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Abstract

This paper extends the numerical tuning of tree constants in genetic programming 

(GP) to the multiobjective domain. Using ten real-world benchmark regression data-

sets and employing Bayesian comparison procedures, we first consider the effects of 

feature standardization (without constant tuning) and conclude that standardization 

generally produces lower test errors, but, contrary to other recently published work, 

we find much less clear trend for tree sizes. In addition, we consider the effects of 

constant tuning – with and without feature standardization – and observe that (1) 

constant tuning invariably improves test error, and (2) usually decreases tree size. 

Combined with standardization, constant tuning produces the best test error results; 

tree sizes, however, are increased. We also examine the effects of applying constant 

tuning only once at the end a conventional GP run which turns out to be surprisingly 

promising. Finally, we consider the merits of using numerical procedures to tune 

tree constants and observe that for around half the datasets evolutionary search alone 

is superior whereas for the remaining half, parameter tuning is superior. We identify 

a number of open research questions that arise from this work.

Keywords Multiobjective genetic programming · Constant optimization · Feature 

standardization · Bayesian testing

1 Introduction

Traditionally, the empirical modeling of data proceeds by a human analyst select-

ing models from some family (or families), and then optimizing a given model’s 

parameters, typically using a maximum likelihood formulation, to obtain a ‘best 

fit’ to the data; in the case of regression problems, this usually takes the form of 
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minimizing a least-squares measure over a set of training data. Unless there is 

any good, a priori reason to adopt a specific model, the human analyst typically 

repeats this exercise for a range of models, and selects a final model using the 

candidates’ performance over a validation set disjoint to the training set. Finally, 

predictive performance is estimated over a test set that is disjoint to both the 

training and validation sets.

In practice, human analysts tend to consider only a limited range of potential 

data models since the process of parameter fitting and model comparison is tedi-

ous and time-consuming, a difficulty that has given rise to automated machine 

learning (AutoML) that seeks to mechanize this data fitting process [14] with-

out relying on an expert analyst; in the context of the present paper, the genetic 

programming-based TPOT system [24] is noteworthy although it selects (albeit 

automatically) over a family of existing pre-processing and classification models 

rather than synthesizing entirely novel classifiers.

One of the promises of genetic programming (GP) is its ability to generate 

novel model structures driven by optimization of fitness over the dataset at hand 

rather than restricting the search for a data model to some prescribed set of can-

didates. In this context, the usual motivation of GP is slightly different from 

AutoML approaches although it shares the same objectives. It is widely consid-

ered, however, that while GP has the potential to synthesize data-driven model 

structures, optimization of that model’s parameters – the second part of the tra-

ditional, human-centered workflow – is a weak point that has received relatively 

limited attention in the GP community compared to areas like novel genetic oper-

ators, bloat, etc. More formally, a predictive model has the form of ŷ = f (�;�) 

where ŷ is the model’s prediction, � is the vector of independent variables, and 

� is the real vector of model parameters. GP is well suited to searching over the 

space of functions f ∈ F  , but is widely regarded as being poor at optimizing � . 

Typical GP operations such as crossover and tree mutation are usually consid-

ered unlikely to determine optimal values of � , for which sensitivity criteria may 

require close to the maximum available floating-point precision for good perfor-

mance.Work on parameter tuning (also known as model calibration) in GP has 

been comprehensively reviewed in a recent paper by Kommenda et al. [17]. Most 

of the previous GP parameter tuning work has been carried out on regression 

problems, and this too is the focus of the present paper.

Kommenda et al. [17] used the well-known Levenberg-Marquardt (L-M) algo-

rithm to optimize the constants in a GP tree with an algorithm that hybridized 

evolutionary and conventional numerical procedures to minimize the Pearson R2 

correlation coefficient over a training set instead of the mean squared error met-

ric that is more conventionally used in regression problems. Overall, Kommenda 

et  al. concluded that conventional GP with nonlinear least-squares optimization 

of the constants was a (tied) top-ranking performer among a number of alterna-

tive GP and other models, hence we explore GP with constant tuning here. The 

present paper extends the work reported in [17].

On a closely related theme, Owen et al. [25] considered the effect of standard-

izing the features in GP to zero-mean/unit variance for a range of regression prob-

lems, a procedure widely used in other sub-areas of machine learning, but hitherto 
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little-used in GP. These authors concluded that “the performance of GP can be 

greatly improved simply through z-score standardization of variables prior to train-

ing” with this “typically resulting in models that were smaller and generalized better 

than using unscaled variables”. These authors conjectured that placing all explana-

tory variables on the same scale made it easier for the GP search process to evolve 

appropriate values of tree constants. In a subsequent paper [7], the same authors 

extended their analysis to performing a single round of stochastic gradient optimiza-

tion (1-SGD) on GP with and without feature standardization; we explore a wider 

combination of more extensive constant tuning in the present paper. In addition, 

Dick et al. [7] observed that GP with standardized inputs tended to evolve smaller 

trees, but once 1-SGD was included, standardization tended to produce trees larger 

than the baseline (unstandardized) GP. In the light of a number open issues iden-

tified in [7, 25], we therefore also consider the effects of dataset standardization 

alongside constant optimization, but extend this to the multiobjective framework.

The motivation of this paper has been to attempt to further align GP and tradi-

tional empirical data modeling, in particular, by exploring the factors involved in the 

parameter optimization phase of the modeling workflow described at the start of this 

section.

In terms of the original contributions of this paper:

– We extend the results of [7, 25] on feature standardization to the multiobjec-

tive GP domain, and report its effects on testing error and tree size in Sect. 3.1. 

Extension to multiobjective GP stands in contrast to previous work on constant 

tuning that has, as far as we are aware, exclusively used single-objective GP.

– We report a comprehensive exploration of the influence of optimizing the tree 

constants on the performance of GP models – both with and without feature 

standardization – by embedding the constant optimization inside the evolution-

ary loop which is presented in Sects. 3.2 and 3.3.

– Most previous work on constant tuning in GP has embedded these optimization 

stages within the evolutionary loop. In Sect. 3.4 we revisit the effect of perform-

ing the constant optimization only at the end of a conventional GP run, some-

thing previously investigated (and dismissed) in very early work on constant tun-

ing in GP [32].

– We introduce a Bayesian statistical comparison of results; as far as we are aware, 

this is the first use of such methods in the GP literature.

Section 2 describes the methodology we have employed: the datasets, multiobjective 

genetic programming, formulation of the numerical optimization, and statistical test-

ing. Section 3 presents the results of the paper, while Sect. 4 discusses the results’ 

implications and identifies possible future work and open research questions. Sec-

tion 5 concludes the paper.
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2  Methodology

2.1  Datasets

The datasets used in this study are shown in Table 1 having been used extensively 

in the past in the GP and wider machine learning literature. All bar one have been 

obtained from the UCI Repository [9]; the dow-chemical dataset was used as a com-

petition at the EuroGP Conference in 2010.

For convenience, we have standardized all the predicted (i.e. dependent) vari-

ables for ease of comparison, what Owen et al. [25] termed partial standardization. 

The regressor (i.e. independent or feature) variables were either left unchanged or 

standardized, as described in particular experiments below. We have used the same, 

conventional procedure as in [25] to avoid bias by calculating any standardization 

transform over the training set, and applying the same transformation to both the 

validation and test sets. Both Kommenda et al. [17] and Owen et al. [25] used linear 

scaling of the predicted variable  [15]. We have not employed a linear scaling pro-

cedure in the present work since Owen et al. [25] noted that it sometimes produces 

“erratic” predictive performance”.

We have adopted the standard machine learning procedure of partitioning each 

dataset into three disjoint subsets: a training set, a validation set, and test set [12]. 

The training set was used only for training after which the validation set was used to 

select a single, best-performing model from that GP run. Finally, the test partition 

was used to produce an independent estimate of generalization performance. This 

procedure is universal in mainstream machine learning, but some authors in the GP 

community omit the explicit model selection stage of using a validation set because 

they take the individual with the smallest training error as the selected model.

Two methods of analyzing cross-validation data simultaneously exist in the 

literature: the first performs a statistical test on either the mean (or median) test 

error over each fold for some number of independently initialized runs, while 

the second considers only the best-performing individual from each fold again 

over some number of independent runs. Both approaches are equally valid, but 

Table 1  Benchmark datasets 

used in this work. See text for 

further details

Dataset #Features #Instances

Airfoil-self-noise 5 1503

Auto-mpg 7 392

Boston-housing 13 506

Concrete-strength 8 1030

Dow-chemical 57 1066

Energy-efficiency-cool 8 768

Energy-efficiency-heat 8 768

Qsar-aquatic-toxicity 9 546

Servo 4 167

Yacht-hydrodynamics 6 308
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explore fundamentally different issues: the first explores ‘process’, namely the 

ability of, say, an evolutionary method or approach to produce good results ‘on 

average’. The second is an avowedly ‘engineering’ approach that aligns strongly 

with conventional machine learning practice, and focuses on the best obtainable 

model. We have adopted the first approach in this paper of comparing the mean 

test errors for each fold averaged over 30 repetitions since we are interested 

comparing methodologies. (In other settings, however, comparison of best-per-

forming individuals may be more appropriate.)

We have used multiobjective GP (see Sect. 2.2) that produces a set of Pareto 

‘equivalent’ models, and therefore we included an explicit model selection step. 

