterior probability measures: for example, if the poste-

rior probability of method A being superior to method B is 0.6, is this significant? In

this work, we regard posterior value of 0.6 as providing weak evidence of superior-

ity with larger values being progressively more persuasive.

To statistically compare two methods, we have performed 10-fold cross vali-

dation (CV) over each of the datasets in Sect. 2.1. We have adopted the protocol

of repeating the training 30 times for each dataset fold each with different ini-

tial populations, and taking the individuals with the smallest validation set error

from each of the 30 repetitions. The test error for each fold was then estimated

by averaging the test set errors from the best validation error individual from

each of the 30 repetitions. Ten mean test set errors were similarly calculated,

one per fold, and then used in the Bayesian correlated t-test described above to

calculate the posterior probability of difference between the two methods being

compared.

The Bayesian correlated t-test [2] can be most easily understood by examin-

ing the posterior probability density functions (PDFs) of the measured differ-

ences between the two methods being compared. As an example, a posterior

density (adapted from an image generated directly by the baycomp package)

is shown in Fig. 1 for the comparison of two treatments.4 The random variate

Fig. 1 Example posterior probability density function. See text for a further explanation

4 Here we have assumed a region-of-probable-equivalence (ROPE) [2] of zero since we have no infor-

mation to do otherwise. We return to discuss this point in Sect. 4.6.

 Genetic Programming and Evolvable Machines

1 3

plotted on the abscissa is the difference in the performances paired by fold for

the two methods. From inspection of the plot in Fig. 1, it is clear that almost all

the probability mass lies to the right of the origin meaning that the first com-

pared method has a higher score than the other method with a posterior prob-

ability equal to the integrated PDF to the right of the origin. We re-emphasize

that Fig. 1 depicts a posterior probability distribution computed from the Bayes-

ian correlated t-test, and not a histogram of experimental results.

In addition to calculating the posterior probabilities for the test MSE results, we

have also statistically compared the tree sizes of the best validation error individuals

used for the MSE comparisons, again averaged over each of the 30 repetitions per

fold. That is, the same individuals that were included in the MSE analysis were also

included in the analysis of tree sizes using the same averaging methodology.

3 Results

We have performed an extensive series of statistical comparisons for various

configurations, as detailed in the subsequent sub-sections. Throughout the pre-

sent section, we adopt the following shorthand to allow us to concisely distin-

guish between the different experimental configurations:

– We use “no tuning” to denote that the GP training has been done without any

optimization of the constants (other than that produced by the evolutionary

process).

– The term “tuning during”, on the other hand, denotes that constant optimiza-

tion has been performed on every child tree generated during evolution.

– Finally, “tuning at end” is used to describe the situation where the final popu-

lation has been evolved without any constant optimization during evolution,

but the constants in every individual in the final population have been opti-

mized just once at the end of the GP run.

Full numerical results of the Bayesian correlated t-tests under different condi-

tions are shown for each of the ten datasets with the probability values rounded

to 3 decimal places (d.p.) and the mean test MSE values to 4 d.p. Probabilities

> 0.995 are thus rounded to unity.

3.1 Baseline vs. baseline + standardization (‘No Tuning’)

We have run the MOGP algorithm on each of the ten partitions of the datasets

for both the baseline (unstandardized) GP and the baseline GP with standard-

ized features; in all cases, the predicted values were standardized for conveni-

ence, as explained above. The objective of this set of experiments was to explore

1 3

Genetic Programming and Evolvable Machines

the observations of Owen et al. [25] that standardization of the predictor variables

improved generalization performance while reducing tree sizes. There was no con-

stant optimization in any of the results described in this sub-section.

The comparisons between the results from the baseline GP and the baseline

GP with standardized features are shown in Table 3. These results extend those in

[25] and [7] to the steady-state multiobjective domain; in addition, they also add

Bayesian statistical testing. For test MSE, the upper pair of numbers in each row

gives the probabilities that each entry has a larger MSE than its comparator along

with the the probability of the complementary event – these two probabilities sum

to unity, of course; the lower pair of numbers in each row show the observed

mean MSE values of each method over the ten data folds.

For example, in the case of the airfoil-self-noise dataset (first row of Table 3),

the baseline GP has the larger test MSE with a probability 1.000, while the base-

line GP with standardization has a larger MSE with a probability of 0.000. (These

Table 3 Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with and without

feature standardization

The upper pair of numbers in each row gives the probabilities that each entry has a larger value than its

comparator along with the the probability of the complementary event. The lower pair of numbers in

each row show the observed mean performance measures of each method over the ten data folds

Dataset Test MSE Node count

Baseline GP Baseline GP + Baseline GP Baseline GP +

Standardization Standardization

Airfoil-self-noise 1.000 0.000 0.339 0.661

 0.5352 0.4264 143.0 147.4

Auto-mpg 1.000 0.000 0.373 0.627

 0.3176 0.1895 102.7 105.8

Boston-housing 0.991 0.009 0.299 0.701

 0.4383 0.3631 98.7 104.3

Concrete-strength 1.000 0.000 0.357 0.643

 0.5698 0.3788 134.2 136.2

Dow-chemical 1.000 0.000 0.031 0.969

 0.8455 0.4348 102.7 125.2

Energy-efficiency-cool 1.000 0.000 0.685 0.315

 0.2238 0.1277 137.8 131.4

Energy-efficiency-heat 1.000 0.000 0.350 0.650

 0.2051 0.1057 136.3 140.3

Qsar-aquatic-toxicity 0.918 0.082 0.492 0.508

 0.8014 0.6137 95.5 95.7

Servo 0.996 0.004 0.962 0.038

 0.7015 0.5400 124.3 100.6

Yacht-hydrodynamics 0.235 0.765 0.951 0.049

 0.1473 0.1540 142.7 124.6

 Genetic Programming and Evolvable Machines

1 3

figures are the probability masses mentioned above and illustrated in Fig. 1a.)

The mean MSE values immediately below record that the baseline GP had a mean

test MSE of 0.5352 while the baseline plus standardization had a mean test MSE

of 0.4264. Since smaller is better for MSE, we can conclude that the baseline GP

+ standardization produces a smaller (i.e. better) test MSE with a probability of

1.000 (i.e. certainty) for this particular dataset. Similarly, the third and fourth col-

umns of Table 3 record the probabilities that the baseline GP with standardization

produces larger trees and the (complementary) probability that the baseline GP

produces larger trees – cf. Figure 1b. Again, to take the airfoil-self-noise dataset

as an example, the probability that the baseline GP produces larger trees is 0.339

whereas there is a probability of 0.661 that standardization produces larger trees.

We can conclude from the example of the airfoil-self-noise dataset that standardi-

zation results in larger trees with a probability of 0.661; the mean tree sizes are

143.0 for the baseline GP and 147.4 for baseline GP + standardization, respec-

tively. The size effect in this case is, however, modest.

Taken overall, the results in Table 3 show that feature standardization generally

produces lower values of MSE than the baseline algorithm, often with probabilities

Table 4 Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with and without

constant optimization (“tuning during”)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Tuning during + Tuning during

Airfoil-self-noise 1.000 0.000 1.000 0.000

 0.5352 0.3905 143.0 91.2

Auto-mpg 1.000 0.000 1.000 0.000

 0.3176 0.1601 102.7 69.2

Boston-housing 0.999 0.001 0.761 0.239

 0.4383 0.2980 98.7 93.0

Concrete-strength 1.000 0.000 1.000 0.000

 0.5698 0.2713 134.2 96.1

Dow-chemical 1.000 0.000 0.917 0.083

 0.8455 0.4115 102.7 87.0

Energy-efficiency-cool 1.000 0.000 1.000 0.000

 0.2238 0.1199 137.8 86.8

Energy-efficiency-heat 1.000 0.000 0.999 0.001

 0.2051 0.0819 136.3 92.0

Qsar-aquatic-toxicity 0.918 0.082 0.987 0.013

 0.8014 0.6050 95.5 81.8

Servo 1.000 0.000 0.888 0.112

 0.7015 0.3627 124.3 103.4

Yacht-hydrodynamics 1.000 0.000 0.988 0.012

 0.1473 0.0079 142.7 108.1

1 3

Genetic Programming and Evolvable Machines

approximating absolute certainty (1.000 to 4 d.p.). The one deviation from the above

trend is for the yacht-hydrodynamics dataset for which the baseline GP produces the

lower MSE with a probability of 0.765.

