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ABSTRACT

Portfolio allocation is an important topic in financial data analysis. In this article, basedon themean-variance
optimization principle, we propose a synthetic regression model for construction of portfolio allocation,
and an easy to implement approach to generate the synthetic sample for the model. Compared with
the regression approach in existing literature for portfolio allocation, the proposed method of generating
the synthetic sample provides more accurate approximation for the synthetic response variable when the
number of assets under consideration is large. Due to the embedded leave-one-out idea, the synthetic sam-
ple generated by the proposed method has weaker within sample correlation, which makes the resulting
portfolio allocationmore close to the optimal one. This intuitive conclusion is theoretically confirmed to be
true by the asymptotic properties established in this article. We have also conducted intensive simulation
studies in this article to compare the proposed method with the existing ones, and found the proposed
methodworks better. Finally, we apply the proposedmethod to real datasets. The yielded returns look very
encouraging.
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1. Introduction

Portfolio allocation plays a key role in determining returns
for an investment portfolio. It attempts to balance risk versus
reward by adjusting the percentage of each asset in an invest-
ment portfolio. TheMarkowitzmean–variance portfolio theory,
Markowitz (1952), is very influential in portfolio allocation.
To form a portfolio allocation by the Markowitz formula, the
covariance matrix of returns of the assets under consideration
usually needs to be estimated, and its sample covariance matrix
is usually taken as its estimator. When the number of assets
under consideration is big, the sample covariance matrix may
not work very well as the estimation errors would accumulate,
in the formed portfolio allocation, very quickly to reach an
unacceptable level, whichmakes the formed portfolio allocation
performs poorly; see Fan, Fan, and Lv (2008), Basak, Jagan-
nathan, and Ma (2009), DeMiguel, Garlappi, and Uppal (2009),
Ledoit and Wolf (2017), and the references therein.

One cause of the poor performance of a portfolio allocation
formed by the Markowitz formula is that the inverse of sample
covariance matrix can be very poor when the size of the covari-
ance matrix concerned is big, as an estimator of the inverse of
a covariance matrix, which is the case in forming a portfolio
allocation by the Markowitz formula. One approach to improve
the performance is to find a better estimator for the inverse of
the covariance matrix in the Markowitz formula. Over the past
decades, there is much literature devoted to find more accurate
estimation for high-dimensional covariance matrices, see Sun,
Zhang, and Tong (2007), Fan, Fan, and Lv (2008), Bickel and
Levina (2008a), Bickel and Levina (2008b), El Karoui (2008),
Rothman, Levina, and Zhu (2009), Yuan (2010), Fan, Liao, and

CONTACT Wenyang Zhang wenyang.zhang@york.ac.uk Department of Mathematics, University of York, York YO10 5DD, UK.

Lei Huang is co-first author.

Mincheva (2011), Fan, Liao, and Micheva (2013), Berthet and
Rigollet (2013), Birnbaum et al. (2013), Lam (2016), Guo, Box,
and Zhang (2017), Ledoit andWolf (2017), Avella-Medina et al.
(2018), and the references therein.

With the improvement in the estimation of covariancematri-
ces alone, we still cannot improve significantly the performance
of a portfolio allocation formed by theMarkowitz formula when
the number of assets under consideration is big. Intuitively, this
is understandable, because the return of a portfolio would be
very unstable if every asset is included in the portfolio when the
number of assets under consideration is very big. To make the
return more stable, some assets have to be excluded from the
portfolio, namely the vector of portfolioweights has to be sparse.
Thismakes the idea very promising, that if we can transform the
problem of portfolio allocation to a problem of regression, we
may be able to find a better portfolio allocation by the penalized
least-square estimation. This is exactly what we are going to do
in this article.

The idea of applying regression models for portfolio alloca-
tion has appeared in the literature for many years. See, Britten-
Jones (1999), Brodie et al. (2009), Ao, Li, and Zheng (2019),
and the reference therein. The scaling involved in Britten-Jones
(1999) can be very challenging, and the method in Brodie et al.
(2009) is a constrained regression which is not very easy to
implement. Ao, Li, and Zheng (2019) proposed a very inter-
esting unconstrained regression representation for the mean-
variance portfolio problem. Because there is no constraint
attached with the regression model, the method in Ao, Li, and
Zheng (2019) is easier to implement, and the methodology is
more promising.

© 2021 The Authors. Published with license by Taylor & Francis Group, LLC.
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The response in Ao, Li, and Zheng (2019) is set to be a
constant rather than a variable, and that constant is an estimator
of σ(1 + θ)θ−1/2, obtained by using all observations of the
returns of assets concerned, where θ is the squared maximum
Sharpe ratio and σ is the given risk constraint. Because the
tth observation of their covariate is set to be the vector of
returns of all assets concerned at time point t, their response
is a function of the observations of their covariate at all time
points, and free of time. This is not a good idea as it creates
within sample correlation. In addition to that, their method
doesn’t apply to real high dimensional cases where the number
of assets concerned is larger than the sample size. This is because
they have to have the inverse of the sample covariance matrix
of the vector of returns of assets concerned, in order to get the
response, and the inverse of that sample covariance matrix does
not exist for real high dimensional cases.