How to assign percentages of data to each of the three dataset partitions above 

is open to debate [12]: as an initial data pre-processing stage, we divided each 

dataset into ten folds for cross validation. To create each of the ten folds, 20% of 

the dataset was randomly sampled for testing. The remaining 80% was randomly 

divided into two sub-groups containing 70% and 10% of the total data, respec-

tively; the former was used as the training set while the latter was used as the 

validation set. These are fairly commonly-used partitionings. Further, the sam-

pling strategy employed meets the requirement of the statistical test employed 

– see Sect. 2.4.

2.2  Multiobjective genetic programming

The details of the multiobjective genetic programming (MOGP) algorithm used 

in this work are shown in Table  2; these parameter values have been used many 

times before by the present author. We have used a steady-state, as opposed to 

Table 2  Evolutionary algorithm parameters used in this work

Parameter Value

Evolutionary strategy Steady-state

Population size 100

Initialization method Uniformly-random tree node counts ∈ [1… 63]

Function set Unary minus, + , −, × , Analytic quotient [21]

Terminal set Input variables; mutable constants

Initial mutable constants ∈ {0.1, 0.2,… , 0.8, 0.9}

Objectives i) Training MSE, and ii) Tree node count

Selection Pareto ranking – see [10]

No. of children 2 children produced per breeding operation

Crossover Point crossover; Pr = 0.9 of selecting an internal node

Crossover probability 1.0

Mutation Subtree mutation [26, p.16] (full trees of depth = 4)

Mutation probability 1.0

Total number of generated children 10,000



 Genetic Programming and Evolvable Machines

1 3

generational, evolutionary algorithm since our experience is that this give superior 

results – see Dou and Rockett [8] and the discussion therein for more details. Parents 

were selected for breeding by: i) sorting the population by Pareto rank allowing tied 

ranks, ii) mapping an individual’s rank to a scalar fitness with a linear function such 

that the best-ranked individuals got the largest fitness and the worst ranked zero fit-

ness, and iii) selecting the parent stochastically biased by scalar fitness values – see 

[10, p.32] for full details.

2.3  Numerical optimization of the constants

Whereas Kommenda et al. [17] used the well-known Levenberg-Marquardt (L-M) 

algorithm to optimize the tree constants, we have chosen to use the Sequential Lin-

ear Quadratic Programming (SLSQP)1 algorithm due to Kraft [18] for a number of 

reasons: 

1. Our previous experience, gained over a number of diverse application areas, is 

that the L-M algorithm either works very well and very quickly, or fails com-

pletely, an observation we suspect is due to the occasional pathological behavior 

of the approximation to the Hessian matrix of the objective function. Our experi-

ence of the SLSQP algorithm, which was designed for control applications, is 

that it is very robust, a property we consider important in the present application 

where the optimizer is to be embedded inside an evolutionary loop.

2. Whereas the Levenberg-Marquardt algorithm can only minimize quadratic loss 

functions (i.e. the sum of squared residuals), SLSQP can minimize arbitrary 

functions requiring only the existence (but not explicit calculation) of at least the 

second derivatives of the loss functional. While not a factor in the present work 

on regression reported here, the use of SLSQP lays the foundations for future 

work on, for example, robust regression in the presence of outliers where more 

complex loss functions are generally required.

3. SLSQP can also accommodate both equality and inequality constraints, which, 

again while not used in the present work, may be useful in future for constraining 

the constant values to, say, physically-meaningful values.

One of the requirements of both the L-M and SLSQP algorithms is the closed-form 

calculation of derivatives of the objective function w.r.t. the parameters to be opti-

mized. In this paper, we have calculated the necessary derivatives using the auto-

matic tree transformation rules described by Rockett et al. [30], which provide the 

exact value of the derivative (subject, of course, to normal rounding errors). Key 

to maintaining the differentiability of this automatic tree differentiation is replac-

ing the commonly-used (protected) division GP operator with the analytic quotient 

(AQ) operator proposed by Ni et  al. [21]. This has the advantage of guaranteeing 

1 In this work, we have used the implementation of the SLSQP optimizer from the NLOpt Version 2.6.2 

library. See https:// nlopt. readt hedocs. io/ en/ latest/.

https://nlopt.readthedocs.io/en/latest/
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that the function composition implemented by any GP tree is analytic, and therefore 

differentiable up to at least second order. Aside from the advantages of the AQ cited 

in [21], Nicolau and Agapitos [22] have recently reported that the AQ operator pro-

vides superior generalization over a range of regression problems compared to trees 

using protected division. Hence, given a tree for which we require to optimize the 

constant values, we can evaluate the necessary partial derivatives for SLSQP by: 

i) automatically generating the derivative trees of our target tree, and ii) evaluating 

those derivative trees by normal recursive tree traversals of the derivative trees for 

some given specific input. See [30] for further details of the automatic tree differen-

tiation transformations.

Moreover, the work of Kommenda [17] used unprotected division which is 

manifestly not analytic when the denominator is zero, and for which derivatives do 

not therefore exist; how this has been handled was not discussed. Over and above 

attempts to evaluate derivatives at singular points, even protected division has the 

property that as x becomes very small but |x| > 0 , the quotient 1/x can become very 

large leading to numerical instabilities in the values predicted by the GP tree. We 

believe this is the underpinning reason for the conclusions of Nicolau and Agapitos 

[22] – see Ni et  al. [21] for a longer discussion; such numerical instabilities also 

appear to have been evident in the results of Dick et al. [7] after (protected) division 

was included in their trees.

The setting of the convergence criteria for the SLSQP optimization algorithm 

requires some care since this may be embedded within an evolutionary optimizer, 

and ensuring robust performance is essential. The SLSQP routine was set to termi-

nate when either: (1) the change in relative value of the objective (MSE) was > 10
−4 , 

a criterion that ensures that the around a quarter of the most significant digits of an 

IEEE-754 compliant floating-point number were stable, or (2) the number of internal 

evaluations of the objective function exceeded 50. In practice, a significant number of 

trees would have required many more than 50 optimizer iterations to meet the conver-

gence criterion of 10
−4 although terminating after 50 iterations invariably produced 

an approximate therefore useful although clearly not exactly converged solution. Our 

experience is that many of the generated trees appear poorly conditioned [13] resulting 

in very slow convergence. Terminating optimization of these trees after 50 iterations 

was thus a compromise between accuracy and excessive run time. The iteration limit 

of 50 was selected based on initial experimentation that resulted in around 80% of the 

offspring converging to the 10
−4 relative convergence limit within 50 iterations. (It is 

noteworthy that Kommenda et al. [17] used only a fixed number of 10 iterations for 

their L-M algorithm, and did not specify a convergence criterion on the objective.)

Formally, constant optimization can be formulated by considering a mapping 

implemented by a tree as ŷ = f (�,�) , where � is the input vector of features, and � 

is the vector of (mutable) constants in the tree; y ∈ ℝ , � ∈ ℝ
n , and � ∈ ℝ

m , where 

n, m are the numbers of input features and the number of mutable tree constants, 

respectively. For the purposes of constant optimization, we can regard the input vec-

tor � as a constant2 (since, for a given data record, it is fixed by the training set), and 

2 This is the classical maximum likelihood formulation.



 Genetic Programming and Evolvable Machines

1 3

the vector of parameters � as the variables in the minimization problem, the values 

of which can be optimized using the gradient-based SLSQP routine.

2.4  Statistical testing

Traditionally, the comparison of machine learning results has been carried out using 

a null hypothesis statistical test (NHST) [5]. NHSTs, however, have received con-

siderable criticism – see, for example, Benavoli et al. [2] and references therein. In 

essence, an NHST calculates the ‘wrong’ sort of probability to be able to definitively 

judge differences between two methods: it calculates Pr(data given an assumed null 

hypothesis) thereby requiring a contentious threshold ( � ) on the calculated p-value 

in order to make a judgment on the statistical significance or otherwise of a dis-

crepancy with the null hypothesis. Furthermore, a positive outcome from an NHST 

is commonly misinterpreted as somehow ‘proving’ superiority rather than being a 

highly conditioned inference on the supportability of a null hypothesis. In contrast, 

a Bayesian procedure that estimates Pr(a difference given the data) is what is really 

needed, and facilitates much more useful statements along the lines of “method A 

is superior to method B with a probability of x”. An NHST, on the other hand, only 

permits the much weaker statement that any differences between the methods are not 

consistent with the null hypothesis at the (1 − �) confidence level. Consequently, in 

this work we have employed the Bayesian hypothesis testing procedures of Benavoli 

and co-workers [2]. In particular, we have used the Bayesian correlated t-test [3] to 

compare pairs of methods; the implementation used was taken from the baycomp 

Python package3.

Conventionally, the research question such as exploring the significance of the 

difference in mean errors over a cross-validation test has been addressed using a 

non-parametric test such as the Wilcoxon signed-rank test [5]. The motivation for 

using a signed-rank test as opposed to a parametric t-test (which generally exhibits 

greater statistical power) is that the ‘textbook’ t-test requires that the samples are 

independent; in cross-validation, of course, the samples are correlated because the 

training sets across different folds overlap [3]. In a frequentist setting, Nadeau and 

Bengio [20] proposed a correlated t-test that compensates for these correlations, a 

correction that was subsequently used by Corani and Benavoli [3] to devise a Bayes-

ian correlated t-test. It is the Bayesian correlated t-test of Corani and Benavoli that 

we use here.