As regards tree sizes, the trend in Table 3 is mixed. Standardization tends to pro-

duce smaller tree sizes for the servo and yacht-hydrodynamics, but larger trees for

boston-housing and dow-chemical datasets. For the remaining datasets, the differ-

ences appear marginal, and in many cases, the size effects are small. For example,

for the concrete-strength data, the mean node counts without and with standardiza-

tion are 134.2 and 136.2, respectively; the statistical calculations, on the other hand,

suggest that standardization yields larger trees with a probability of 0.643.

3.2 Effects of constant optimization on the baseline GP (‘Tuning During’)

The results of comparing the baseline GP with and without the constant optimiza-

tion procedure described in Sect. 2.3 are shown in Table 4, namely, no tuning vs.

tuning during. Here the constant optimization was applied to each child as soon as

it was created and before it was inserted into the population, what we term ‘tuning

during’ (evolution). The same interpretations of the results need to be applied here

as in Sect. 3.1.

Viewed overall, we can observe from Table 4 that ‘tuning during’ (i.e. constant

optimization of every child throughout the GP run) produces smaller MSE values

compared to the baseline GP; most tests return a probabilities of 1.0 with the least

favorable result for the qsar-aquatic-toxicity dataset with a probability of 0.918. The

general trend in Table 4 agrees with the observations of Kommenda et al. [17] that

constant optimization reduces MSE values although the present work extends their

observations to the multiobjective GP domain.

For the tree size comparisons in Table 4, generally, tuning during evolution pro-

duces smaller trees (along with smaller MSE values). In some cases (airfoil-self-

noise and energy-efficiency-cool) the mean tree sizes are around 36% smaller; in the

case of the boston-housing dataset the difference is only 5% smaller. For the most

part, the statistical tests suggest very strong evidence to support tuning producing

smaller trees.

3.3 Constant optimization combined with feature standardization (‘Tuning

during’)

From the preceding MSE results in Sect. 3.1, feature standardization produces

generally better outcomes when compared to the baseline GP without constant

tuning. An obvious combination is to explore if feature standardization followed

by constant tuning during evolution can produce even better results; the proce-

dure here is identical to that used for generating the the results in Table 4 except

that the dataset features in both compared methods have been standardized – that

is, we are comparing baseline GP + standardization vs. baseline GP + stand-

ardization + tuning during. If the conjecture of Dick et al. [7] that standardiza-

tion produces trees in which the constants are easier to determine due to reduced

 Genetic Programming and Evolvable Machines

1 3

ranges is valid then standardization may benefit the explicit constant optimization

process by posing an ‘easier’ optimization task. The results from exploring this

hypothesis are presented in Table 5.

As with the similar (but no-standardization) results in Table 4, the effect of

constant optimization (tuning during evolution) produces consistently smaller

MSE values; all datasets apart from the dow-chemical and qsar-aquatic-toxicity

return emphatic results with posterior probabilities of unity. Even for these last

two datasets, the probabilities of 0.785 and 0.788, respectively, are still fairly

strong evidence for the superiority of tuning-during.

The comparison over node counts again indicates somewhat different behavior

to that exhibited without standardization. Many of the statistical outcomes indicate

marginal/no differences, and even where the posterior does offer clear evidence (e.g.

auto-mpg), the size effects appear small.

Table 6 compares the results of the baseline GP followed by constant tuning dur-

ing vs. the baseline GP + standardization + constant tuning during evolution. In

Table 5 Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with feature stand-

ardization, and baseline GP with feature standardization and constant optimization (tuning during)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Standardization + Standardization + Standardization + Standardization

+ Tuning during + Tuning during

Airfoil-self-noise 1.000 0.000 0.672 0.328

 0.4264 0.3435 147.4 143.7

Auto-mpg 1.000 0.000 0.772 0.228

 0.1895 0.1449 105.8 101.7

Boston-housing 0.999 0.001 0.569 0.431

 0.3631 0.2777 104.3 102.9

Concrete-strength 1.000 0.000 0.624 0.376

 0.3788 0.2453 136.2 134.2

Dow-chemical 0.785 0.215 0.645 0.355

 0.4348 0.3572 125.2 121.3

Energy-efficiency-cool 1.000 0.000 0.514 0.486

 0.1277 0.0664 131.4 131.1

Energy-efficiency-heat 1.000 0.000 0.443 0.557

 0.1057 0.0337 140.3 141.5

Qsar-aquatic-toxicity 0.788 0.212 0.353 0.647

 0.6137 0.5957 95.7 98.2

Servo 0.970 0.030 0.328 0.672

 0.5400 0.3212 100.6 108.9

Yacht-hydrodynamics 1.000 0.000 0.791 0.209

 0.1540 0.0068 124.6 115.4

1 3

Genetic Programming and Evolvable Machines

other words, it explores the influence of adding feature standardization before con-

stant tuning during evolution.

The clear picture that emerges from Table 6 is that standardization produces bet-

ter MSE results. On the other hand, a comparison of nodes counts indicates that

standardization generates larger trees. Taken together with the smaller test errors,

this implies that standardization allows the evolutionary process (in conjunction

with constant tuning) to find better-performing but more complex predictive models;

this, of course, is an entirely acceptable trade-off in the the empirical modeling of

data.

3.4 Constant optimisation after baseline GP (‘Tuning‑at‑end’)

One obvious question arising from this work is: does running constant optimiza-

tion just once after the baseline GP produce comparable results to embedding the

constant optimization within the evolutionary loop? The present section expands

Table 6 Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with constant opti-

mization with and without feature standardization (tuning during)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Tuning during + Standardization + Tuning during + Standardization

+ Tuning during + Tuning during

Airfoil-self-noise 1.000 0.000 0.000 1.000

 0.3905 0.3435 91.2 143.7

Auto-mpg 0.870 0.130 0.000 1.000

 0.1601 0.1449 69.2 101.7

Boston-housing 0.954 0.046 0.127 0.873

 0.2980 0.2777 93.0 102.9

Concrete-strength 0.990 0.010 0.000 1.000

 0.2713 0.2453 96.1 134.2

Dow-chemical 0.781 0.219 0.000 1.000

 0.4115 0.3572 87.0 121.3

Energy-efficiency-cool 1.000 0.000 0.000 1.000

 0.1199 0.0664 86.8 131.1

Energy-efficiency-heat 1.000 0.000 0.000 1.000

 0.0819 0.0337 92.0 141.5

Qsar-aquatic-toxicity 0.848 0.152 0.001 0.999

 0.6050 0.5957 81.8 98.2

Servo 0.777 0.223 0.320 0.680

 0.3627 0.3212 103.4 108.9

Yacht-hydrodynamics 0.944 0.056 0.117 0.883

 0.0079 0.0068 108.1 115.4

 Genetic Programming and Evolvable Machines

1 3

the work reported in [17], which did not consider constant tuning after evolution.

Here we have tuned the constants in every individual in the final evolved popu-

lation since we wanted to explore the extent of coupling between the search for

the ‘best’ model structure (performed principally by the evolutionary search) and

constant optimization (performed solely by the numerical optimization).

The results of these experiments for the baseline GP without feature standardi-

zation are shown in Table 7. The maximum number of iterations for tuning-at-

end was set at 500 on the basis that this was – somewhat arbitrarily – ten times

the limit used for tuning-during; initial experimentation also suggested that if an

optimization had not converged after 500 iterations, it was not likely to converge

in any feasible number of iterations. The iteration limit of 500 is thus another

compromise between accuracy and run time.

The positive benefits for the test error of constant tuning are apparent for most

datasets although the trend is reversed for dow-chemical, while qsar-aquatic-toxicity

suggests no difference. The result for the dow-chemical dataset is interesting in that

the mean test error is actually increased by constant tuning at the end. This implies

that, in this case, tuning (of presumably over-parameterized models) has resulted in

Table 7 Bayesian correlated t-test results over 10-fold CV comparing the baseline GP, and baseline GP

followed by constant optimization over the final population (tuning at end)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Tuning at end + Tuning at end

Airfoil-self-noise 1.000 0.000 0.234 0.766

 0.5352 0.3947 143.0 150.0

Auto-mpg 1.000 0.000 0.476 0.524

 0.3176 0.1916 102.7 103.2

Boston-housing 0.999 0.001 0.204 0.796

 0.4383 0.3266 98.7 103.1

Concrete-strength 0.933 0.067 1.000 0.000

 0.1322 0.0195 126.2 53.6

Dow-chemical 0.276 0.724 0.397 0.603

 0.8455 1.5164 102.7 104.6

Energy-efficiency-cool 1.000 0.000 0.936 0.064

 0.2238 0.1090 137.8 125.2

Energy-efficiency-heat 1.000 0.000 0.794 0.206

 0.2051 0.0779 136.3 128.9

Qsar-aquatic-toxicity 0.439 0.561 0.000 1.000

 0.8014 0.8318 95.5 121.9

Servo 0.956 0.044 0.321 0.679

 0.7015 0.4272 124.3 134.6

Yacht-hydrodynamics 1.000 0.000 0.030 0.970

 0.1473 0.0127 142.7 161.5

1 3

Genetic Programming and Evolvable Machines

significant overfitting since there is no counter-balancing evolutionary pressure to

reduce the size of the individuals. Why over-fitting seems to have happened for the

dow-chemical dataset but not for the others is unclear.