In this article, based on the basis of unconstrained regression
representation for the mean-variance portfolio problem in Ao,
Li, and Zheng (2019), we propose a synthetic regression model
for large portfolio allocation. We embed a leave-one-out idea
in the generation of synthetic response variable, which is intu-
itivelymore reasonable.We also borrow the idea in Fan, Fan, and
Lv (2008) to apply the Fama–French factor models, Fama and
French (1993), to derive a structure for the covariance matrix
of the vector of returns of assets concerned, and estimate the
covariancematrix based on the derived structure. The proposed
method applies to the cases where the number of assets con-
cerned is larger than the sample size, and performs well. Indeed,
both our simulation results and real data analysis show our
proposed method outperforms the commonly used methods,
which includeMAXSER, proposed in Ao, Li, and Zheng (2019),
see Sections 4 and 5.

The rest of this article is organized as follows. We begin in
Section 2 with a detailed description of the proposed synthetic
regression model for large portfolio allocation. In Section 3, the
asymptotic properties of the portfolio allocation formed by the
proposed synthetic regression model are presented to justify
the proposed methodology theoretically. Intensive simulation
studies are conducted in Section 4 to show how well the port-
folio allocation formed by the proposed synthetic regression
model works, compared with other existing portfolio allocation
approaches. In Section 5, we apply the portfolio allocation,
formed by the proposed synthetic regression model, to datasets
which are freely available from the home page of Kenneth R.
French,1 and compare its returns with that of some commonly
used approaches. Finally, we conclude the article by Section 6.
We leave the technical conditions and theoretical proofs of all
asymptotic properties in the appendix.

2. Estimation of Optimal Large Portfolio Allocation

Suppose (XT
i , Y

T
i ), i = 1, . . . , n, is a sample from (XT, YT),

where Y is a pn dimensional vector and X is a q dimensional
factor. An underlying assumption throughout this article is that
pn/n −→ ∞ when n −→ ∞, and q is fixed.

1 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

As far as this article is concerned, Y can be more specifically
defined as the vector of returns of pn assets concerned, based on
the Fama-French factor models, we can reasonably assume

Y = AX + ǫ, E(ǫ|X) = 0, cov(ǫ|X) = �0, (1)

whereA is a pn ×qmatrix of factor loadings, ǫ is a pn ×1 vector
of idiosyncratic errors, and �0 is a diagonal matrix.

Model (1) is themodel we assume forY in this article. It is the
base for us to construct the estimator of the needed covariance
matrix of Y in portfolio allocation when the number of assets
concerned, pn, is much larger than the sample size n.

2.1. Optimal Portfolio Allocation

We first present a result from Ao, Li, and Zheng (2019), which
gives the theoretical optimal portfolio allocation.

Let

μ = E(Y), cov(Y) = �, θ = μT�−1μ,

where θ is the squared maximum Sharpe ratio. Ao, Li, and
Zheng (2019) have shown the optimal portfolio allocation w

subject to

var(wT
Y) ≤ σ 2

is the minimizer of

E
(

σ(1 + θ)θ−1/2 − w
T
Y
)2
, (2)

where σ is the given risk constraint. See Ao, Li, and Zheng
(2019) for more details.

Equation (2) is the basis of unconstrained regression rep-
resentation for mean–variance portfolio problem. Based on
Equation (2), Ao, Li, and Zheng (2019) applied the idea of the
penalized least-square estimation to get an estimated optimal
large portfolio allocation ŵ by minimizing

n
∑

i=1

(

σ(1 + θ̂ )θ̂−1/2 − w
T
Yi

)2
(3)

subject to

‖w‖1 ≤ δ,

where

θ̂ = n−1
{

(n − pn − 2)θ̂s − pn

}

and θ̂s is the estimator of θ , obtained by simply replacing μ and
� in θ by the samplemean and sample covariancematrix of {Yi,
i = 1, · · · , n}.

Notice that θ̂ may take negative values, which is not rea-
sonable as an estimator of θ . To overcome this problem, Kan
and Zhou (2007) made an adjustment on θ̂ . Ao, Li, and Zheng
(2019) suggested using the adjusted estimator proposed in Kan

andZhou (2007) rather than θ̂ when it comes to implementation
of their method.

In the regression model (3), the response variable is σ(1 +
θ̂ )θ̂−1/2, which does not depend on i, namely a constant, and
is obtained by using all observations of the returns of assets
concerned. On the other hand, the ith observation Yi of the

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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covariate is the vector of returns of assets concerned at time
point i. Theoretically speaking, the response variable here is a
function of the observations of the covariate at all time points,
and is free of time. Intuitively, this would create within sample
correlation and affect the performance of the resulting portfolio
allocation.

Another problem with Equation (3) is that the response
variable σ(1+θ̂ )θ̂−1/2 involves the inverse of sample covariance
matrix of Yi, i = 1, . . . , n. When pn is larger than n, the inverse
of the sample covariance matrix would not exist, therefore,
the response variable would not be available. So, the portfolio
allocation proposed inAo, Li, andZheng (2019)would not apply
to real large portfolio allocation problem.

To overcome the problems mentioned above, we propose a
synthetic regression model for large portfolio allocation.