The other technical requirement of a t-test is that the samples are normally dis-

tributed, which can usually be ensured by averaging over some modest number of 

repetitions and appealing to the central limit theorem.

Interpretation of the Bayesian test requires some clarification: since it estimates 

the posterior probability of a difference (conditioned only on the data), the (some-

what arbitrary) NHST criterion of a “95% significance level” is of no relevance 

here. Rather, the Bayesian test returns a direct measure of belief in there being a 

3 https:// github. com/ jaezd/ bayco mp.

https://github.com/jaezd/baycomp
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difference between the two methods. There is, however, inevitably some element of 

subjectivity in interpreting posterior probability measures: for example, if the poste-

rior probability of method A being superior to method B is 0.6, is this significant? In 

this work, we regard posterior value of 0.6 as providing weak evidence of superior-

ity with larger values being progressively more persuasive.

To statistically compare two methods, we have performed 10-fold cross vali-

dation (CV) over each of the datasets in Sect. 2.1. We have adopted the protocol 

of repeating the training 30 times for each dataset fold each with different ini-

tial populations, and taking the individuals with the smallest validation set error 

from each of the 30 repetitions. The test error for each fold was then estimated 

by averaging the test set errors from the best validation error individual from 

each of the 30 repetitions. Ten mean test set errors were similarly calculated, 

one per fold, and then used in the Bayesian correlated t-test described above to 

calculate the posterior probability of difference between the two methods being 

compared.

The Bayesian correlated t-test [2] can be most easily understood by examin-

ing the posterior probability density functions (PDFs) of the measured differ-

ences between the two methods being compared. As an example, a posterior 

density (adapted from an image generated directly by the baycomp package) 

is shown in Fig.  1 for the comparison of two treatments.4 The random variate 

Fig. 1  Example posterior probability density function. See text for a further explanation

4 Here we have assumed a region-of-probable-equivalence (ROPE) [2] of zero since we have no infor-

mation to do otherwise. We return to discuss this point in Sect. 4.6.
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plotted on the abscissa is the difference in the performances paired by fold for 

the two methods. From inspection of the plot in Fig. 1, it is clear that almost all 

the probability mass lies to the right of the origin meaning that the first com-

pared method has a higher score than the other method with a posterior prob-

ability equal to the integrated PDF to the right of the origin. We re-emphasize 

that Fig. 1 depicts a posterior probability distribution computed from the Bayes-

ian correlated t-test, and not a histogram of experimental results.

In addition to calculating the posterior probabilities for the test MSE results, we 

have also statistically compared the tree sizes of the best validation error individuals 

used for the MSE comparisons, again averaged over each of the 30 repetitions per 

fold. That is, the same individuals that were included in the MSE analysis were also 

included in the analysis of tree sizes using the same averaging methodology.

3  Results

We have performed an extensive series of statistical comparisons for various 

configurations, as detailed in the subsequent sub-sections. Throughout the pre-

sent section, we adopt the following shorthand to allow us to concisely distin-

guish between the different experimental configurations:

– We use “no tuning” to denote that the GP training has been done without any 

optimization of the constants (other than that produced by the evolutionary 

process).

– The term “tuning during”, on the other hand, denotes that constant optimiza-

tion has been performed on every child tree generated during evolution.

– Finally, “tuning at end” is used to describe the situation where the final popu-

lation has been evolved without any constant optimization during evolution, 

but the constants in every individual in the final population have been opti-

mized just once at the end of the GP run.

Full numerical results of the Bayesian correlated t-tests under different condi-

tions are shown for each of the ten datasets with the probability values rounded 

to 3 decimal places (d.p.) and the mean test MSE values to 4 d.p. Probabilities 

> 0.995 are thus rounded to unity.

3.1  Baseline vs. baseline + standardization (‘No Tuning’)

We have run the MOGP algorithm on each of the ten partitions of the datasets 

for both the baseline (unstandardized) GP and the baseline GP with standard-

ized features; in all cases, the predicted values were standardized for conveni-

ence, as explained above. The objective of this set of experiments was to explore 
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the observations of Owen et al. [25] that standardization of the predictor variables 

improved generalization performance while reducing tree sizes. There was no con-

stant optimization in any of the results described in this sub-section.

The comparisons between the results from the baseline GP and the baseline 

GP with standardized features are shown in Table 3. These results extend those in 

[25] and [7] to the steady-state multiobjective domain; in addition, they also add 

Bayesian statistical testing. For test MSE, the upper pair of numbers in each row 

gives the probabilities that each entry has a larger MSE than its comparator along 

with the the probability of the complementary event – these two probabilities sum 

to unity, of course; the lower pair of numbers in each row show the observed 

mean MSE values of each method over the ten data folds.

For example, in the case of the airfoil-self-noise dataset (first row of Table 3), 

the baseline GP has the larger test MSE with a probability 1.000, while the base-

line GP with standardization has a larger MSE with a probability of 0.000. (These 

Table 3  Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with and without 

feature standardization

The upper pair of numbers in each row gives the probabilities that each entry has a larger value than its 

comparator along with the the probability of the complementary event. The lower pair of numbers in 

each row show the observed mean performance measures of each method over the ten data folds

Dataset Test MSE Node count

Baseline GP Baseline GP + Baseline GP Baseline GP +

Standardization Standardization

Airfoil-self-noise  1.000  0.000  0.339  0.661

 0.5352  0.4264  143.0  147.4

Auto-mpg  1.000  0.000  0.373  0.627

 0.3176  0.1895  102.7  105.8

Boston-housing  0.991  0.009  0.299  0.701

 0.4383  0.3631  98.7  104.3

Concrete-strength  1.000  0.000  0.357  0.643

 0.5698  0.3788  134.2  136.2

Dow-chemical  1.000  0.000  0.031  0.969

 0.8455  0.4348  102.7  125.2

Energy-efficiency-cool  1.000  0.000  0.685  0.315

 0.2238  0.1277  137.8  131.4

Energy-efficiency-heat  1.000  0.000  0.350  0.650

 0.2051  0.1057  136.3  140.3

Qsar-aquatic-toxicity  0.918  0.082  0.492  0.508

 0.8014  0.6137  95.5  95.7

Servo  0.996  0.004  0.962  0.038

 0.7015  0.5400  124.3  100.6

Yacht-hydrodynamics  0.235  0.765  0.951  0.049

 0.1473  0.1540  142.7  124.6
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figures are the probability masses mentioned above and illustrated in Fig.  1a.) 

The mean MSE values immediately below record that the baseline GP had a mean 

test MSE of 0.5352 while the baseline plus standardization had a mean test MSE 

of 0.4264. Since smaller is better for MSE, we can conclude that the baseline GP 

+ standardization produces a smaller (i.e. better) test MSE with a probability of 

1.000 (i.e. certainty) for this particular dataset. Similarly, the third and fourth col-

umns of Table 3 record the probabilities that the baseline GP with standardization 

produces larger trees and the (complementary) probability that the baseline GP 

produces larger trees – cf. Figure 1b. Again, to take the airfoil-self-noise dataset 

as an example, the probability that the baseline GP produces larger trees is 0.339 

whereas there is a probability of 0.661 that standardization produces larger trees. 

We can conclude from the example of the airfoil-self-noise dataset that standardi-

zation results in larger trees with a probability of 0.661; the mean tree sizes are 

143.0 for the baseline GP and 147.4 for baseline GP + standardization, respec-

tively. The size effect in this case is, however, modest.

Taken overall, the results in Table 3 show that feature standardization generally 

produces lower values of MSE than the baseline algorithm, often with probabilities 

Table 4  Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with and without 

constant optimization (“tuning during”)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Tuning during + Tuning during

Airfoil-self-noise  1.000  0.000  1.000  0.000

 0.5352  0.3905  143.0  91.2

Auto-mpg  1.000  0.000  1.000  0.000

 0.3176  0.1601 102.7  69.2

Boston-housing  0.999  0.001  0.761  0.239

 0.4383  0.2980  98.7  93.0

Concrete-strength  1.000  0.000  1.000  0.000

 0.5698  0.2713  134.2  96.1

Dow-chemical  1.000  0.000  0.917  0.083

 0.8455  0.4115  102.7  87.0

Energy-efficiency-cool  1.000  0.000  1.000  0.000

 0.2238  0.1199  137.8  86.8

Energy-efficiency-heat  1.000  0.000  0.999  0.001

 0.2051  0.0819  136.3  92.0

Qsar-aquatic-toxicity  0.918  0.082  0.987  0.013

 0.8014  0.6050  95.5  81.8

Servo  1.000  0.000  0.888  0.112

 0.7015  0.3627  124.3  103.4

Yacht-hydrodynamics  1.000  0.000  0.988  0.012

 0.1473  0.0079  142.7  108.1
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approximating absolute certainty (1.000 to 4 d.p.). The one deviation from the above 

trend is for the yacht-hydrodynamics dataset for which the baseline GP produces the 

lower MSE with a probability of 0.765.

As regards tree sizes, the trend in Table 3 is mixed. Standardization tends to pro-

duce smaller tree sizes for the servo and yacht-hydrodynamics, but larger trees for 

boston-housing and dow-chemical datasets. For the remaining datasets, the differ-

ences appear marginal, and in many cases, the size effects are small. For example, 

for the concrete-strength data, the mean node counts without and with standardiza-

tion are 134.2 and 136.2, respectively; the statistical calculations, on the other hand, 

suggest that standardization yields larger trees with a probability of 0.643.