The picture for the comparison of node counts for tuning-at-end is rather more

mixed than for the MSE measure. For three datasets (concrete-strength, energy-effi-

ciency-cool and energy-efficiency-heat), post-evolution tuning (tuning-at-end) pro-

duced smaller best-test individuals. For auto-mpg and probably dow-chemical, the

mean node counts are unchanged by tuning after. For the remaining datasets, tun-

ing-at-end selects larger trees. It is worth emphasizing that the pairs of populations

considered here were structurally identical – the differences are only in the values

embedded in the constant tree nodes and not the tree morphologies. It is thus inter-

esting that in some cases, constant tuning selected smaller ‘best’ trees from the same

populations, and in other cases, larger trees. It is also interesting that for the dow-

chemical dataset trees of roughly the same sizes were selected as the best performers

Table 8 Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with standardiza-

tion, and baseline GP with standardization followed by constant optimization over the final population

(Tuning at end)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Standardization + Standardization + Standardization + Standardization

+ Tuning at end + Tuning at end

Airfoil-self-noise 1.000 0.000 0.002 0.998

 0.4264 0.3476 147.4 161.5

Auto-mpg 0.999 0.001 0.131 0.869

 0.1895 0.1752 105.8 114.6

Boston-housing 1.000 0.000 0.142 0.858

 0.3631 0.3207 104.3 113.4

Concrete-strength 1.000 0.000 0.113 0.887

 0.3788 0.2984 136.2 141.6

Dow-chemical 0.889 0.111 0.009 0.991

 0.4348 0.4030 125.2 140.0

Energy-efficiency-cool 1.000 0.000 0.014 0.986

 0.1277 0.0953 131.4 146.4

Energy-efficiency-heat 1.000 0.000 0.030 0.970

 0.1057 0.0738 140.3 160.3

Qsar-aquatic-toxicity 0.897 0.103 0.044 0.956

 0.6137 0.6030 95.7 109.0

Servo 0.865 0.135 0.067 0.933

 0.5400 0.3663 100.6 129.4

Yacht-hydrodynamics 1.000 0.000 0.584 0.416

 0.1540 0.0885 124.6 123.8

 Genetic Programming and Evolvable Machines

1 3

both before and after tuning-at-end, but the post-tuning results suggest significant

overfitting.

3.5 Constant optimization after baseline GP with standardization (Tuning at end)

Table 8 summarizes similar results to Table 7 in the previous sub-section except here

the features were standardized for both comparators. Turning to the MSE results in

Table 8, the clear trend is of tuning -at-end producing superior results.

Unlike the corresponding results without standardization, there is a clear trend

for node counts with tuning-at-end (+ standardization) producing statistically larger

trees with the exception of the yacht-hydrodynamics dataset where there appears to

be no difference.

Table 9 Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with constant opti-

mization during evolution, and the baseline GP with constant optimization only on the final population.

(Tuning during vs. tuning at end)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Tuning during + Tuning at end + Tuning during + Tsuning at end

Airfoil-self-noise 0.360 0.640 0.000 1.000

 0.3905 0.3947 91.2 150.0

Auto-mpg 0.024 0.976 0.000 1.000

 0.1601 0.1916 69.2 103.2

Boston-housing 0.009 0.991 0.124 0.876

 0.2980 0.3266 93.0 103.1

Concrete-strength 0.000 1.000 0.002 0.998

 0.2713 0.4068 96.1 123.4

Dow-chemical 0.168 0.832 0.008 0.992

 0.4115 1.5164 87.0 104.6

Energy-efficiency-cool 0.922 0.078 0.000 1.000

 0.1199 0.1090 86.8 125.2

Energy-efficiency-heat 0.856 0.144 0.000 1.000

 0.0819 0.0779 92.0 128.9

Qsar-aquatic-toxicity 0.221 0.779 0.000 1.000

 0.6050 0.8318 81.8 121.9

Servo 0.306 0.694 0.005 0.995

 0.3627 0.4272 103.4 134.6

Yacht-hydrodynamics 0.016 0.984 0.000 1.000

 0.0079 0.0127 108.1 161.5

1 3

Genetic Programming and Evolvable Machines

3.6 Tuning‑during vs. Tuning‑at‑end

Since tuning appears to offer some advantages – whether during or after evolution

– at least for the MSE results, we have compared the baseline GP with ‘tuning-

during’ evolution to ‘tuning-at-end’ over the final population; note standardization

was not employed in this comparison. The objective here was to determine whether

‘tuning-during’ or ‘tuning-at-end’ was preferable. The results for this comparison

are shown in Table 9.

For MSE, the picture presented in Table 9 is mixed. Tuning-at-the-end produces

better test MSE figures for the energy-efficiency-cool and energy-efficiency-heat

datasets, while for the remainder, tuning-during is the better option.

The conclusion for the node count comparisons is unambiguous: tuning-during

produces smaller best-performing trees presumably because this method is able to

impose an evolutionary pressure that simultaneously reduces both (training) MSE

and tree size.

Table 10 Bayesian correlated t-test results over 10-fold CV comparing the baseline GP + standardization

with constant optimization during evolution, and the baseline GP + standardization with constant optimi-

zation only on the final population. (Tuning during vs. tuning at end)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Standardization + Standardization + Standardization + Standardization

+ Tuning during + Tuning at end + Tuning during + Tuning at end

Airfoil-self-noise 0.300 0.700 0.051 0.949

 0.3435 0.3476 143.7 161.5

Auto-mpg 0.002 0.998 0.063 0.937

 0.1449 0.1752 101.7 114.6

Boston-housing 0.007 0.993 0.016 0.984

 0.2777 0.3207 102.9 113.4

Concrete-strength 0.001 0.999 0.092 0.908

 0.2453 0.2984 134.2 141.6

Dow-chemical 0.341 0.659 0.033 0.967

 0.3572 0.4030 121.3 140.0

Energy-efficiency-cool 0.000 1.000 0.008 0.992

 0.0664 0.0953 131.1 146.4

Energy-efficiency-heat 0.000 1.000 0.015 0.985

 0.0337 0.0738 141.5 160.3

Qsar-aquatic-toxicity 0.379 0.621 0.079 0.921

 0.5957 0.6030 98.2 109.0

Servo 0.210 0.790 0.047 0.953

 0.3212 0.3663 108.9 129.4

Yacht-hydrodynamics 0.000 1.000 0.200 0.800

 0.0068 0.0885 115.4 123.8

 Genetic Programming and Evolvable Machines

1 3

Repeating this analysis but for the case of standardized features produces the

results in Table 10. Statistically, the trend is clear with tuning-during performing

best across all ten datasets although for the airfoil-self-noise dataset, the difference

in mean test errors is in the third decimal digit suggesting the that the size effect may

not be too great. Comparisons over the numbers of node counts are also unambigu-

ous with tuning-during producing smaller trees all with compelling probabilities and

size effects of around 10%.

4 Discussion & future work

4.1 The effects of feature standardization on the baseline GP

Section 3.1 presented an analysis of the effects of feature standardization on both

the test MSE and the tree sizes, which need to be set alongside those of Owen et al.

[25] and Dick et al. [7]. Overall, and using a similar set of benchmark datasets, the

MSE comparisons qualitatively agree with those of Owen at al. [25] in that feature

standardization tends to reduce MSE although like [25] and the continuation work

of Dick et al. [7], we too observe deviations from this trend. In particular, the yacht-

hydrodynamics dataset shows evidence (Pr = 0.765) that standardization degrades

MSE. As with such cases observed in [7, 25], the reason is not clear. Even if the

features in the yacht-hydrodynamics dataset were already (close to) standardized, a

redundant application of the standardization procedure would have produced very

little difference in performance rather than the observed and serious degradation.