2.2. A Synthetic RegressionModel For Large Portfolio

Allocation

The proposed synthetic regression model is still based on Equa-
tion (2). However, Yi is excluded to reduce within sample cor-
relation when generating the ith observation of the response
variable. Furthermore, we estimate the covariance matrix of Y
based on model (1), which makes the inverse of the estimated
covariance matrix available, therefore, makes the proposed syn-
thetic regression model work for the construction of real large
portfolio allocation.

2.2.1. Estimation of�

We first present the estimation of the covariance matrix � of Y,
because it is involved in the response variable of the proposed
synthetic regression model.

Based on Equation (1), by simple calculation, we have

� = A�xA
T + �0, (4)

where �x = cov(X). To get the estimator of �, we only need to
get the estimators of A, �x and �0.

Applying the standard least-square estimation, we can get the

estimator Â of A by minimizing

n
∑

i=1

‖Yi − AXi‖2.

By simple calculation, we have

Â = YTX (XTX )−1,

X = (X1, . . . , Xn)
T,

Y = (Y1, . . . , Yn)
T.

Furthermore, based on the residual sum squares, we use

�̂0 = diag
(

ǫ̂
2
1, . . . , ǫ̂

2
pn

)

to estimate �0, where ǫ̂
2
i is the ith element on the diagonal of

the matrix

1

n − q

n
∑

k=1

(Yk − ÂXk)(Yk − ÂXk)
T.

Because the dimension of X is usually small, for example, it is
q = 3 for the Fama–French three-factor models, therefore, we
can simply use the sample covariancematrix ofXi, i = 1, . . . , n,
to estimate �x, namely the estimator of �x is taken to be

�̂x = 1

n − 1

n
∑

i=1

(Xi − X̄)(Xi − X̄)T, X̄ = 1

n

n
∑

i=1

Xi.

Finally, we use

�̂ = Â�̂xÂ
T + �̂0

to estimate �.

2.2.2. A Synthetic RegressionModel

Let �̂\i be the estimator of �, obtained by the method in
Section 2.2.1, without using the ith observation, and Ȳ

\i be the
sample mean of Yk, k = 1, . . . , i − 1, i + 1, . . . , n. Let

zi = σ(1 + θi)θ
−1/2
i , θi = (Ȳ\i)T(�̂\i)−1

Ȳ
\i. (5)

Treating (zi, Y
T
i ), i = 1, . . . , n, as a synthetic sample, we

propose the following synthetic regression model:

zi = Y
T
iw + ei, i = 1, . . . , n, (6)

for estimating the minimizer of Equation (2).
Due to the high dimensionality of Y in large portfolio allo-

cation, we apply the penalized least-square estimation to the
synthetic regression model (6) to estimate w, that is the esti-
mated optimal large portfolio allocation, ŵ, is taken to be the
minimizer of

1

2n

n
∑

i=1

(

zi − Y
T
iw
)2 + λ‖w‖1, (7)

where λ is a tuning parameter, and

w = (w1, . . . , wpn)
T, ‖w‖1 =

pn
∑

i=1

|wi|.

Our proposed large portfolio allocation is this estimated optimal
large portfolio allocation ŵ, we term it SRM.

The tuning parameter λ in Equation (7) can be chosen by
cross-validation (CV). Indeed, in the simulation studies and real
data analysis in this article, we use the 10-fold CV to select this
tuning parameter.

3. Asymptotic Properties

In this section, we are going to build asymptotic theory to jus-
tify our proposed portfolio allocation. We first introduce some
notations. Let S = supp(w∗) be the support of the true optimal
large portfolio allocation w

∗, and Sc be its complement, where

w
∗ = σ√

θ
�−1μ is the minimizer of Equation (2). Let sn = |S|

be the cardinality of the set S. In order to establish the asymptotic
theory, we need the following regularity assumptions.

Assumption 1. We assume Y ∼ N(μ,�), and there exists
some positive constants L < ∞ and M < ∞ such that

max

{

μT�−1μ, max
1≤j≤pn

|μj|
}

≤ L and max
1≤j≤pn

|σjj| ≤ M,

where μj is the jth component of μ and � = (σij)1≤i,j≤pn .
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Assumption 2. For some constants α ≥ 1 and φ0 > 0, we define
the set T (S,α) = {δ ∈ R

pn , ‖δSc‖1 ≤ α‖δS‖1}, and assume
that the pn × pn covariance matrix � satisfies

φ2
0 = φ2

0(S,α) = min
δ �=0,δ∈T (S,α)

δT�δ

‖δS‖22
> 0.

Assumption 3. The number of factors, q, is bounded, and
p−1
n A

T
A → 	 as n → ∞, 	 is a q × q symmetric positive

semidefinite matrix.
Assumption 4. Assume that s

3/2
n log pn/n → 0 as n → ∞.