3.2  Effects of constant optimization on the baseline GP (‘Tuning During’)

The results of comparing the baseline GP with and without the constant optimiza-

tion procedure described in Sect. 2.3 are shown in Table 4, namely, no tuning vs. 

tuning during. Here the constant optimization was applied to each child as soon as 

it was created and before it was inserted into the population, what we term ‘tuning 

during’ (evolution). The same interpretations of the results need to be applied here 

as in Sect. 3.1.

Viewed overall, we can observe from Table 4 that ‘tuning during’ (i.e. constant 

optimization of every child throughout the GP run) produces smaller MSE values 

compared to the baseline GP; most tests return a probabilities of 1.0 with the least 

favorable result for the qsar-aquatic-toxicity dataset with a probability of 0.918. The 

general trend in Table 4 agrees with the observations of Kommenda et al. [17] that 

constant optimization reduces MSE values although the present work extends their 

observations to the multiobjective GP domain.

For the tree size comparisons in Table 4, generally, tuning during evolution pro-

duces smaller trees (along with smaller MSE values). In some cases (airfoil-self-

noise and energy-efficiency-cool) the mean tree sizes are around 36% smaller; in the 

case of the boston-housing dataset the difference is only 5% smaller. For the most 

part, the statistical tests suggest very strong evidence to support tuning producing 

smaller trees.

3.3  Constant optimization combined with feature standardization (‘Tuning 

during’)

From the preceding MSE results in Sect.  3.1, feature standardization produces 

generally better outcomes when compared to the baseline GP without constant 

tuning. An obvious combination is to explore if feature standardization followed 

by constant tuning during evolution can produce even better results; the proce-

dure here is identical to that used for generating the the results in Table 4 except 

that the dataset features in both compared methods have been standardized – that 

is, we are comparing baseline GP + standardization vs. baseline GP + stand-

ardization + tuning during. If the conjecture of Dick et al. [7] that standardiza-

tion produces trees in which the constants are easier to determine due to reduced 
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ranges is valid then standardization may benefit the explicit constant optimization 

process by posing an ‘easier’ optimization task. The results from exploring this 

hypothesis are presented in Table 5.

As with the similar (but no-standardization) results in Table  4, the effect of 

constant optimization (tuning during evolution) produces consistently smaller 

MSE values; all datasets apart from the dow-chemical and qsar-aquatic-toxicity 

return emphatic results with posterior probabilities of unity. Even for these last 

two datasets, the probabilities of 0.785 and 0.788, respectively, are still fairly 

strong evidence for the superiority of tuning-during.

The comparison over node counts again indicates somewhat different behavior 

to that exhibited without standardization. Many of the statistical outcomes indicate 

marginal/no differences, and even where the posterior does offer clear evidence (e.g. 

auto-mpg), the size effects appear small.

Table 6 compares the results of the baseline GP followed by constant tuning dur-

ing vs. the baseline GP + standardization + constant tuning during evolution. In 

Table 5  Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with feature stand-

ardization, and baseline GP with feature standardization and constant optimization (tuning during)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Standardization + Standardization + Standardization + Standardization

+ Tuning during + Tuning during

Airfoil-self-noise  1.000  0.000  0.672  0.328

 0.4264  0.3435  147.4  143.7

Auto-mpg  1.000  0.000  0.772  0.228

 0.1895  0.1449  105.8  101.7

Boston-housing  0.999  0.001  0.569  0.431

 0.3631  0.2777  104.3  102.9

Concrete-strength  1.000  0.000  0.624  0.376

 0.3788  0.2453  136.2  134.2

Dow-chemical  0.785  0.215  0.645  0.355

 0.4348  0.3572  125.2  121.3

Energy-efficiency-cool  1.000  0.000  0.514  0.486

 0.1277  0.0664  131.4  131.1

Energy-efficiency-heat  1.000  0.000  0.443  0.557

 0.1057  0.0337  140.3  141.5

Qsar-aquatic-toxicity  0.788  0.212  0.353  0.647

 0.6137  0.5957  95.7  98.2

Servo  0.970  0.030  0.328  0.672

 0.5400  0.3212  100.6  108.9

Yacht-hydrodynamics  1.000  0.000  0.791  0.209

 0.1540  0.0068  124.6  115.4
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other words, it explores the influence of adding feature standardization before con-

stant tuning during evolution.

The clear picture that emerges from Table 6 is that standardization produces bet-

ter MSE results. On the other hand, a comparison of nodes counts indicates that 

standardization generates larger trees. Taken together with the smaller test errors, 

this implies that standardization allows the evolutionary process (in conjunction 

with constant tuning) to find better-performing but more complex predictive models; 

this, of course, is an entirely acceptable trade-off in the the empirical modeling of 

data.

3.4  Constant optimisation after baseline GP (‘Tuning‑at‑end’)

One obvious question arising from this work is: does running constant optimiza-

tion just once after the baseline GP produce comparable results to embedding the 

constant optimization within the evolutionary loop? The present section expands 

Table 6  Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with constant opti-

mization with and without feature standardization (tuning during)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Tuning during + Standardization + Tuning during + Standardization

+ Tuning during + Tuning during

Airfoil-self-noise  1.000  0.000  0.000  1.000

 0.3905  0.3435  91.2  143.7

Auto-mpg  0.870  0.130  0.000  1.000

 0.1601  0.1449  69.2  101.7

Boston-housing  0.954  0.046  0.127  0.873

 0.2980  0.2777  93.0  102.9

Concrete-strength  0.990  0.010  0.000  1.000

 0.2713  0.2453  96.1  134.2

Dow-chemical  0.781  0.219  0.000  1.000

 0.4115  0.3572  87.0  121.3

Energy-efficiency-cool  1.000  0.000  0.000  1.000

 0.1199  0.0664  86.8  131.1

Energy-efficiency-heat  1.000  0.000  0.000  1.000

 0.0819  0.0337  92.0  141.5

Qsar-aquatic-toxicity  0.848  0.152  0.001  0.999

 0.6050  0.5957  81.8  98.2

Servo  0.777  0.223  0.320  0.680

 0.3627  0.3212  103.4  108.9

Yacht-hydrodynamics  0.944  0.056  0.117  0.883

 0.0079  0.0068  108.1  115.4
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the work reported in [17], which did not consider constant tuning after evolution. 

Here we have tuned the constants in every individual in the final evolved popu-

lation since we wanted to explore the extent of coupling between the search for 

the ‘best’ model structure (performed principally by the evolutionary search) and 

constant optimization (performed solely by the numerical optimization).

The results of these experiments for the baseline GP without feature standardi-

zation are shown in Table  7. The maximum number of iterations for tuning-at-

end was set at 500 on the basis that this was – somewhat arbitrarily – ten times 

the limit used for tuning-during; initial experimentation also suggested that if an 

optimization had not converged after 500 iterations, it was not likely to converge 

in any feasible number of iterations. The iteration limit of 500 is thus another 

compromise between accuracy and run time.

The positive benefits for the test error of constant tuning are apparent for most 

datasets although the trend is reversed for dow-chemical, while qsar-aquatic-toxicity 

suggests no difference. The result for the dow-chemical dataset is interesting in that 

the mean test error is actually increased by constant tuning at the end. This implies 

that, in this case, tuning (of presumably over-parameterized models) has resulted in 

Table 7  Bayesian correlated t-test results over 10-fold CV comparing the baseline GP, and baseline GP 

followed by constant optimization over the final population (tuning at end)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Tuning at end + Tuning at end

Airfoil-self-noise  1.000  0.000  0.234  0.766

 0.5352  0.3947  143.0  150.0

Auto-mpg  1.000  0.000  0.476  0.524

 0.3176  0.1916  102.7  103.2

Boston-housing  0.999  0.001  0.204  0.796

 0.4383  0.3266  98.7  103.1

Concrete-strength  0.933  0.067  1.000  0.000

 0.1322  0.0195  126.2  53.6

Dow-chemical  0.276  0.724  0.397  0.603

 0.8455  1.5164  102.7  104.6

Energy-efficiency-cool  1.000  0.000  0.936  0.064

 0.2238  0.1090  137.8  125.2

Energy-efficiency-heat  1.000  0.000  0.794  0.206

 0.2051  0.0779  136.3  128.9

Qsar-aquatic-toxicity  0.439  0.561  0.000  1.000

 0.8014  0.8318  95.5  121.9

Servo  0.956  0.044  0.321  0.679

 0.7015  0.4272  124.3  134.6

Yacht-hydrodynamics  1.000  0.000  0.030  0.970

 0.1473  0.0127  142.7  161.5
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significant overfitting since there is no counter-balancing evolutionary pressure to 

reduce the size of the individuals. Why over-fitting seems to have happened for the 

dow-chemical dataset but not for the others is unclear.