Establishing the reason why some datasets are degraded by standardization whereas

some are improved requires further research. Similar off-trend results were noted

elsewhere in Sect. 3, and we return to discussing those below.

Apart from the single case of qsar-aquatic-toxicity which returns no difference,

the effects of feature standardization in Sect. 3.1 are that standardization can both

increase tree size and decrease it depending on dataset. These results are thus at

variance with what was seen in [7, 25] where standardization (alone) was observed

to reduce tree size. The speculation in [25] was that standardization reduces the

range of constants that a tree needs to synthesize in order to fit the data; indeed, in a

study of pruning of baseline-type GP trees [29], we observed that significant num-

bers of individuals terminated with subtrees of the form of a constant combined with

another constant using a binary operation, presumably serving to generate constants

outside the range of those available in the a priori terminal set. Thus it is intuitively

reasonable to suggest that standardization may reduce a tree’s need to synthesize

‘larger’ and ‘smaller’ constants leading to smaller overall tree sizes. This specula-

tion is not, however, supported by the results in the present paper.

One possible explanation for the reason why Owen et al. observed decreases in

tree sizes with standardization but we sometimes observe the opposite is that those

researchers employed a generational, single-objective GP. The present work used

a steady-state multiobjective GP in which model complexity was controlled only

by (simultaneously) minimizing a node count measure within a Pareto framework.

Although we observe some increases in trees sizes, this is accompanied by a (highly

1 3

Genetic Programming and Evolvable Machines

desirable) reduction in test MSE implying that standardization facilitates the evolu-

tion of better generalizing but more complex models. This is a perfectly acceptable

trade-off in data modeling, and very distinct from tree bloat, which is the growth in

tree size without accompanying improvement in (MSE) performance.

Reconciling the two diametrically opposed observations about the effect of stand-

ardization on tree size again requires further work, possibly focusing on the differ-

ences between generational and steady-state evolutionary approaches. In addition,

careful reading of [7, 25] suggests there may be other methodological differences

that will need to be systematically explored. For example, in [7], their equivalent

of our baseline GP algorithm included protected division operators whereas their

standardized version of the same algorithm did not.

Finally on this point, there is evidence in the literature [22, 23] that suggests the

composition of the function set can affect both evolutionary search and generaliza-

tion performance. Under standardization, regressors which may originally all have

been non-negative can acquire negative values. One could speculate that in this sce-

nario, the GP search has to generate negative constants from the positive constants

available in the function set leading to an increase in tree size. To counter this, the

function set used in the present work also included a unary minus node that can – in

principle – generate a negative value very straightforwardly. Nonetheless, the inter-

action of the function set is another area for examination in future work.

4.2 Effects of constant optimization

In this sub-section, we discuss the effects of constant tuning across various configu-

rations of GP since the effects are inter-related.

4.2.1 Baseline GP – Tuning during

For the baseline GP, Table 4 displays a very clear and unambiguous trend of con-

stant optimization during evolution producing statistically smaller test MSE values.

This conclusion agrees with the observations of Kommenda et al. [17] for fitting

error – in their case, Pearson’s R
2 coefficient – obtained using a single-objective

paradigm. In addition, our tuning-during results simultaneously show much smaller

trees were produced, again with large probabilities.

That constant tuning produces superior test set errors compared to the baseline

GP is not surprising since tuning very directly minimizes the training error for a

given tree structure. Within an evolutionary paradigm, there is clearly a pressure to

produce smaller training MSE values, but balanced by the simultaneous pressure to

produce ever smaller trees. Within a Pareto framework, the multiobjective GP typi-

cally produces a range of final models extending from small and underfitted through

to large and overfitted from which a model exhibiting the best trade-off between bias

and variance [11] can be selected using a validation set: see Sect. 2.

The clear trend from Table 4 is that tuning-during also tends to produce smaller,

as well as better generalizing, models. Optimizing the constants for every child

created during evolution in a Pareto framework will again tend to impose an

 Genetic Programming and Evolvable Machines

1 3

evolutionary pressure that favors smaller trees. The fact that a tree does not have

to synthesize ‘optimal’ constants by combining a number of fixed, constant leaves,

but can use fewer, optimizable constants to achieve a lower MSE suggests that the

evolved trees will be both smaller and have lower training error. It is very unlikely,

however, that tuning-during removes all redundancies from the GP trees thereby

reducing them to their minimum size for a given mapping. Nonetheless, it would

be instructive to explore in further work if the trees produced with tuning-during

had fewer instances of, for example, (redundant) constant-binary operation-constant

terminations.

The present work also extends the results of Kommenda et al. [17], who did not

directly compare tree sizes.

4.2.2 Baseline GP with standardization – Tuning during

Section 4.2.1 has discussed the beneficial results of tuning-during on the baseline

GP without feature standardization. Since standardization (generally) improves the

performance of the baseline GP in the absence of constant tuning, Sect. 3.5 explored

whether including standardization prior to tuning-during provides additional bene-

fits. Table 5 compares the baseline GP with standardization vs. the baseline GP with

standardization + tuning-during. As with the results discussed in Sect. 4.2.1, stand-

ardization also produces statistically better test MSE values as well as generally

smaller trees when compared to the baseline GP with standardization. For almost all

datasets, however, tuning-during with standardization appears to exhibit a small size

effects. So although tuning here has a clear beneficial effect on test MSE, the impli-

cation is that it is feature standardization alone that influences final tree size.

Table 6 compares the baseline GP + tuning during with the standardized base-

line GP with tuning-during to measure the influence of feature standardization on

the constant optimization process. The results are unambiguous: standardization

improves test MSE while producing larger trees. In some cases, the size effects

of the node count differences are quite large at ∼35%, while in others only around

5%. Quite why we observe a consistent increase in tree size with standardization is

unclear. It is also worth further work to reconcile the results on tree size obtained

here with the observation of Dick et al. [7] that a single iteration of stochastic gradi-

ent descent increased the sizes of their trees when using standardized datasets.

Up to this point, we can conclude that:

– Feature standardization almost always benefits generalization but at the expense

of creating larger models

– Tuning the tree constants has a positive effect on generalization while reducing

tree sizes relative to the same algorithm with no tuning.

– The benefits of standardization are not universal, and there are some datasets that

fall outside the trend: for example, standardization appears to produce inferior

generalization for the yacht-hydrodynamics dataset in Table 3. As pointed out in

[25], it would be helpful to understand what properties of these datasets lead to

these outcomes.

1 3

Genetic Programming and Evolvable Machines

4.2.3 Tuning during vs. Tuning at end

The motivation for exploring tuning-at-the-end of the GP was to try to further elu-

cidate the influence of constant tuning. From the foregoing results, it is perhaps

expected that performing even this more restricted form of constant optimization

would improve test MSE results compared to the as-evolved population, and this

indeed is the clear trend shown in Table 7 for the unstandardized baseline GP. This

trend is the exact opposite to that seen by Topchy and Punch [32] who saw little

difference between trees ‘fine-tuned’ at the end and their baseline GP performance.

Along with one dataset (qsar-aquatic-toxicity) that exhibits no statistical difference,

we have already suggested that tuning-at-end may cause overfitting for the dow-

chemical dataset. It is tempting to observe that the mean model size after tuning-

at-end is effectively the same as before tuning, and infer that over-parameterized

models are being tuned to overfitting. However, like dow-chemical, tuning-at-end

for the auto-mpg dataset also makes minimal change to the mean node counts but

delivers a clear reduction in test MSE. Moreover, other datasets in Table 7 – most

conspicuously, yacht-hydrodynamics – suggest that tuning-at-end can simultane-

ously increase the mean node count (i.e. select a more complex model) but decrease

test MSE.

The comparable results incorporating standardization in (Table 8) reveal a much

clearer picture than without standardization in Table 7). Here, tuning-at-end unam-

biguously reduces test MSE while increasing mean tree sizes (with the sole excep-

tion of yacht-hydrodynamics where the trees are the same sizes).

When viewing the results in Tables 7 and 8, it is important to bear in mind that

the as-evolved populations from which the best performing trees are being selected

are identical in each pair of comparisons – the only thing that is being changed by

tuning is the values of the constants and hence the training MSE measures. Since we

infer that Pareto-driven MOGP produces a spectrum of models ranging from small-

and-underfitted to large-and-overfitted, there seems some variability in which sort

of model is being promoted by tuning-at-end to be the best performing: sometimes

what we presume the baseline GP is evolving as small, underfitted models are being

tuned to be best. Other times, what we suspect are evolved as large, overfitted mod-

els are best performing after tuning. This behavior is, of course, in sharp contrast

to tuning-during which consistently produces smaller trees. The above observations

imply that large diversity in the final population is key so we conjecture that these

effects would not be seen in single objective GP where model complexity is typi-

cally capped by a user-defined Koza-style hard depth limit. Overall, tuning-at-end

would thus seem to warrant further focused research.