Assumption 1 is a mild technical condition that facilitates
the proofs of the main theorems, and similar assumption can
be found in Ao, Li, and Zheng (2019). In practice, our proposed
procedure can deal with returns with heavier-tailed distribution
numerically. Assumption 2 is the restricted eigenvalue condition
(REC) introduced in Bickel, Ritov, and Tsybakov (2009), and
this assumption is often used to derive the oracle inequalities
for the Lasso estimator and Dantzig selector (see the details in
Candès and Tao (2007), Bickel, Ritov, and Tsybakov (2009), and
Raskutti, Wainwright, and Yu (2010)). Assumption 3 is used in
Fan, Fan, and Lv (2008) and Fan, Liao, and Mincheva (2011) to
establish the asymptotic properties of the covariance estimator.
Assumptions 4 is used to show the asymptotic properties of the
proposed portfolio allocation, and this assumption is stronger
than that in Meinshausen and Yu (2009) because we require the
optimal estimation rate of θ = μT�−1μ. Bunea, Tsybakov,
and Wegkamp (2007), van de Geer (2006), and Zou, Ke, and
Zhang (2020) also used the sparsity condition to derive the con-
sistency of the Lasso estimator in linear model and generalized
linear model respectively, but they don’t need to estimate θ =
μT�−1μ. Fan, Weng, and Zhou (2021) provided the similar
sparsity ‖�−1μ‖0 ≤ sn and sn log pn/n = o(1) to derive the
minimax estimation rate of θ = μT�−1μ, where ‖a‖0 =
∑pn

i=1 |ai|0 with convention 00 = 0 and a = (a1, . . . , apn)
T ∈

R
pn .

Theorem 1. Under Assumptions 1–4, if the tuning parameter
λ ≍ (sn log pn/n) ∨

√

log pn/n, we have

∣

∣ŵ
Tμ − σθ1/2

∣

∣ = Op(λs
1/2
n ).

Theorem 1 shows that themean of the return of the proposed

portfolio tends, with rate λs
1/2
n , to the maximum one can get

under the risk constraint var(wT
Y) ≤ σ 2.

Theorem 2. Under the conditions of Theorem 1, we have
∣

∣ŵ
T�ŵ − σ 2

∣

∣ = Op(λs
1/2
n ).

Theorem 2 shows the variance of the proposed portfolio

tends, with rate λs
1/2
n , to σ 2 which is themaximum risk allowed.

This together with Theorem 1 show the proposed portfolio
allocation is asymptotically equal to the theoretical optimal
portfolio allocation.

4. Simulation Studies

The performances of the proposed SRM portfolio and vari-
ous benchmark strategies will be examined and compared in

Table 1. Portfolios under comparison and their abbreviations.

Portfolio Abbreviation

Synthetic regression model SRM

SRMwithout leave-one-out SRM−LOO

Maximum Sharpe ratio estimated and sparse regression MAXSER

MAXSER with leave-one-out MAXSER+LOO

MVwith nonlinear shrinkage cov MV-NLS
MV-NLS with short-sale constraint and CV MV-NLS-SSCV
MV-NLS with ℓ1 constraint and CV MV-NLS-L1CV

NOTE: “MV” represents for mean-variance portfolio, “CV”means cross-validation.

this section. Since it has been demonstrated that the MAXSER
method proposed by Ao, Li, and Zheng (2019) outperforms
other strategies, it would be quite interesting to see whether the
SRM approach is better or not than MAXSER under similar
settings. More specifically, both stocks and factors are used in
the simulated asset pool, the way to generate the returns are
described in Section 4.2.

4.1. Portfolios Under Comparison

To demonstrate how well the proposed SRM portfolio works,
we are going to compare the SRM portfolio with other portfolio
allocation strategies including MAXSER in details, and port-
folios under comparison are listed and annotated in Table 1.
The portfolio “MAXSER” represents the method proposed by
Ao, Li, and Zheng (2019). For other portfolios, they are formed
by replacing the covariance matrices in MV with their various
estimators, such as nonlinear shrinkage estimator, see Ledoit
and Wolf (2004, 2017) for details.

The portfolios with either a short-sale or ℓ1-norm constraint
on the portfolio weights are also formed. For examples, “MV-
NLS-SSCV” stands for theMV portfolio with nonlinear shrink-
age covariance estimator and a short-sale constraint on the port-
folio weights, while “MV-NLS-L1CV” means imposing an ℓ1-
norm constraint on its weights. These portfolios and MAXSER
portfolio enjoy the same benefit in terms of risk control as our
SRM portfolio does. Because one of the main adjustments in
SRM compared to MAXSER is the leave-one-out method, it
is of interest to check whether MAXSER can be improved by
applying leave-one-out method, and if SRM really benefits from
leave-one-out method. Thus, we also compare SRM without
leave-one-out (SRM−LOO) and MAXSER with leave-one-out
(MAXSER+LOO). By making such comparison, we can reveal
that the advantages of SRM essentially come from its methodol-
ogy and ideas.

4.2. Parameter Setting

The proposed SRMmethod applies directly to high dimensional
cases where pn > n. Although the MAXSER assumes that pn <

n, but it can also apply to pn > n after subpool selection. Thus,
in the simulation studies, to make the comparison complete and
fair, we consider two scenarios including both pn < n and
pn > n.Wewill see that the proposed SRMmethod outperforms
MAXSER under each scenario.