The picture for the comparison of node counts for tuning-at-end is rather more 

mixed than for the MSE measure. For three datasets (concrete-strength, energy-effi-

ciency-cool and energy-efficiency-heat), post-evolution tuning (tuning-at-end) pro-

duced smaller best-test individuals. For auto-mpg and probably dow-chemical, the 

mean node counts are unchanged by tuning after. For the remaining datasets, tun-

ing-at-end selects larger trees. It is worth emphasizing that the pairs of populations 

considered here were structurally identical – the differences are only in the values 

embedded in the constant tree nodes and not the tree morphologies. It is thus inter-

esting that in some cases, constant tuning selected smaller ‘best’ trees from the same 

populations, and in other cases, larger trees. It is also interesting that for the dow-

chemical dataset trees of roughly the same sizes were selected as the best performers 

Table 8  Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with standardiza-

tion, and baseline GP with standardization followed by constant optimization over the final population 

(Tuning at end)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Standardization + Standardization + Standardization + Standardization

+ Tuning at end + Tuning at end

Airfoil-self-noise  1.000  0.000  0.002  0.998

 0.4264  0.3476  147.4  161.5

Auto-mpg  0.999  0.001  0.131  0.869

 0.1895  0.1752  105.8  114.6

Boston-housing  1.000  0.000  0.142  0.858

 0.3631  0.3207  104.3  113.4

Concrete-strength  1.000  0.000  0.113  0.887

 0.3788  0.2984  136.2  141.6

Dow-chemical  0.889  0.111  0.009  0.991

 0.4348  0.4030  125.2  140.0

Energy-efficiency-cool  1.000  0.000  0.014  0.986

 0.1277  0.0953  131.4  146.4

Energy-efficiency-heat  1.000  0.000  0.030  0.970

 0.1057  0.0738  140.3  160.3

Qsar-aquatic-toxicity  0.897  0.103  0.044  0.956

 0.6137  0.6030  95.7  109.0

Servo  0.865  0.135  0.067  0.933

 0.5400  0.3663  100.6  129.4

Yacht-hydrodynamics  1.000  0.000  0.584  0.416

 0.1540  0.0885  124.6  123.8
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both before and after tuning-at-end, but the post-tuning results suggest significant 

overfitting.

3.5  Constant optimization after baseline GP with standardization (Tuning at end)

Table 8 summarizes similar results to Table 7 in the previous sub-section except here 

the features were standardized for both comparators. Turning to the MSE results in 

Table 8, the clear trend is of tuning -at-end producing superior results.

Unlike the corresponding results without standardization, there is a clear trend 

for node counts with tuning-at-end (+ standardization) producing statistically larger 

trees with the exception of the yacht-hydrodynamics dataset where there appears to 

be no difference.

Table 9  Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with constant opti-

mization during evolution, and the baseline GP with constant optimization only on the final population. 

(Tuning during vs. tuning at end)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Tuning during + Tuning at end + Tuning during + Tsuning at end

Airfoil-self-noise  0.360  0.640  0.000  1.000

 0.3905  0.3947  91.2  150.0

Auto-mpg  0.024  0.976  0.000  1.000

 0.1601  0.1916  69.2  103.2

Boston-housing  0.009  0.991  0.124  0.876

 0.2980  0.3266  93.0  103.1

Concrete-strength  0.000  1.000  0.002  0.998

 0.2713  0.4068  96.1  123.4

Dow-chemical  0.168  0.832  0.008  0.992

 0.4115  1.5164  87.0  104.6

Energy-efficiency-cool  0.922  0.078  0.000  1.000

 0.1199  0.1090  86.8  125.2

Energy-efficiency-heat  0.856  0.144  0.000  1.000

 0.0819  0.0779  92.0  128.9

Qsar-aquatic-toxicity  0.221  0.779  0.000  1.000

 0.6050  0.8318  81.8  121.9

Servo  0.306  0.694  0.005  0.995

 0.3627  0.4272  103.4  134.6

Yacht-hydrodynamics  0.016  0.984  0.000  1.000

 0.0079  0.0127  108.1  161.5
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3.6  Tuning‑during vs. Tuning‑at‑end

Since tuning appears to offer some advantages – whether during or after evolution 

– at least for the MSE results, we have compared the baseline GP with ‘tuning-

during’ evolution to ‘tuning-at-end’ over the final population; note standardization 

was not employed in this comparison. The objective here was to determine whether 

‘tuning-during’ or ‘tuning-at-end’ was preferable. The results for this comparison 

are shown in Table 9.

For MSE, the picture presented in Table 9 is mixed. Tuning-at-the-end produces 

better test MSE figures for the energy-efficiency-cool and energy-efficiency-heat 

datasets, while for the remainder, tuning-during is the better option.

The conclusion for the node count comparisons is unambiguous: tuning-during 

produces smaller best-performing trees presumably because this method is able to 

impose an evolutionary pressure that simultaneously reduces both (training) MSE 

and tree size.

Table 10  Bayesian correlated t-test results over 10-fold CV comparing the baseline GP + standardization 

with constant optimization during evolution, and the baseline GP + standardization with constant optimi-

zation only on the final population. (Tuning during vs. tuning at end)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Standardization + Standardization + Standardization + Standardization

+ Tuning during + Tuning at end + Tuning during + Tuning at end

Airfoil-self-noise  0.300  0.700  0.051  0.949

 0.3435  0.3476  143.7  161.5

Auto-mpg  0.002  0.998  0.063  0.937

 0.1449  0.1752  101.7  114.6

Boston-housing  0.007  0.993  0.016  0.984

 0.2777  0.3207  102.9  113.4

Concrete-strength  0.001  0.999  0.092  0.908

 0.2453  0.2984  134.2  141.6

Dow-chemical  0.341  0.659  0.033  0.967

 0.3572  0.4030  121.3  140.0

Energy-efficiency-cool  0.000  1.000  0.008  0.992

 0.0664  0.0953  131.1  146.4

Energy-efficiency-heat  0.000  1.000  0.015  0.985

 0.0337  0.0738  141.5  160.3

Qsar-aquatic-toxicity  0.379  0.621  0.079  0.921

 0.5957  0.6030  98.2  109.0

Servo  0.210  0.790  0.047  0.953

 0.3212  0.3663  108.9  129.4

Yacht-hydrodynamics  0.000  1.000  0.200  0.800

 0.0068  0.0885  115.4  123.8
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Repeating this analysis but for the case of standardized features produces the 

results in Table  10. Statistically, the trend is clear with tuning-during performing 

best across all ten datasets although for the airfoil-self-noise dataset, the difference 

in mean test errors is in the third decimal digit suggesting the that the size effect may 

not be too great. Comparisons over the numbers of node counts are also unambigu-

ous with tuning-during producing smaller trees all with compelling probabilities and 

size effects of around 10%.

4  Discussion & future work

4.1  The effects of feature standardization on the baseline GP

Section 3.1 presented an analysis of the effects of feature standardization on both 

the test MSE and the tree sizes, which need to be set alongside those of Owen et al. 

[25] and Dick et al. [7]. Overall, and using a similar set of benchmark datasets, the 

MSE comparisons qualitatively agree with those of Owen at al. [25] in that feature 

standardization tends to reduce MSE although like [25] and the continuation work 

of Dick et al. [7], we too observe deviations from this trend. In particular, the yacht-

hydrodynamics dataset shows evidence ( Pr = 0.765) that standardization degrades 

MSE. As with such cases observed in [7, 25], the reason is not clear. Even if the 

features in the yacht-hydrodynamics dataset were already (close to) standardized, a 

redundant application of the standardization procedure would have produced very 

little difference in performance rather than the observed and serious degradation. 

Establishing the reason why some datasets are degraded by standardization whereas 

some are improved requires further research. Similar off-trend results were noted 

elsewhere in Sect. 3, and we return to discussing those below.

Apart from the single case of qsar-aquatic-toxicity which returns no difference, 

the effects of feature standardization in Sect. 3.1 are that standardization can both 

increase tree size and decrease it depending on dataset. These results are thus at 

variance with what was seen in [7, 25] where standardization (alone) was observed 

to reduce tree size. The speculation in [25] was that standardization reduces the 

range of constants that a tree needs to synthesize in order to fit the data; indeed, in a 

study of pruning of baseline-type GP trees [29], we observed that significant num-

bers of individuals terminated with subtrees of the form of a constant combined with 

another constant using a binary operation, presumably serving to generate constants 

outside the range of those available in the a priori terminal set. Thus it is intuitively 

reasonable to suggest that standardization may reduce a tree’s need to synthesize 

‘larger’ and ‘smaller’ constants leading to smaller overall tree sizes. This specula-

tion is not, however, supported by the results in the present paper.

One possible explanation for the reason why Owen et al. observed decreases in 

tree sizes with standardization but we sometimes observe the opposite is that those 

researchers employed a generational, single-objective GP. The present work used 

a steady-state multiobjective GP in which model complexity was controlled only 

by (simultaneously) minimizing a node count measure within a Pareto framework. 

Although we observe some increases in trees sizes, this is accompanied by a (highly 
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desirable) reduction in test MSE implying that standardization facilitates the evolu-

tion of better generalizing but more complex models. This is a perfectly acceptable 

trade-off in data modeling, and very distinct from tree bloat, which is the growth in 

tree size without accompanying improvement in (MSE) performance.

Reconciling the two diametrically opposed observations about the effect of stand-

ardization on tree size again requires further work, possibly focusing on the differ-

ences between generational and steady-state evolutionary approaches. In addition, 

careful reading of [7, 25] suggests there may be other methodological differences 

that will need to be systematically explored. For example, in [7], their equivalent 

of our baseline GP algorithm included protected division operators whereas their 

standardized version of the same algorithm did not.