Tables 9 and 10 make the comparisons between tuning-during and tuning-at-end

for unstandardized (Table 9) and standardized (Table 10) features, respectively. We

can anticipate that, while tuning-at-end would certainly lead to improvements in

test errors, but tuning-during would be superior since application of constant tun-

ing at every stage in the evolution would have a more profound effect on guiding the

 Genetic Programming and Evolvable Machines

1 3

evolutionary search process. It is obvious that the results with standardization are

superior both in terms of test error and mean tree size.

4.3 Overall comparison

In this paper, we have considered a total of six different strategies: the baseline GP

with and without standardization, and each of these with constant optimization both

during and at the end of the evolution. It is interesting to ask which is the best over-

all technique? We can conveniently address this question using the Bayesian hier-

archical test over multiple datasets due to Corani et al. [4],5 this being the Bayesian

equivalent of the frequentist signed-rank test usually recommended for such com-

parisons [6], but avoiding some of the questionable assumptions of the frequen-

tist test, such as assuming all the error differences are i.i.d. across all datasets [4].

Comparison of the test MSE errors over all ten datasets are presented in Table 12:

we present only results for MSE comparisons since these are of greatest interest. In

order to present and discuss the results compactly in a table, we have adopted the

abbreviations shown in Table 11 for the various methods.

Table 11 Abbreviations used for the various investigated methods in the following analyses

Method Abbreviation

Baseline GP B

Baseline GP with standardization SB

Baseline GP and tuning during evolution BD

Baseline GP and tuning at the end of evolution BE

Baseline GP with standardization and tuning during evolution SBD

Baseline GP with standardization and tuning at the end of evolution SBE

Table 12 Results of Bayesian

hierarchical test [4] for MSE

values over all ten datasets

Shows posterior probabilities that the column method is superior to

the corresponding row method. See text for more details

B SB BD BE SBD SBE

B 0.982 0.910 1.000 0.913 0.996

SB 0.752 0.757 0.806 0.954

BD 0.314 0.475 0.343

BE 0.709 0.541

SBD 0.304

5 We have used the Stan Bayesian inference engine version 2.26.1 (https:// mc- stan. org/) together with

the Stan model file provide by Corani and co-workers (https:// github. com/ Bayes ianTe stsML/ tutor ial/ tree/

master/ hiera chical), and the default settings.

https://mc-stan.org/
https://github.com/BayesianTestsML/tutorial/tree/master/hierachical
https://github.com/BayesianTestsML/tutorial/tree/master/hierachical

1 3

Genetic Programming and Evolvable Machines

Table 12 should be interpreted as the probability of the method in a given column

in the topmost row being superior to the method listed in the leftmost column. So,

to take the first row as an example, the probability that ‘SB’ is superior to ‘B’ over

all ten datasets is 0.982. Similarly, the probability that ‘BE’ is superior to ‘BD’ is

0.314, namely ‘BE’ is actually inferior to BD’.

Determining an unambiguous overall ranking of methods from these pairwise

tests is not straightforward since the measures in Table 12 are probabilities and not

distances. Nonetheless, we can observe in general that:

– ‘B’, the baseline GP, is the worst performer of all, and is bettered by every other

method.

– ‘SB’ appears to be second worst performer as it is bettered by every other method

bar one (‘B’).

– ‘BE’ ranks as the third worst method.

– ‘BD’ and ‘SBD’ are equivalent performers over all datasets.

– Given the choice between ‘SBD’ and ‘SBE’, ‘SBD appears superior.

It should be borne in mind, however, that the results in Table 12 are ‘aggregated’

over all ten datasets. So, for example, the above comments about ‘SBD’ appearing

better than ‘SBE’ overall need to be tempered by observations over individual data-

sets. This simply reflects the limitations of statistical inference.

4.4 Algorithm run times

Clearly, the versions of the algorithm that employed numerical optimization along-

side evolution will consume significantly more CPU time than the plain evolution-

ary algorithm. (To offset that, MSE performance is generally improved, of course.)

The greatly increased run time for constant tuning was acknowledged several

times by Kommenda et al. [17] although these authors did not directly quantify

these increases on real instances of GP runs. Table 13 compares run times6 for the

Table 13 Mean execution times, and percentage of optimizations that terminated due to exceeding the

iteration limit for the representative energy-efficiency-heat dataset

‘tuning during’ = optimizations embedded in the evolutionary search used an iteration limit = 50. ‘tun-

ing at end’ = optimization only on final population used an iteration limit = 500

baseline GP Baseline GP Baseline GP

+ tuning during + tuning at end

Time (s) Time (s) % exceeded Time (s) % exceeded

9.16 ± 1.35 3997 ± 1821 20.02 ± 1.60 6150 ± 3393 0

6 Evaluated on an HPC cluster (https:// docs. hpc. shef. ac. uk/ en/ latest/ sharc/ clust er_ specs. html# sharc-

specs) comprising 2.40 GHz Intel Xeon E5-2630 v3 processors running Linux Centos 7.

https://docs.hpc.shef.ac.uk/en/latest/sharc/cluster_specs.html#sharc-specs
https://docs.hpc.shef.ac.uk/en/latest/sharc/cluster_specs.html#sharc-specs

 Genetic Programming and Evolvable Machines

1 3

energy-efficiency-heat dataset since this is around the median run time across all

datasets. Since optimizing execution times was not the principal objective of this

work, the run times shown in Table 13 could almost certainly be reduced by careful

tuning of the code, but that was outside the scope of the present study.

It is obvious from Table 13 that including constant tuning (either during evolution

or only on the final population) significantly increases the run time over the base-

line GP. We have used the steady-state evolutionary paradigm in this work which

generates (and evaluates) two children at each breeding stage so the ‘tuning-during’

algorithm was able to employ two threads, each evaluating the fitness of a single

offspring. The ‘tuning-at-end’ variant also used two threads for direct comparability,

but could make much greater use of multithreading by using one thread to tune each

individual in the final population; to repeat: our focus here has not been minimizing

run time. It is also clear from Table 13 that there is significant variability in the run

times as evidenced by the sizable standard deviations.

Over and above multithreading, the code implementation here used symbolic dif-

ferentiation to evaluate derivatives [30] largely for convenience, and because opti-

mizing code efficiency was not focus of this research. Aside from other refinements,

initial code profiling suggest that a very large fraction of the total run time may be

consumed in evaluating derivatives, which might be much more efficiently imple-

mented, to the same precision, using automatic differentiation [1]. This is obviously

an area for future work to facilitate more rapid turnaround of experiments.

The upper bound on the total number of iterations for ‘tuning-during‘ was 10,000

breeding operations × 50 iterations per child = 500,000) whereas for ‘tuning-at-

end’, the upper bound was 100 × 500 = 50, 000 iterations (a population of 100 ×

500 iterations). The constant optimizations for some trees required fewer than the

limiting numbers of iterations – 50 for ‘tuning-during’ and 500 for ‘tuning-at-end’

– but many optimizations were terminated on exceeding these fixed iteration lim-

its. Optimizations that exceeded their iteration limit displayed slow convergence,

but provided approximate rather than exactly optimal solutions. Table 13 records

the percentages of optimizations that exceeded their iteration limits (“% exceeded”

column). For ‘tuning-during’, this was around 20% – in fact, the iteration limit of

50 was initially selected on the basis of about 80% of optimizations meeting their

relative convergence limit of 1 × 10
−4 . It is also noteworthy that all the tuning-at-end

optimizations converged within the limit of 500 iterations although only around 10%

of trees had converged after the 50 iterations, the limit imposed on the tuning-during

approach. The average tree sizes in the as-evolved population were, however, larger

than those in the population generated with embedded optimization – see Table 4

for precise comparisons which probably explains i) the longer overall run times as

evaluating a large tree obviously takes longer than evaluating a small tree, and ii)

larger trees containing probably more constants on average require more iterations

to converge.