To make our simulations more realistic, all parameters are
set based on real data. Specifically, in our data generation, the
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parameters such as the meanμx = E(X) and covariance matrix
�x = cov(X) are set to be the sample mean and sample
covariance matrix of the monthly returns of the Fama-French
Three Factors (FF3) from 2007 to 2019, respectively. To set the
loading matrix A, pn = 100 stocks are randomly selected from
those in the S&P 500 index for the entire period 2007 to 2019. By
regression of the monthly excess returns of each selected stock
on the returns of FF3, each row of the loading matrix A is set to
be the coefficients of each regression. We generate the returns,
Yis, through (1) with ǫi being generated from N(0pn , 0.155Ipn)
and Xis from N(μx, �x), 0pn is a pn-dimensional vector with
each component being 0, Ipn is an identity matrix of size pn.
We set the level of risk constraint to be σ = 0.04 across all
simulations.

4.3. Comparisons

In the simulations, the Fama–French three factors are used as
Xi in Model (1) of Section 2, meaning that the factors are only
applied to estimate �x in Equation (4), not being considered as
portfolios in the full asset pool.

We set the sample size to be n = 120 (pn < n) and n = 72
(pn > n), and for each scenario, we do L = 1000 simulations to
evaluate the portfolio performance in terms of risk and Sharpe
ratio. The results for both n = 120 and n = 72 are presented in
Table 2. Even the {n = 120, pn = 100} scenario means quite
large dimensionality for MAXSER, to make MAXSER work
better, the subpool selection proposed by Ao, Li, and Zheng
(2019) is implemented for MAXSER, and the subpool size is
50 by default according to Ao, Li, and Zheng (2019). Because
SRM applies well to high dimensional cases, thus the subpool
selection is not implemented for SRM hereafter.

The risks and Sharpe ratios in Table 2 are obtained as fol-
lows: for each simulation, say the ℓth simulation, based on the
generated data, a portfolio allocation ŵ<ℓ> is formed by each
of the methods under comparison. The conditional mean and
variance of the portfolio ŵ<ℓ>, given the data, are ŵT

<ℓ>μ and
ŵ
T
<ℓ>�ŵ<ℓ>, whereμ and� are the true mean and covariance

matrix of the vector of the asset returns. The risk of this portfolio
is defined as the average of its conditional standard deviations

over the L simulations, namely 1
L

∑L
ℓ=1

√

ŵ
T
<ℓ>�ŵ<ℓ>, where

L = 1000, and its Sharpe ratio is the averge of its conditional
Sharpe ratios over the L simulations. Values in the brackets are
standard deviation over L simulations.

Table 2. Risks and Sharpe Ratios of candidate portfolios.

Normal distribution σ = 0.04

n = 120 n = 72

Portfolio Risk S-Ratio Risk S-Ratio

SRM 0.042(0.004) 1.193(0.248) 0.042(0.005) 1.109(0.320)

SRM−LOO 0.043(0.004) 1.179(0.251) 0.043(0.005) 1.105(0.322)
MAXSER 0.044(0.005) 1.080(0.303) 0.045(0.006) 0.953(0.391)

MAXSER+LOO 0.043(0.005) 1.161(0.297) 0.044(0.006) 0.994(0.384)
MV-NLS 0.055(0.016) 0.947(0.185) 0.058(0.021) 0.833(0.239)
MV-NLS-SSCV 0.036(0.024) 0.848(0.257) 0.034(0.031) 0.750(0.331)
MV-NLS-L1CV 0.028(0.012) 0.975(0.168) 0.020(0.015) 0.867(0.195)

NOTES: “S-Ratio” represents for Sharpe Ratio hereafter. The risk constraint is set
to 0.04. The theoretical maximum Sharpe ratio is 1.881. The average value and
standard deviation (in parentheses) of each performance measure are reported.

Table 2 shows that the risk of the SRM portfolio is more close
to the given constraint than any strategy of portfolio allocation
under comparison. Besides, it can be seen that, the leave-one-
out method improves both SRM and MAXSER to some extent.
When the sample size n = 120, the Sharpe ratio of SRM
reaches approximately 63.3% of the theoretical maximum of
the Sharpe ratio on average, while the MAXSER portfolio only
reaches 57.4%.When the sample size n equals to 72, which is the
scenario of pn > n, the Sharpe ratio of the SRM portfolio still
outperforms the others.

Moreover, we also examine the performances of candidate
portfolios without assuming the exact factor structure. Here, we
generate the returns,Yi’s, frommultivariate normal distribution
with parameters μy and �y, which are set to be the sample
mean and sample covariance matrix of the 100 stocks. The
results are presented in Table 3, which shows that the SRM still
outperforms MAXSER in this situation.

Because both SRM and MAXSER are developed for high-
dimensional situation with assumptions on sparsity of optimal
allocation w

∗, we conduct another simulation study by letting

(w1, . . . ,wd, 0, . . . , 0)p×1 = C0�
−1
y μy0,

from which we can obtain μy0. Then, we generate the returns,
Yis, frommultivariate normal distribution with parameters μy0

and �y, which ensures that the theoretical allocation w
∗ is

sparse. Here we choose d = 30, the {wj, 1 ≤ j ≤ d} come
from uniform distributionU(0, 1), C0 is a constant tomakeμy0

be relatively close to the sample mean μy. In our simulation,
we choose C0 = 1/500. The results in Table 4 are consistent
to Table 3, which shows that the SRM methods is better than
MAXSER under sparsity condition of allocations w∗.