Finally on this point, there is evidence in the literature [22, 23] that suggests the 

composition of the function set can affect both evolutionary search and generaliza-

tion performance. Under standardization, regressors which may originally all have 

been non-negative can acquire negative values. One could speculate that in this sce-

nario, the GP search has to generate negative constants from the positive constants 

available in the function set leading to an increase in tree size. To counter this, the 

function set used in the present work also included a unary minus node that can – in 

principle – generate a negative value very straightforwardly. Nonetheless, the inter-

action of the function set is another area for examination in future work.

4.2  Effects of constant optimization

In this sub-section, we discuss the effects of constant tuning across various configu-

rations of GP since the effects are inter-related.

4.2.1  Baseline GP – Tuning during

For the baseline GP, Table 4 displays a very clear and unambiguous trend of con-

stant optimization during evolution producing statistically smaller test MSE values. 

This conclusion agrees with the observations of Kommenda et  al. [17] for fitting 

error – in their case, Pearson’s R
2 coefficient – obtained using a single-objective 

paradigm. In addition, our tuning-during results simultaneously show much smaller 

trees were produced, again with large probabilities.

That constant tuning produces superior test set errors compared to the baseline 

GP is not surprising since tuning very directly minimizes the training error for a 

given tree structure. Within an evolutionary paradigm, there is clearly a pressure to 

produce smaller training MSE values, but balanced by the simultaneous pressure to 

produce ever smaller trees. Within a Pareto framework, the multiobjective GP typi-

cally produces a range of final models extending from small and underfitted through 

to large and overfitted from which a model exhibiting the best trade-off between bias 

and variance [11] can be selected using a validation set: see Sect. 2.

The clear trend from Table 4 is that tuning-during also tends to produce smaller, 

as well as better generalizing, models. Optimizing the constants for every child 

created during evolution in a Pareto framework will again tend to impose an 
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evolutionary pressure that favors smaller trees. The fact that a tree does not have 

to synthesize ‘optimal’ constants by combining a number of fixed, constant leaves, 

but can use fewer, optimizable constants to achieve a lower MSE suggests that the 

evolved trees will be both smaller and have lower training error. It is very unlikely, 

however, that tuning-during removes all redundancies from the GP trees thereby 

reducing them to their minimum size for a given mapping. Nonetheless, it would 

be instructive to explore in further work if the trees produced with tuning-during 

had fewer instances of, for example, (redundant) constant-binary operation-constant 

terminations.

The present work also extends the results of Kommenda et al. [17], who did not 

directly compare tree sizes.

4.2.2  Baseline GP with standardization – Tuning during

Section 4.2.1 has discussed the beneficial results of tuning-during on the baseline 

GP without feature standardization. Since standardization (generally) improves the 

performance of the baseline GP in the absence of constant tuning, Sect. 3.5 explored 

whether including standardization prior to tuning-during provides additional bene-

fits. Table 5 compares the baseline GP with standardization vs. the baseline GP with 

standardization + tuning-during. As with the results discussed in Sect. 4.2.1, stand-

ardization also produces statistically better test MSE values as well as generally 

smaller trees when compared to the baseline GP with standardization. For almost all 

datasets, however, tuning-during with standardization appears to exhibit a small size 

effects. So although tuning here has a clear beneficial effect on test MSE, the impli-

cation is that it is feature standardization alone that influences final tree size.

Table 6 compares the baseline GP + tuning during with the standardized base-

line GP with tuning-during to measure the influence of feature standardization on 

the constant optimization process. The results are unambiguous: standardization 

improves test MSE while producing larger trees. In some cases, the size effects 

of the node count differences are quite large at ∼35%, while in others only around 

5%. Quite why we observe a consistent increase in tree size with standardization is 

unclear. It is also worth further work to reconcile the results on tree size obtained 

here with the observation of Dick et al. [7] that a single iteration of stochastic gradi-

ent descent increased the sizes of their trees when using standardized datasets.

Up to this point, we can conclude that:

– Feature standardization almost always benefits generalization but at the expense 

of creating larger models

– Tuning the tree constants has a positive effect on generalization while reducing 

tree sizes relative to the same algorithm with no tuning.

– The benefits of standardization are not universal, and there are some datasets that 

fall outside the trend: for example, standardization appears to produce inferior 

generalization for the yacht-hydrodynamics dataset in Table 3. As pointed out in 

[25], it would be helpful to understand what properties of these datasets lead to 

these outcomes.
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4.2.3  Tuning during vs. Tuning at end

The motivation for exploring tuning-at-the-end of the GP was to try to further elu-

cidate the influence of constant tuning. From the foregoing results, it is perhaps 

expected that performing even this more restricted form of constant optimization 

would improve test MSE results compared to the as-evolved population, and this 

indeed is the clear trend shown in Table 7 for the unstandardized baseline GP. This 

trend is the exact opposite to that seen by Topchy and Punch [32] who saw little 

difference between trees ‘fine-tuned’ at the end and their baseline GP performance. 

Along with one dataset (qsar-aquatic-toxicity) that exhibits no statistical difference, 

we have already suggested that tuning-at-end may cause overfitting for the dow-

chemical dataset. It is tempting to observe that the mean model size after tuning-

at-end is effectively the same as before tuning, and infer that over-parameterized 

models are being tuned to overfitting. However, like dow-chemical, tuning-at-end 

for the auto-mpg dataset also makes minimal change to the mean node counts but 

delivers a clear reduction in test MSE. Moreover, other datasets in Table 7 – most 

conspicuously, yacht-hydrodynamics – suggest that tuning-at-end can simultane-

ously increase the mean node count (i.e. select a more complex model) but decrease 

test MSE.

The comparable results incorporating standardization in (Table 8) reveal a much 

clearer picture than without standardization in Table 7). Here, tuning-at-end unam-

biguously reduces test MSE while increasing mean tree sizes (with the sole excep-

tion of yacht-hydrodynamics where the trees are the same sizes).

When viewing the results in Tables 7 and 8, it is important to bear in mind that 

the as-evolved populations from which the best performing trees are being selected 

are identical in each pair of comparisons – the only thing that is being changed by 

tuning is the values of the constants and hence the training MSE measures. Since we 

infer that Pareto-driven MOGP produces a spectrum of models ranging from small-

and-underfitted to large-and-overfitted, there seems some variability in which sort 

of model is being promoted by tuning-at-end to be the best performing: sometimes 

what we presume the baseline GP is evolving as small, underfitted models are being 

tuned to be best. Other times, what we suspect are evolved as large, overfitted mod-

els are best performing after tuning. This behavior is, of course, in sharp contrast 

to tuning-during which consistently produces smaller trees. The above observations 

imply that large diversity in the final population is key so we conjecture that these 

effects would not be seen in single objective GP where model complexity is typi-

cally capped by a user-defined Koza-style hard depth limit. Overall, tuning-at-end 

would thus seem to warrant further focused research.

Tables 9 and 10 make the comparisons between tuning-during and tuning-at-end 

for unstandardized (Table 9) and standardized (Table 10) features, respectively. We 

can anticipate that, while tuning-at-end would certainly lead to improvements in 

test errors, but tuning-during would be superior since application of constant tun-

ing at every stage in the evolution would have a more profound effect on guiding the 
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evolutionary search process. It is obvious that the results with standardization are 

superior both in terms of test error and mean tree size.

4.3  Overall comparison

In this paper, we have considered a total of six different strategies: the baseline GP 

with and without standardization, and each of these with constant optimization both 

during and at the end of the evolution. It is interesting to ask which is the best over-

all technique? We can conveniently address this question using the Bayesian hier-

archical test over multiple datasets due to Corani et al. [4],5 this being the Bayesian 

equivalent of the frequentist signed-rank test usually recommended for such com-

parisons [6], but avoiding some of the questionable assumptions of the frequen-

tist test, such as assuming all the error differences are i.i.d. across all datasets [4]. 

Comparison of the test MSE errors over all ten datasets are presented in Table 12: 

we present only results for MSE comparisons since these are of greatest interest. In 

order to present and discuss the results compactly in a table, we have adopted the 

abbreviations shown in Table 11 for the various methods.

Table 11  Abbreviations used for the various investigated methods in the following analyses

Method Abbreviation

Baseline GP B

Baseline GP with standardization SB

Baseline GP and tuning during evolution BD

Baseline GP and tuning at the end of evolution BE

Baseline GP with standardization and tuning during evolution SBD

Baseline GP with standardization and tuning at the end of evolution SBE

Table 12  Results of Bayesian 

hierarchical test [4] for MSE 

values over all ten datasets

Shows posterior probabilities that the column method is superior to 

the corresponding row method. See text for more details

B SB BD BE SBD SBE

B 0.982 0.910 1.000 0.913 0.996

SB 0.752 0.757 0.806 0.954

BD 0.314 0.475 0.343

BE 0.709 0.541

SBD 0.304

5 We have used the Stan Bayesian inference engine version 2.26.1 (https:// mc- stan. org/) together with 

the Stan model file provide by Corani and co-workers (https:// github. com/ Bayes ianTe stsML/ tutor ial/ tree/ 

master/ hiera chical), and the default settings.

https://mc-stan.org/
https://github.com/BayesianTestsML/tutorial/tree/master/hierachical
https://github.com/BayesianTestsML/tutorial/tree/master/hierachical
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Table 12 should be interpreted as the probability of the method in a given column 

in the topmost row being superior to the method listed in the leftmost column. So, 

to take the first row as an example, the probability that ‘SB’ is superior to ‘B’ over 

all ten datasets is 0.982. Similarly, the probability that ‘BE’ is superior to ‘BD’ is 

0.314, namely ‘BE’ is actually inferior to BD’.