Generally, iterative algorithms converge slowly [16] either because of the objec-

tive function being optimized is poorly scaled – not the case here – or because

some of the parameters being optimized are ‘weakly’ coupled to the objective

function. To illustrate this, in least-squares fitting of a straight line with a function

y = (a + b)x + c , calculating precise values of both a and b is indeterminate, but

1 3

Genetic Programming and Evolvable Machines

finding a single, precise value for the sum (a + b) is feasible (debarring any other

numerical difficulties). We have seen ample evidence of ‘double constant’ tree ter-

mination in [29] in a study of tree pruning. An obvious way to explore this issue (in

future work) is to perform minor simplification of a tree by replacing all ‘double

constants’ with a single constant using a simple rule-based substitution, which may

remove numerical indeterminacy, and hopefully reduce slow convergence. Whether

this significantly addresses the slow convergence problem remains to be seen since

many other tree configurations involving unidentifiable constants are conceivable;

potentially these could be diagnosed by a failure of some of the constant parameters

to converge to stable values. Overall, more work remains to be done in the numerical

optimization of GP trees.

Kommenda et al [17] have noted that nonlinear optimizations generally require an

initial point within the ‘basin of attraction’ of the global minimum although do not

appear to have addressed the point in practice. In a similar vein, we took the initial

starting values of the optimization as being those constant values present in the as-

bred child. A multistart algorithm [27, 28] could suppress possible convergence to

local optima albeit at the cost of increased run time. Whether there is any benefit to

this approach is an area for future work. (In passing, we note that the common prac-

tice – also used here – of starting GP runs with a number of different initial popula-

tions is actually an example of a multistart strategy.)

In terms of run time, the increasing availability of computing power makes con-

stant tuning a practical proposition. Although the computational demands of tuning

are significant, the computations are far from intractable; few would argue that very

heavily compute-intensive deep learning is impractical because of its computing

requirements. Indeed, the implementation of GP on the graphical processing units

(GPUs) that facilitate much of deep learning has already received attention, e.g.

[19].

Finally, the unexpectedly promising performance of tuning-at-end is worthy of

more attention if only from a computational standpoint. For the steady-state evolu-

tionary algorithm used in this paper, tuning-during allows only a limited amount of

multithreading to reduce the run time: after each breeding stage, only two threads

can be (straightforwardly) used, one to tune the constants in each child. Regardless

of evolutionary strategy – steady-state or generational – tuning-at-end over a fixed

population opens up the possibility of using one thread to optimize the constants in

each individual in the final population thereby allowing a very much larger degree of

multithreading, and thereby reduced run time. In an era of multicore processors, this

could effectively address the computational issue with constant tuning.

4.5 Does constant tuning really improve performance?

In the results described up to this point, the numbers of evolutionary steps – that is,

manipulations of the model structure – have been held constant at 10,000 between

the no-tuning and with-tuning experiments; although we have employed a steady-

state evolutionary approach throughout, for comparison, this is the equivalent

of around 111 generations of a generational algorithm (assuming 10% elitism).

 Genetic Programming and Evolvable Machines

1 3

(Convergence of a stochastic algorithm is always a problematic issue: the figure

of 10,000 offspring was selected on the based on the observation that the rate of

improvement appeared subjectively small after this number of iterations.) As dis-

cussed in Sect. 4.4, however, the run time with tuning is dominated by the numeri-

cal optimization of the constants due in significant part to the large number of tree

evaluations required at each iteration of the SLSQP algorithm. We have limited the

maximum number of SLSQP iterations to 50 (for tuning-during) although some

optimizations converged in only 2-3 iterations. Across all datasets, it is difficult to

be very precise about the total number of tree evaluations required due the large

variability, but 200,000 is maybe a representative figure. It is interesting to pose the

question of whether a budget of, say, 200,000 tree evaluations would be better spent

solely on evolutionary optimization, and to ignore the complications of numerical

optimizations? To address this question, we have run both the baseline and baseline-

with-standardization algorithms to generate 200,000 offspring (as opposed to the

10,000 used hitherto) but without constant tuning, and compared the performance to

Table 14 Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with 200,0000

offspring, and the baseline GP with constant optimization (BD)

Dataset Test MSE Node count

baseline GP baseline GP baseline GP baseline GP

+ 200,000 + tuning + 200,000 + tuning

offspring offspring

Airfoil-self-noise 0.000 1.000 1.000 0.000

 0.2626 0.3905 479.4 91.2

Auto-mpg 0.946 0.054 1.000 0.000

0.2446 0.1601 249.7 69.2

Boston-housing 0.667 0.333 1.000 0.000

 0.3071 0.2980 277.6 93.0

Concrete-strength 0.734 0.266 1.000 0.000

 0.7221 0.2713 390.8 96.1

Dow-chemical 0.994 0.006 1.000 0.000

0.7107 0.4115 332.2 87.0

Energy-efficiency-cool 0.000 1.000 1.000 0.000

0.0837 0.1199 390.4 86.8

Energy-efficiency-heat 0.000 1.000 1.000 0.000

0.0480 0.0819 442.9 92.0

Qsar-aquatic-toxicity 0.725 0.275 1.000 0.000

0.8783 0.6050 297.0 81.8

Servo 0.185 0.815 1.000 0.000

0.2637 0.3627 283.1 103.4

Yacht-hydrodynamics 0.998 0.002 1.000 0.000

0.0161 0.0079 370.3 108.1

1 3

Genetic Programming and Evolvable Machines

the baseline-with-tuning (BD) and baseline-with-standardization-and-tuning (SBD),

respectively that both used 10,000 evolutionary iterations. Running the evolutions

for a very large number of iterations has produced slightly better-trained solutions

albeit with a diminishing rate of success in finding these solutions.

The comparisons of results are included in Table 14 for the comparison without

standardization, and Table 15 with standardization; the interpretation of these tables

is identical to the previous such tables.

A number of points is apparent from Tables 14 and 15: firstly, the picture for indi-

vidual dataset comparisons for test MSE indicates that sometimes the baseline (with

or without standardization) for 200,000 tree evaluations performs compellingly bet-

ter than the (S)BD method. Sometimes the reverse is true. For the baseline case, the

split is 4-to-6 datasets better with just evolutionary search, and with standardization

the split is 5-to-5.

The fact that for around half the datasets the better strategy is dispensing with

numerical parameter tuning altogether (but still using very long run times) throws

Table 15 Bayesian correlated t-test results over 10-fold CV comparing the baseline GP + standardization

and 200,0000 offspring, and the baseline GP + standarization with constant optimization (SBD)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Standardization + Standardization + Standardization + Standardization

+ 200K offspring + Tuning + 200K offspring + Tuning

Airfoil-self-noise 0.000 1.000 1.000 0.000

 0.2617 0.3435 505.8 143.7

Auto-mpg 0.681 0.319 0.999 0.001

 0.1480 0.1449 261.2 101.7

Boston-housing 0.242 0.758 1.000 0.000

 0.2653 0.2777 246.2 102.9

Concrete-strength 0.000 1.000 1.000 0.000

 0.2021 0.2453 407.3 134.2

Dow-chemical 0.728 0.272 1.000 0.000

 1.5392 0.3572 407.3 121.3

Energy-efficiency-cool 0.886 0.114 1.000 0.000

 0.0717 0.0664 484.8 131.1

Energy-efficiency-heat 1.000 0.000 1.000 0.000

 0.0480 0.0337 512.7 141.5

Qsar-aquatic-toxicity 0.025 0.975 1.000 0.000

 0.5457 0.5957 226.3 98.2

Servo 0.130 0.870 1.000 0.000

 0.2450 0.3212 268.2 108.9

Yacht-hydrodynamics 0.997 0.003 1.000 0.000

 0.0242 0.0068 426.4 115.4

 Genetic Programming and Evolvable Machines

1 3

open the question of the value of numerical parameter calibration in GP, and

whether, as is often believed, GP is not good at fine-tuning constant values. For

some datasets it seems highly effective, for others the exact opposite is true. As a

further confounding factor, predictor standardization appears to vary which datasets

benefit from numerical parameter optimization.

Overall, the results in this section suggest that the dependence on dataset requires

further research. This, in a sense, is disappointing as one of the hopes for GP is that

can robustly automate the generation of predictive models without the need for the

careful configuration typical of other methodologies. We speculate that one possible

reason for the dependence on dataset could be that the ‘optimized’ models for dif-

ferent datasets have differing sensitivities to the precision of constant values due to

the underlying properties of the data. If a dataset best matches a model with low

sensitivities to constant precision then directing the tree evaluation budget to search-

ing only over model structures is maybe the better strategy. If, on the other hand, the

best models have high sensitivity to constant value precision then numerical tuning

may be the better option. We stress this is speculation and would require further

research, possibly exploring the sensitivities of ‘optimized’ models [31].