Moreover, to test the robustness of the proposed SRM
method, we have also conducted a simulation where �x in
Section 4.2 is misspecified. More specifically, in Case I, we
generate the returns Yi’s based on Fama and French 3 factors,
but using Carhart-4 factors (Fama and French 3 factors plus
a Momentum factor) to construct the portfolio; in Case II, we
generate the returns Yi’s based on Carhart-4 factors, but using
Fama and French 3 factors to construct the portfolio; in Case
III, we generate the returns Yi’s based on Fama and French 3
factors, but using Fama and French 5 factors to construct the
portfolio; in Case IV, we generate the returnsYi’s based on Fama
and French 5 factors, but using Fama and French 3 factors to

Table 3. Risks and Sharpe Ratios of candidate portfolios without factor structure.

Normal Distribution σ = 0.04

n = 120 n = 72

Portfolio Risk S-Ratio Risk S-Ratio

SRM 0.040(0.004) 1.061(0.276) 0.041(0.005) 0.990(0.356)

SRM−LOO 0.040(0.004) 1.050(0.239) 0.041(0.005) 0.983(0.306)
MAXSER 0.041(0.005) 0.878(0.246) 0.042(0.006) 0.784(0.318)

MAXSER+LOO 0.041(0.005) 0.932(0.272) 0.042(0.006) 0.796(0.351)
MV-NLS 0.053(0.017) 0.770(0.149) 0.056(0.023) 0.688(0.192)
MV-NLS-SSCV 0.035(0.025) 0.689(0.207) 0.033(0.033) 0.615(0.268)
MV-NLS-L1CV 0.029(0.012) 0.793(0.133) 0.022(0.016) 0.711(0.152)

NOTE: “S-Ratio” represents for Sharpe Ratio hereafter. The risk constraint is set
to 0.04. The theoretical maximum Sharpe ratio is 1.670. The average value and
standard deviation (in parentheses) of each performance measure are reported.
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Table 4. Risks and Sharpe Ratios of candidate portfolios without factor structure
and with sparsity.

Normal Distribution σ = 0.04

n = 120 n = 72

Portfolio Risk S-Ratio Risk S-Ratio

SRM 0.039(0.004) 0.620(0.263) 0.040(0.005) 0.584(0.331)

SRM−LOO 0.040(0.004) 0.608(0.227) 0.041(0.006) 0.579(0.280)
MAXSER 0.040(0.004) 0.581(0.231) 0.042(0.006) 0.488(0.288)

MAXSER+LOO 0.040(0.005) 0.595(0.259) 0.041(0.005) 0.502(0.323)
MV-NLS 0.054(0.017) 0.451(0.134) 0.057(0.022) 0.406(0.165)
MV-NLS-SSCV 0.034(0.024) 0.403(0.192) 0.032(0.032) 0.363(0.237)
MV-NLS-L1CV 0.030(0.012) 0.464(0.120) 0.021(0.016) 0.420(0.135)

NOTES: “S-Ratio” represents for Sharpe Ratio hereafter. The risk constraint is set
to 0.04. The theoretical maximum Sharpe ratio is 0.973. The average value and
standard deviation (in parentheses) of each performance measure are reported.

construct the portfolio. These misspecified cases include both
missing factors and useless factors.

In the following simulation, dataset of sample size n + 1 is
generated, the first n observations are used as training dataset to
form a portfolio allocation ŵn, the (n+ 1)th observation serves
for the computation of the return of the formed portfolio, that
is, the return of the formed portfolio is ŵT

nYn+1. We still do L =
1000 simulations and risk constraint is still set to be 0.04.We use
rn+1,ℓ to denote the return of a portfolio in the ℓth simulation,
and call {rn+1,ℓ, ℓ = 1, . . . , L} the out-of-sample returns of this
portfolio. Themean return and Sharpe ratio of this portfolio are
calculated through

r̄ = 1

L

L
∑

ℓ=1

rn+1,ℓ, SR = (L − 1)1/2r̄
{

L
∑

ℓ=1

(rn+1,ℓ − r̄)2
}1/2

. (8)

To compare the proposed SRM method and MAXSER, we
conduct the paired Sharpe ratio tests, see Ledoit and Wolf
(2008), the null hypothesis is

H0 : Srs < Srm. (9)

Based on the out-of-sample returns of SRM portfolio and
MAXSER portfolio, (9) can be tested, where Srs is the Sharpe
ratio of SRM portfolio, Srm is the Sharpe ratio of the MAXSER
portfolio. The p-values under all four cases are presented in
Table 5, where the p-value, under every case, is very close to
0. This means the proposed SRM method is significantly better
than MAXSER even when the structure of �x is misspecified to
some extent.

Table 5. The Sharpe Ratio tests between SRM and MAXSER.

Normal Distribution: σ = 0.04 p-value

Case I: FF3-Carhart4 1.3 × 10−4

Case II: Carhart4-FF3 2.9 × 10−4

Case III: FF3-FF5 3.0 × 10−4

Case IV: FF5-FF3 2.8 × 10−4

NOTE: “FF3-Carhart4”means that we generate the returns Yis based on Fama and
French 3 factors, but using Carhart-4 factors to construct the portfolio. Others can
be similarly explained.