Determining an unambiguous overall ranking of methods from these pairwise 

tests is not straightforward since the measures in Table 12 are probabilities and not 

distances. Nonetheless, we can observe in general that:

– ‘B’, the baseline GP, is the worst performer of all, and is bettered by every other 

method.

– ‘SB’ appears to be second worst performer as it is bettered by every other method 

bar one (‘B’).

– ‘BE’ ranks as the third worst method.

– ‘BD’ and ‘SBD’ are equivalent performers over all datasets.

– Given the choice between ‘SBD’ and ‘SBE’, ‘SBD appears superior.

It should be borne in mind, however, that the results in Table 12 are ‘aggregated’ 

over all ten datasets. So, for example, the above comments about ‘SBD’ appearing 

better than ‘SBE’ overall need to be tempered by observations over individual data-

sets. This simply reflects the limitations of statistical inference.

4.4  Algorithm run times

Clearly, the versions of the algorithm that employed numerical optimization along-

side evolution will consume significantly more CPU time than the plain evolution-

ary algorithm. (To offset that, MSE performance is generally improved, of course.) 

The greatly increased run time for constant tuning was acknowledged several 

times by Kommenda et  al. [17] although these authors did not directly quantify 

these increases on real instances of GP runs. Table 13 compares run times6 for the 

Table 13  Mean execution times, and percentage of optimizations that terminated due to exceeding the 

iteration limit for the representative energy-efficiency-heat dataset

‘tuning during’ = optimizations embedded in the evolutionary search used an iteration limit = 50. ‘tun-

ing at end’ = optimization only on final population used an iteration limit = 500

baseline GP Baseline GP Baseline GP

+ tuning during + tuning at end

Time (s) Time (s) % exceeded Time (s) % exceeded

9.16 ± 1.35 3997 ± 1821 20.02 ± 1.60 6150 ± 3393 0

6 Evaluated on an HPC cluster (https:// docs. hpc. shef. ac. uk/ en/ latest/ sharc/ clust er_ specs. html# sharc- 

specs) comprising 2.40 GHz Intel Xeon E5-2630 v3 processors running Linux Centos 7.

https://docs.hpc.shef.ac.uk/en/latest/sharc/cluster_specs.html#sharc-specs
https://docs.hpc.shef.ac.uk/en/latest/sharc/cluster_specs.html#sharc-specs
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energy-efficiency-heat dataset since this is around the median run time across all 

datasets. Since optimizing execution times was not the principal objective of this 

work, the run times shown in Table 13 could almost certainly be reduced by careful 

tuning of the code, but that was outside the scope of the present study.

It is obvious from Table 13 that including constant tuning (either during evolution 

or only on the final population) significantly increases the run time over the base-

line GP. We have used the steady-state evolutionary paradigm in this work which 

generates (and evaluates) two children at each breeding stage so the ‘tuning-during’ 

algorithm was able to employ two threads, each evaluating the fitness of a single 

offspring. The ‘tuning-at-end’ variant also used two threads for direct comparability, 

but could make much greater use of multithreading by using one thread to tune each 

individual in the final population; to repeat: our focus here has not been minimizing 

run time. It is also clear from Table 13 that there is significant variability in the run 

times as evidenced by the sizable standard deviations.

Over and above multithreading, the code implementation here used symbolic dif-

ferentiation to evaluate derivatives [30] largely for convenience, and because opti-

mizing code efficiency was not focus of this research. Aside from other refinements, 

initial code profiling suggest that a very large fraction of the total run time may be 

consumed in evaluating derivatives, which might be much more efficiently imple-

mented, to the same precision, using automatic differentiation [1]. This is obviously 

an area for future work to facilitate more rapid turnaround of experiments.

The upper bound on the total number of iterations for ‘tuning-during‘ was 10,000 

breeding operations × 50 iterations per child = 500,000) whereas for ‘tuning-at-

end’, the upper bound was 100 × 500 = 50, 000 iterations (a population of 100 × 

500 iterations). The constant optimizations for some trees required fewer than the 

limiting numbers of iterations – 50 for ‘tuning-during’ and 500 for ‘tuning-at-end’ 

– but many optimizations were terminated on exceeding these fixed iteration lim-

its. Optimizations that exceeded their iteration limit displayed slow convergence, 

but provided approximate rather than exactly optimal solutions. Table  13 records 

the percentages of optimizations that exceeded their iteration limits (“% exceeded” 

column). For ‘tuning-during’, this was around 20% – in fact, the iteration limit of 

50 was initially selected on the basis of about 80% of optimizations meeting their 

relative convergence limit of 1 × 10
−4 . It is also noteworthy that all the tuning-at-end 

optimizations converged within the limit of 500 iterations although only around 10% 

of trees had converged after the 50 iterations, the limit imposed on the tuning-during 

approach. The average tree sizes in the as-evolved population were, however, larger 

than those in the population generated with embedded optimization – see Table 4 

for precise comparisons which probably explains i) the longer overall run times as 

evaluating a large tree obviously takes longer than evaluating a small tree, and ii) 

larger trees containing probably more constants on average require more iterations 

to converge.

Generally, iterative algorithms converge slowly [16] either because of the objec-

tive function being optimized is poorly scaled – not the case here – or because 

some of the parameters being optimized are ‘weakly’ coupled to the objective 

function. To illustrate this, in least-squares fitting of a straight line with a function 

y = (a + b)x + c , calculating precise values of both a and b is indeterminate, but 
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finding a single, precise value for the sum (a + b) is feasible (debarring any other 

numerical difficulties). We have seen ample evidence of ‘double constant’ tree ter-

mination in [29] in a study of tree pruning. An obvious way to explore this issue (in 

future work) is to perform minor simplification of a tree by replacing all ‘double 

constants’ with a single constant using a simple rule-based substitution, which may 

remove numerical indeterminacy, and hopefully reduce slow convergence. Whether 

this significantly addresses the slow convergence problem remains to be seen since 

many other tree configurations involving unidentifiable constants are conceivable; 

potentially these could be diagnosed by a failure of some of the constant parameters 

to converge to stable values. Overall, more work remains to be done in the numerical 

optimization of GP trees.

Kommenda et al [17] have noted that nonlinear optimizations generally require an 

initial point within the ‘basin of attraction’ of the global minimum although do not 

appear to have addressed the point in practice. In a similar vein, we took the initial 

starting values of the optimization as being those constant values present in the as-

bred child. A multistart algorithm [27, 28] could suppress possible convergence to 

local optima albeit at the cost of increased run time. Whether there is any benefit to 

this approach is an area for future work. (In passing, we note that the common prac-

tice – also used here – of starting GP runs with a number of different initial popula-

tions is actually an example of a multistart strategy.)

In terms of run time, the increasing availability of computing power makes con-

stant tuning a practical proposition. Although the computational demands of tuning 

are significant, the computations are far from intractable; few would argue that very 

heavily compute-intensive deep learning is impractical because of its computing 

requirements. Indeed, the implementation of GP on the graphical processing units 

(GPUs) that facilitate much of deep learning has already received attention, e.g. 

[19].

Finally, the unexpectedly promising performance of tuning-at-end is worthy of 

more attention if only from a computational standpoint. For the steady-state evolu-

tionary algorithm used in this paper, tuning-during allows only a limited amount of 

multithreading to reduce the run time: after each breeding stage, only two threads 

can be (straightforwardly) used, one to tune the constants in each child. Regardless 

of evolutionary strategy – steady-state or generational – tuning-at-end over a fixed 

population opens up the possibility of using one thread to optimize the constants in 

each individual in the final population thereby allowing a very much larger degree of 

multithreading, and thereby reduced run time. In an era of multicore processors, this 

could effectively address the computational issue with constant tuning.

4.5  Does constant tuning really improve performance?

In the results described up to this point, the numbers of evolutionary steps – that is, 

manipulations of the model structure – have been held constant at 10,000 between 

the no-tuning and with-tuning experiments; although we have employed a steady-

state evolutionary approach throughout, for comparison, this is the equivalent 

of around 111 generations of a generational algorithm (assuming 10% elitism). 
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(Convergence of a stochastic algorithm is always a problematic issue: the figure 

of 10,000 offspring was selected on the based on the observation that the rate of 

improvement appeared subjectively small after this number of iterations.) As dis-

cussed in Sect. 4.4, however, the run time with tuning is dominated by the numeri-

cal optimization of the constants due in significant part to the large number of tree 

evaluations required at each iteration of the SLSQP algorithm. We have limited the 

maximum number of SLSQP iterations to 50 (for tuning-during) although some 

optimizations converged in only 2-3 iterations. Across all datasets, it is difficult to 

be very precise about the total number of tree evaluations required due the large 

variability, but 200,000 is maybe a representative figure. It is interesting to pose the 

question of whether a budget of, say, 200,000 tree evaluations would be better spent 

solely on evolutionary optimization, and to ignore the complications of numerical 

optimizations? To address this question, we have run both the baseline and baseline-

with-standardization algorithms to generate 200,000 offspring (as opposed to the 

10,000 used hitherto) but without constant tuning, and compared the performance to 

Table 14  Bayesian correlated t-test results over 10-fold CV comparing the baseline GP with 200,0000 

offspring, and the baseline GP with constant optimization (BD)