Turning to model sizes, an unambiguous trend emerges from Tables 14 and 15.

The baseline GP – both with and without standardization – produces mean model

sizes a factor 3-4 larger than with parameter calibration. The fact that tree sizes con-

tinue to grow with increasing numbers of evolutionary iterations while producing

lower training errors implies that GP is able – at least in some cases – to effectively

search for better constant values, presumably by synthesizing ever more complex

trees. It is worth reiterating that the numbers of tree evaluations are roughly the

same here so there is no overwhelming computational advantage in dispensing with

numerical parameter tuning; the models produced by numerical tuning are, however,

significantly smaller which is advantage for the practical deployment of GP. It is

also noteworthy that the use of standardization yields larger models than without

standardization in 8 out 10 datasets in Tables 14 and 15.

4.6 Statistical comparisons

The Bayesian comparison procedures developed by Benavoli et al. [2] were origi-

nally motivated to compute the posterior probabilities of performance differences

between two classifiers. This formulation included the notion of a region of probable

equivalence (ROPE) – a range around zero for which any difference between classi-

fier performances could be regarded as so small as to be of no practical importance.

Thus the ROPE quantifies the size effect of the difference in performance; in their

work on classifiers, Benavoli et al. suggested a ±1 % difference in classification accu-

racy as a possible figure although they recognized this would be context-dependent.

Defining a ROPE allows direct calculation of the probability mass falling inside the

ROPE – that is, the probability that there is no practical difference between the algo-

rithms being compared. It is entirely possible for the performance of one method to

appear statistically superior to another with, say, 99% probability, but for all of that

probability mass to fall within the ROPE meaning that the difference between the

1 3

Genetic Programming and Evolvable Machines

methods is actually of no practical significance. In the present regression context,

we have taken the ROPE to be of zero width because defining a range of MSE dif-

ferences that are not practically significant is problematic for the datasets used here.

Nonetheless, size effects are an important aspect of comparing regression models,

and could, in principle, be incorporated by quantifying the variance of the measure-

ments to be predicted: any test MSE error difference less than, say, 2× the noise

variance of the experimentally measured predictors is very unlikely to be meaning-

ful because the differences would be ‘in the noise’. Unfortunately, as far as we are

aware, none of the standard datasets typically used in research studies on regression

carries such information. Since benchmark datasets for GP have attracted attention

in the past [33], we suggest the scope of benchmarks should be extended to explic-

itly address predictor noise and thereby the assessment of size effects.

5 Conclusions

In this paper we have extended previous analyses of constant tuning in genetic

programming (GP) trees using gradient-descent style numerical algorithms to the

steady-state multiobjective GP setting.

Along with considering the effects of constant tuning, we have also examined the

effect of standardizing the dataset features. We find that, in general, standardization

is beneficial in that it improves the test error performance of the models produced.

We also conclude that standardization tends to produce larger models, seemingly in

direct contradiction of recent work by Owen et al. [25] and Dick et al [7]. Further

work is needed to understand these differences.

The effects of constant tuning during evolution – that is, optimizing the constant

values for each child as soon as it is created – is always beneficial. It reduces both

the test set error and the size of the best-generalizing trees when compared to the

same method that omits constant optimization. This observation holds whether the

features are standardized or not although standardization does generally appear to be

of further benefit even for constant tuning in some cases.

We have also examined the effect of tuning the tree constants at the end of a con-

ventional GP run. This turned out to be surprisingly effective in terms of improving

generalization although the effects on tree size were rather mixed, and warrant fur-

ther investigation.

Given a fixed computational budget of some number of tree evaluations, for

around half the datasets it appears beneficial to run the GP evolution for longer

rather than devote some of those tree evaluations to directly tuning the model con-

stants; for the other half of the datasets, the exact opposite is true and parameter cali-

bration yields superior test set errors. Using a long evolutionary run does, however,

produce trees that are a factor of 3-4 larger than with numerical constant optimiza-

tion. Clearly, this dependence on dataset requires further research.

In terms of statistical testing, we have employed a Bayesian procedure that avoids

many of the objections to the null hypothesis statistical testing (NHST) traditionally

used for performance comparison. This Bayesian test can explicitly incorporate a

region of practical equivalence (ROPE) that allows future extension to considering

 Genetic Programming and Evolvable Machines

1 3

the size effect between competing models; we point out, however, that existing

benchmark datasets typically do not contain the necessary information on measure-

ment noise to take this important step.

We have identified a number of areas for future work aimed at better under-

standing and developing constant tuning in GP models. In particular, the numeri-

cal aspects surrounding convergence of the optimization routines justifies additional

attention.

Acknowledgements The author is grateful to James McDermott for supplying the copy of the Dow

Chemical dataset used in this work as well as for interesting discussions on testing methodologies. We are

also grateful for the insightful comments and suggestions of a number of anonymous reviewers.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,

which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-

mons licence, and indicate if changes were made. The images or other third party material in this article

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen

ses/ by/4. 0/.

References

 1. A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine

learning: a survey. J. Mach. Learn. Res. 18(1), 5595–5637 (2017)

 2. A. Benavoli, G. Corani, J. Demšar, M. Zaffalon, Time for a change: a tutorial for comparing multi-

ple classifiers through Bayesian analysis. J. Mach. Learn. Res. 18(77), 1–36 (2017)

 3. G. Corani, A. Benavoli, A Bayesian approach for comparing cross-validated algorithms on multiple

data sets. Mach. Learn. 100(2–3), 285–304 (2015). https:// doi. org/ 10. 1007/ s10994- 015- 5486-z

 4. G. Corani, A. Benavoli, J. Demšar, F. Mangili, M. Zaffalon, Statistical comparison of classifiers

through Bayesian hierarchical modelling. Mach. Learn. 106(11), 1817–1837 (2017). https:// doi. org/

10. 1007/ s10994- 017- 5641-9

 5. J. Demšar, Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30

(2006)

 6. J. Demšar, On the appropriateness of statistical tests in machine learning. In: 3 rd Workshop on Eval-

uation Methods for Machine Learning (ICML 2008). Helsinki, Finland (2008). http:// www. site. uotta

wa. ca/ ICML0 8WS/ papers/ J_ Demsar. pdf

 7. G. Dick, C.A. Owen, P.A. Whigham, Feature standardisation and coefficient optimisation for effec-

tive symbolic regression. In: Genetic and Evolutionary Computation Conference (GECCO ’20), pp.

306–314. Cancún, Mexico (2020). https:// doi. org/ 10. 1145/ 33779 30. 33902 37

 8. T. Dou, P. Rockett, Comparison of semantic-based local search methods for multiobjective

genetic programming. Gen. Prog. Evol. Mach. 19(4), 535–563 (2018). https:// doi. org/ 10. 1007/

s10710- 018- 9325-4

 9. D. Dua, C. Graff, UCI Machine Learning Repository. University of California, School of Informa-

tion and Computer Science, Irvine, CA (2019). http:// archi ve. ics. uci. edu/ ml

 10. C. Fonseca, P.J. Fleming, Multiobjective optimization and multiple constraint handling with evolu-

tionary algorithms - Part I: a unified formulation. IEEE Trans. Syst., Man Cybern. - Part A: Syst.

Humans 28(1), 26–37 (1998). https:// doi. org/ 10. 1109/ 3468. 650319

 11. S. Geman, E. Bienenstock, R. Doursat, Neural networks and the bias/variance dilemma. Neural

Comput. 4(1), 1–58 (1992). https:// doi. org/ 10. 1162/ neco. 1992.4. 1.1

 12. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference,

and Prediction (Springer, New York, 2009)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10994-015-5486-z
https://doi.org/10.1007/s10994-017-5641-9
https://doi.org/10.1007/s10994-017-5641-9
http://www.site.uottawa.ca/ICML08WS/papers/J_Demsar.pdf
http://www.site.uottawa.ca/ICML08WS/papers/J_Demsar.pdf
https://doi.org/10.1145/3377930.3390237
https://doi.org/10.1007/s10710-018-9325-4
https://doi.org/10.1007/s10710-018-9325-4
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/3468.650319
https://doi.org/10.1162/neco.1992.4.1.1

1 3

Genetic Programming and Evolvable Machines

 13. M.T. Heath, Scientific Computing: An Introductory Survey (McGraw-Hill, New York, 2005)

 14. F. Hutter, L. Kotthoff, J. Vanschoren (eds.), Automated Machine Learning: Methods, Systems, Chal-

lenges. Springer (2018). https:// www. automl. org/ wp- conte nt/ uploa ds/ 2019/ 05/ AutoML_ Book. pdf.