5. Real Data Analysis

In this section, we are going to use five real datasets to illustrate
how to use the proposed SRMmethod and how well it works in
practice. Because our simulation studies in Section 4 have shown
the performances of all the seven portfolios in the comparison,
in the sake of consistency, we also primarily focus on applying
the seven portfolio allocation strategies to the real datasets and
compare the obtained results. The datasets for us to study are
downloaded from the home page of Kenneth R. French.2 Specif-
ically, four pools of portfolios are downloaded from this website,
and each pool consists of monthly returns of pn (100 or 49)
portfolios from June 1990 toMay 2020. The time span is in total
360 months, that is, 30 years. Each of the 100 portfolios in the
first pool is formed by the two factors: Size and Book-to-Market
ratio. We denote this pool of portfolios by Pool A hereafter.
Each of the 100 portfolios in the second pool is formed by Size
and Investment. We denote this pool of portfolios by Pool B.
The third pool consists of 100 portfolios formed by Size and
Operating Profit, denoted by Pool C. The forth pool includes the
49 industry portfolios, denoted by Pool D. The last one, Pool E,
represents the first 100 available stocks of Standard Poor’s list
by alphabetical order of their abbreviations. The Fama-French
three factors of the same period are also downloaded as the
factors Xi in Model (1) of Section 2, meaning that the three
factors are only used to estimate�x in (4), not being considered
as portfolios in any pool.

In the downloaded datasets, there are very few observations
unavailable (less than 0.15%), they are assigned as −99.99 in
the original dataset, we recode them as 0 in our analysis. The
moving average approach could also be used for the imputation
of the unavailable observations, however we find it makes little
difference to setting them to be 0.

In real stock market, the gold standard for evaluating dif-
ferent strategies of portfolio allocation is based on their out-
of-sample returns. Therefore, we start with splitting the whole
dataset to two parts, the first part is from June 1990 to May
2000, called training set, it has 120 months. The second part is
from June 2000 to May 2020, called test set, it has 240 months.
For each portfolio allocation under comparison, we compute its
return at eachmonth in the test set, and its risk and Sharpe ratio
are computed based its returns at the 240 months in the test
set. The return of each portfolio allocation under comparison
at each month in the test set is computed based on the rolling
window approach, namely, we form the portfolio allocation
based on the data in the first 120 months, which is the training
set, and compute its return at month t = 121, which is the
first month in the test set. We then roll the training data by one
month, that is to form the portfolio allocation based on the data
from month t = 2 to month t = 121, and compute its return at
month t = 122. We continuously do this until the return of the
portfolio allocation at the last month is obtained. This way, the
return of the portfolio allocation at each month in the test set is
obtained.

As did in simulations studies, we also compare different
portfolios when n = 72, which is a real high dimensional
case for pn = 100. Similarly, we split the whole dataset into

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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training set and test set, where the rolling window approach
is also applied. The initial training set consists of the first 6
years’ data(n = 72), the test set has 24 × 12 months. Moreover,
following Engle, Ferstenberg, and Russell (2012), the portfolio
return net of transaction costs in each period is computed as
follows:

rnet(t) =
(

1−
∑

j

ct,j|wj(t+1)−wj(t+)|
)(

1+r(t)
)

−1, (10)

where wj(t + 1) is the weight on asset j at the beginning of
period t+ 1, wj(t+) is the weight of the same asset at the end of

period t, ct,j is a cost level and r(t) is the portfolio return without
transaction cost at period t. For the cost level ct,j, Ao, Li, and
Zheng (2019) set it to be constant 0.1% from 1991 to 2016. Since
most assets are portfolios in our empirical analysis, we set it to
be 0.4% throughout the empirical analysis.

The risk and Sharp ratio of each portfolio allocation under
each situation is presented in Tables 6 to 10.

Some conclusions can be drawn from Tables 6 to 8. First,
since the portfolios in these Pools are formed by pairs of Fama
and French factors, the covariance decomposition of Equation
(4) is easy to be satisfied, thus the performances of SRM is always

Table 6. Risks and Sharpe Ratios of candidate portfolios for Pool A.

σ = 0.04 Without transaction cost With transaction cost

n = 120 n = 72 n = 120 n = 72

Portfolio Risk S-Ratio Risk S-Ratio Risk S-Ratio Risk S-Ratio

SRM 0.043 0.308 0.048 0.260 0.043 0.306 0.048 0.258

SRM−LOO 0.044 0.304 0.049 0.258 0.044 0.301 0.049 0.257
MAXSER 0.046 0.224 0.055 0.145 0.046 0.223 0.055 0.144

MAXSER+LOO 0.045 0.240 0.054 0.151 0.045 0.239 0.054 0.149
MV-NLS 0.058 0.196 0.069 0.127 0.058 0.195 0.070 0.126
MV-NLS-SSCV 0.038 0.176 0.036 0.114 0.038 0.176 0.036 0.113
MV-NLS-L1CV 0.029 0.202 0.023 0.131 0.029 0.201 0.024 0.130

Table 7. Risks and Sharpe Ratios of candidate portfolios for Pool B.