Dataset Test MSE Node count

baseline GP baseline GP baseline GP baseline GP

+ 200,000 + tuning + 200,000 + tuning

offspring offspring

Airfoil-self-noise  0.000  1.000  1.000  0.000

 0.2626  0.3905  479.4  91.2

Auto-mpg 0.946 0.054 1.000 0.000

0.2446 0.1601 249.7 69.2

Boston-housing  0.667  0.333  1.000  0.000

 0.3071  0.2980  277.6  93.0

Concrete-strength  0.734  0.266  1.000  0.000

 0.7221  0.2713  390.8  96.1

Dow-chemical 0.994 0.006 1.000 0.000

0.7107 0.4115 332.2 87.0

Energy-efficiency-cool 0.000 1.000 1.000 0.000

0.0837 0.1199 390.4 86.8

Energy-efficiency-heat 0.000 1.000 1.000 0.000

0.0480 0.0819 442.9 92.0

Qsar-aquatic-toxicity 0.725 0.275 1.000 0.000

0.8783 0.6050 297.0 81.8

Servo 0.185 0.815 1.000 0.000

0.2637 0.3627 283.1 103.4

Yacht-hydrodynamics 0.998 0.002 1.000 0.000

0.0161 0.0079 370.3 108.1
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the baseline-with-tuning (BD) and baseline-with-standardization-and-tuning (SBD), 

respectively that both used 10,000 evolutionary iterations. Running the evolutions 

for a very large number of iterations has produced slightly better-trained solutions 

albeit with a diminishing rate of success in finding these solutions.

The comparisons of results are included in Table 14 for the comparison without 

standardization, and Table 15 with standardization; the interpretation of these tables 

is identical to the previous such tables.

A number of points is apparent from Tables 14 and 15: firstly, the picture for indi-

vidual dataset comparisons for test MSE indicates that sometimes the baseline (with 

or without standardization) for 200,000 tree evaluations performs compellingly bet-

ter than the (S)BD method. Sometimes the reverse is true. For the baseline case, the 

split is 4-to-6 datasets better with just evolutionary search, and with standardization 

the split is 5-to-5.

The fact that for around half the datasets the better strategy is dispensing with 

numerical parameter tuning altogether (but still using very long run times) throws 

Table 15  Bayesian correlated t-test results over 10-fold CV comparing the baseline GP + standardization 

and 200,0000 offspring, and the baseline GP + standarization with constant optimization (SBD)

Dataset Test MSE Node count

Baseline GP Baseline GP Baseline GP Baseline GP

+ Standardization + Standardization + Standardization + Standardization

+ 200K offspring + Tuning + 200K offspring + Tuning

Airfoil-self-noise  0.000  1.000  1.000  0.000

 0.2617  0.3435  505.8  143.7

Auto-mpg  0.681  0.319  0.999  0.001

 0.1480  0.1449  261.2  101.7

Boston-housing  0.242  0.758  1.000  0.000

 0.2653  0.2777  246.2  102.9

Concrete-strength  0.000  1.000  1.000  0.000

 0.2021  0.2453  407.3  134.2

Dow-chemical  0.728  0.272  1.000  0.000

 1.5392  0.3572  407.3  121.3

Energy-efficiency-cool  0.886  0.114  1.000  0.000

 0.0717  0.0664  484.8  131.1

Energy-efficiency-heat  1.000  0.000  1.000  0.000

 0.0480  0.0337  512.7  141.5

Qsar-aquatic-toxicity  0.025  0.975  1.000  0.000

 0.5457  0.5957  226.3  98.2

Servo  0.130  0.870  1.000  0.000

 0.2450  0.3212  268.2  108.9

Yacht-hydrodynamics  0.997  0.003  1.000  0.000

 0.0242  0.0068  426.4  115.4
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open the question of the value of numerical parameter calibration in GP, and 

whether, as is often believed, GP is not good at fine-tuning constant values. For 

some datasets it seems highly effective, for others the exact opposite is true. As a 

further confounding factor, predictor standardization appears to vary which datasets 

benefit from numerical parameter optimization.

Overall, the results in this section suggest that the dependence on dataset requires 

further research. This, in a sense, is disappointing as one of the hopes for GP is that 

can robustly automate the generation of predictive models without the need for the 

careful configuration typical of other methodologies. We speculate that one possible 

reason for the dependence on dataset could be that the ‘optimized’ models for dif-

ferent datasets have differing sensitivities to the precision of constant values due to 

the underlying properties of the data. If a dataset best matches a model with low 

sensitivities to constant precision then directing the tree evaluation budget to search-

ing only over model structures is maybe the better strategy. If, on the other hand, the 

best models have high sensitivity to constant value precision then numerical tuning 

may be the better option. We stress this is speculation and would require further 

research, possibly exploring the sensitivities of ‘optimized’ models [31].

Turning to model sizes, an unambiguous trend emerges from Tables 14 and 15. 

The baseline GP – both with and without standardization – produces mean model 

sizes a factor 3-4 larger than with parameter calibration. The fact that tree sizes con-

tinue to grow with increasing numbers of evolutionary iterations while producing 

lower training errors implies that GP is able – at least in some cases – to effectively 

search for better constant values, presumably by synthesizing ever more complex 

trees. It is worth reiterating that the numbers of tree evaluations are roughly the 

same here so there is no overwhelming computational advantage in dispensing with 

numerical parameter tuning; the models produced by numerical tuning are, however, 

significantly smaller which is advantage for the practical deployment of GP. It is 

also noteworthy that the use of standardization yields larger models than without 

standardization in 8 out 10 datasets in Tables 14 and 15.

4.6  Statistical comparisons

The Bayesian comparison procedures developed by Benavoli et al. [2] were origi-

nally motivated to compute the posterior probabilities of performance differences 

between two classifiers. This formulation included the notion of a region of probable 

equivalence (ROPE) – a range around zero for which any difference between classi-

fier performances could be regarded as so small as to be of no practical importance. 

Thus the ROPE quantifies the size effect of the difference in performance; in their 

work on classifiers, Benavoli et al. suggested a ±1 % difference in classification accu-

racy as a possible figure although they recognized this would be context-dependent. 

Defining a ROPE allows direct calculation of the probability mass falling inside the 

ROPE – that is, the probability that there is no practical difference between the algo-

rithms being compared. It is entirely possible for the performance of one method to 

appear statistically superior to another with, say, 99% probability, but for all of that 

probability mass to fall within the ROPE meaning that the difference between the 
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methods is actually of no practical significance. In the present regression context, 

we have taken the ROPE to be of zero width because defining a range of MSE dif-

ferences that are not practically significant is problematic for the datasets used here. 

Nonetheless, size effects are an important aspect of comparing regression models, 

and could, in principle, be incorporated by quantifying the variance of the measure-

ments to be predicted: any test MSE error difference less than, say, 2× the noise 

variance of the experimentally measured predictors is very unlikely to be meaning-

ful because the differences would be ‘in the noise’. Unfortunately, as far as we are 

aware, none of the standard datasets typically used in research studies on regression 

carries such information. Since benchmark datasets for GP have attracted attention 

in the past [33], we suggest the scope of benchmarks should be extended to explic-

itly address predictor noise and thereby the assessment of size effects.

5  Conclusions

In this paper we have extended previous analyses of constant tuning in genetic 

programming (GP) trees using gradient-descent style numerical algorithms to the 

steady-state multiobjective GP setting.

Along with considering the effects of constant tuning, we have also examined the 

effect of standardizing the dataset features. We find that, in general, standardization 

is beneficial in that it improves the test error performance of the models produced. 

We also conclude that standardization tends to produce larger models, seemingly in 

direct contradiction of recent work by Owen et al. [25] and Dick et al [7]. Further 

work is needed to understand these differences.

The effects of constant tuning during evolution – that is, optimizing the constant 

values for each child as soon as it is created – is always beneficial. It reduces both 

the test set error and the size of the best-generalizing trees when compared to the 

same method that omits constant optimization. This observation holds whether the 

features are standardized or not although standardization does generally appear to be 

of further benefit even for constant tuning in some cases.

We have also examined the effect of tuning the tree constants at the end of a con-

ventional GP run. This turned out to be surprisingly effective in terms of improving 

generalization although the effects on tree size were rather mixed, and warrant fur-

ther investigation.

Given a fixed computational budget of some number of tree evaluations, for 

around half the datasets it appears beneficial to run the GP evolution for longer 

rather than devote some of those tree evaluations to directly tuning the model con-

stants; for the other half of the datasets, the exact opposite is true and parameter cali-

bration yields superior test set errors. Using a long evolutionary run does, however, 

produce trees that are a factor of 3-4 larger than with numerical constant optimiza-

tion. Clearly, this dependence on dataset requires further research.

In terms of statistical testing, we have employed a Bayesian procedure that avoids 

many of the objections to the null hypothesis statistical testing (NHST) traditionally 

used for performance comparison. This Bayesian test can explicitly incorporate a 

region of practical equivalence (ROPE) that allows future extension to considering 
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the size effect between competing models; we point out, however, that existing 

benchmark datasets typically do not contain the necessary information on measure-

ment noise to take this important step.

We have identified a number of areas for future work aimed at better under-

standing and developing constant tuning in GP models. In particular, the numeri-

cal aspects surrounding convergence of the optimization routines justifies additional 

attention.
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