In press, available at http:// automl. org/ book

 15. M. Keijzer, Improving symbolic regression with interval arithmetic and linear scaling. In: C. Ryan,

T. Soule, M. Keijzer, E. Tsang, R. Poli, E. Costa (eds.) European Conference on Genetic Program-

ming (EuroGP 2003), pp. 70–82. Essex, UK (2003). https:// doi. org/ 10. 1007/3- 540- 36599-0_7

 16. C.T. Kelley, Iterative Methods for Optimization. Society for Industrial and Applied Mathematics,

Philadelphia, PA (1999). https:// doi. org/ 10. 1137/1. 97816 11970 920

 17. M. Kommenda, B. Burlacu, G. Kronberger, M. Affenzeller, Parameter identification for symbolic

regression using nonlinear least squares. Gen. Prog. Evol. Mach. 21(3), 471–501 (2019). https:// doi.

org/ 10. 1007/ s10710- 019- 09371-3

 18. D. Kraft, Algorithm 733: TOMP-Fortran modules for optimal control calculations. ACM Trans.

Math. Softw. 20(3), 262–281 (1994). https:// doi. org/ 10. 1145/ 192115. 192124

 19. W.B. Langdon, Graphics processing units and genetic programming: an overview. Soft Comput.

15(8), 1657–1669 (2011). https:// doi. org/ 10. 1007/ s00500- 011- 0695-2

 20. C. Nadeau, Y. Bengio, Inference for the generalization error. Mach. Learn. 52(3), 239–281 (2003)

 21. J. Ni, R.H. Drieberg, P.I. Rockett, The use of an analytic quotient operator in genetic programming.

IEEE Trans. Evol. Comput. 17(1), 146–152 (2013). https:// doi. org/ 10. 1109/ TEVC. 2012. 21953 19

 22. M. Nicolau, A. Agapitos, Choosing function sets with better generalisation performance for

symbolic regression models. Gen. Program. Evol. Mach. (2020). https:// doi. org/ 10. 1007/

s10710- 020- 09391-4

 23. M. Nicolau, J. McDermott, Genetic programming symbolic regression: what is the prior on the pre-

diction?, in Genetic Programming Theory and Practice XVII. ed. by W. Banzhaf, E. Goodman, L.

Sheneman, L. Trujillo, B. Worzel (East Lansing, MI, 2019), pp. 201–225

 24. R.S. Olson, J.H. Moore, TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine

Learning (Springer International Publishing, Cham, 2019), pp. 151–160. https:// doi. org/ 10. 1007/

978-3- 030- 05318-5_8

 25. C.A. Owen, G. Dick, P.A. Whigham, Feature standardisation in symbolic regression, in AI 2018:

Advances in Artificial Intelligence. ed. by T. Mitrovic, B. Xue, X. Li (Wellington, New Zealand,

2018), pp. 565–576. https:// doi. org/ 10. 1007/ 978-3- 030- 03991-2_ 52

 26. R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming. Published via http://

lulu. com and freely available at http:// www. gp- field- guide. org. uk (2008). http:// dces. essex. ac. uk/

staff/ rpoli/ gp- field- guide/A_ Field_ Guide_ to_ Genet ic_ Progr amming. pdf

 27. A.H.G. Rinnooy Kan, G.T. Timmer, Stochastic global optimization methods Part I: clustering meth-

ods. Math. Program. 39(1), 27–56 (1987). https:// doi. org/ 10. 1007/ BF025 92070

 28. A.H.G. Rinnooy Kan, G.T. Timmer, Stochastic global optimization methods Part II: Multi level

methods. Math. Program. 39(1), 57–78 (1987). https:// doi. org/ 10. 1007/ BF025 92071

 29. P. Rockett, Pruning of genetic programming trees using permutation tests. Evol. Intell. 13(4), 649–

661 (2020). https:// doi. org/ 10. 1007/ s12065- 020- 00379-8

 30. P. Rockett, Y. Kaszubowski Lopes, T. Dou, E.A. Hathway, d(Tree)-by-dx: Automatic and exact differ-

entiation of genetic programming trees. In: H.P. García, L. Sánchez-González, M.C. Limas, H. Quin-

tián-Pardo, E.S.C. Rodríguez (eds.) 14th International Conference on Hybrid Artificial Intelligent Sys-

tems (HAIS2019), pp. 133–144. León, Spain (2019). https:// doi. org/ 10. 1007/ 978-3- 030- 29859-3_ 12

 31. A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice: A Guide to

Assessing Scientific Models (Wiley, Hoboken, 2004)

 32. A. Topchy, W.F. Punch, Faster genetic programming based on local gradient search of numeric

leaf values. In: L. Spector, E.D. Goodman, A. Wu, W.B. Langdon, H.M. Voigt, M. Gen, S. Sen,

M. Dorigo, S. Pezeshk, M.H. Garzon, E. Burke (eds.) Genetic and Evolutionary Computation Con-

ference (GECCO-2001), pp. 155–162. San Francisco, CA (2001). http:// www. cs. bham. ac. uk/ ~wbl/

biblio/ gecco 2001/ d01. pdf

 33. D.R. White, J. McDermott, M. Castelli, L. Manzoni, B.W. Goldman, G. Kronberger, W. Jaśkowski,

U.M. O’Reilly, S. Luke, Better GP benchmarks: community survey results and proposals. Gen. Pro-

gram. Evol. Mach. 14(1), 3–29 (2013). https:// doi. org/ 10. 1007/ s10710- 012- 9177-2

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://www.automl.org/wp-content/uploads/2019/05/AutoML_Book.pdf
http://automl.org/book
https://doi.org/10.1007/3-540-36599-0_7
https://doi.org/10.1137/1.9781611970920
https://doi.org/10.1007/s10710-019-09371-3
https://doi.org/10.1007/s10710-019-09371-3
https://doi.org/10.1145/192115.192124
https://doi.org/10.1007/s00500-011-0695-2
https://doi.org/10.1109/TEVC.2012.2195319
https://doi.org/10.1007/s10710-020-09391-4
https://doi.org/10.1007/s10710-020-09391-4
https://doi.org/10.1007/978-3-030-05318-5_8
https://doi.org/10.1007/978-3-030-05318-5_8
https://doi.org/10.1007/978-3-030-03991-2_52
http://lulu.com
http://lulu.com
http://www.gp-field-guide.org.uk
http://dces.essex.ac.uk/staff/rpoli/gp-field-guide/A_Field_Guide_to_Genetic_Programming.pdf
http://dces.essex.ac.uk/staff/rpoli/gp-field-guide/A_Field_Guide_to_Genetic_Programming.pdf
https://doi.org/10.1007/BF02592070
https://doi.org/10.1007/BF02592071
https://doi.org/10.1007/s12065-020-00379-8
https://doi.org/10.1007/978-3-030-29859-3_12
http://www.cs.bham.ac.uk/%7ewbl/biblio/gecco2001/d01.pdf
http://www.cs.bham.ac.uk/%7ewbl/biblio/gecco2001/d01.pdf
https://doi.org/10.1007/s10710-012-9177-2

	Constant optimization and feature standardization in multiobjective genetic programming
	Abstract
	1 Introduction
	2 Methodology
	2.1 Datasets
	2.2 Multiobjective genetic programming
	2.3 Numerical optimization of the constants
	2.4 Statistical testing

	3 Results
	3.1 Baseline vs. baseline + standardization (‘No Tuning’)
	3.2 Effects of constant optimization on the baseline GP (‘Tuning During’)
	3.3 Constant optimization combined with feature standardization (‘Tuning during’)
	3.4 Constant optimisation after baseline GP (‘Tuning-at-end’)
	3.5 Constant optimization after baseline GP with standardization (Tuning at end)
	3.6 Tuning-during vs. Tuning-at-end

	4 Discussion & future work
	4.1 The effects of feature standardization on the baseline GP
	4.2 Effects of constant optimization
	4.2.1 Baseline GP – Tuning during
	4.2.2 Baseline GP with standardization – Tuning during
	4.2.3 Tuning during vs. Tuning at end

	4.3 Overall comparison
	4.4 Algorithm run times
	4.5 Does constant tuning really improve performance?
	4.6 Statistical comparisons

	5 Conclusions
	Acknowledgements
	References