σ = 0.04 Without transaction cost With transaction cost

n = 120 n = 72 n = 120 n = 72

Portfolio Risk S-Ratio Risk S-Ratio Risk S-Ratio Risk S-Ratio

SRM 0.044 0.249 0.047 0.245 0.044 0.248 0.047 0.244

SRM−LOO 0.045 0.247 0.048 0.244 0.045 0.246 0.048 0.242
MAXSER 0.045 0.191 0.052 0.158 0.045 0.190 0.052 0.157

MAXSER+LOO 0.044 0.206 0.051 0.165 0.044 0.205 0.051 0.164
MV-NLS 0.056 0.167 0.065 0.139 0.056 0.167 0.065 0.139
MV-NLS-SSCV 0.037 0.149 0.034 0.125 0.037 0.148 0.034 0.124
MV-NLS-L1CV 0.029 0.172 0.022 0.143 0.029 0.171 0.022 0.142

Table 8. Risks and Sharpe Ratios of candidate portfolios for Pool C.

σ = 0.04 Without transaction cost With transaction cost

n = 120 n = 72 n = 120 n = 72

Portfolio Risk S-Ratio Risk S-Ratio Risk S-Ratio Risk S-Ratio

SRM 0.040 0.190 0.051 0.127 0.040 0.189 0.051 0.127

SRM−LOO 0.041 0.187 0.052 0.126 0.041 0.185 0.052 0.125
MAXSER 0.044 0.113 0.056 0.099 0.044 0.112 0.056 0.099

MAXSER+LOO 0.043 0.121 0.055 0.103 0.043 0.120 0.055 0.103
MV-NLS 0.055 0.099 0.070 0.087 0.055 0.098 0.070 0.087
MV-NLS-SSCV 0.036 0.088 0.033 0.078 0.036 0.087 0.033 0.077
MV-NLS-L1CV 0.028 0.102 0.023 0.090 0.028 0.102 0.023 0.090

Table 9. Risks and Sharpe Ratios of candidate portfolios for Pool D.

σ = 0.04 Without transaction cost With transaction cost

n = 120 n = 72 n = 120 n = 72

Portfolio Risk S-Ratio Risk S-Ratio Risk S-Ratio Risk S-Ratio

SRM 0.040 0.085 0.047 0.142 0.040 0.084 0.047 0.140

SRM−LOO 0.041 0.084 0.048 0.141 0.041 0.083 0.048 0.140
MAXSER 0.040 0.087 0.048 0.126 0.040 0.086 0.048 0.124

MAXSER+LOO 0.040 0.094 0.047 0.132 0.040 0.094 0.047 0.130
MV-NLS 0.050 0.077 0.060 0.110 0.050 0.077 0.060 0.109
MV-NLS-SSCV 0.033 0.069 0.031 0.099 0.033 0.069 0.031 0.098
MV-NLS-L1CV 0.025 0.079 0.020 0.113 0.025 0.078 0.020 0.112
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Table 10. Risks and Sharpe Ratios of candidate portfolios for Pool E.

σ = 0.04 Without transaction cost With transaction cost

n = 120 n = 72 n = 120 n = 72

Portfolio Risk S-Ratio Risk S-Ratio Risk S-Ratio Risk S-Ratio

SRM 0.041 0.066 0.054 0.071 0.041 0.065 0.054 0.071

SRM−LOO 0.042 0.065 0.055 0.070 0.042 0.064 0.055 0.070
MAXSER 0.040 0.068 0.053 0.063 0.040 0.067 0.053 0.063

MAXSER+LOO 0.040 0.070 0.052 0.066 0.040 0.069 0.052 0.065
MV-NLS 0.050 0.060 0.066 0.055 0.050 0.059 0.066 0.054
MV-NLS-SSCV 0.032 0.054 0.030 0.049 0.032 0.054 0.030 0.048
MV-NLS-L1CV 0.026 0.062 0.022 0.057 0.026 0.061 0.022 0.056

better than MAXSER and other strategies. Second, the leave-
one-outmethod embedded in SRM is useful, it can also improve
MAXSER to some extent. Third, whether n > pn or n < pn,
SRM still outperforms MAXSER and other strategies.

From Tables 9 and 10, one can see that the leave-one-out
method is quite useful. In addition to that, although SRM is
not always better than MAXSER, when considering n = 72,
SRM has ensured its competitiveness. It is well known that the
relative performances of portfolio allocation strategies depend
on underlying datasets (we have shown only five datasets here),
rolling windows, performance measures and estimation meth-
ods, therefore, we are not intended to claim that our SRM
is overwhelmingly superior to its alternatives. However, the
empirical findings above do show the powerfulness and com-
petitiveness of the proposed SRM in constraining the risk and
maximizing the Sharpe ratios, especially for high-dimensional
cases. We would also like to point out that SRM method only
uses factors to achieve the covariance decomposition, and factor
investing is not considered here. Since Ao, Li, and Zheng (2019)
suggests that MAXSER with factor investing is more preferable
to MAXSER without factor investing, we only claim that SRM
performs better than MAXSER when factor investing is not
allowed.

6. Conclusion

In this article, we propose a synthetic regression model for
large portfolio allocation. Appealing the leave-one-out idea, we
have successfully reduced the within sample correlation, which
makes the estimated optimal portfolio allocation much more
close to the theoretical optimal portfolio allocation. Due to the
use of the structure of the factor model, an estimation method
of high dimensional covariance matrices, and the penalized
least-square estimation, the proposed method applies to the
real large portfolio allocation where the number of assets under
concern ismuch larger than the sample size.We have conducted
intensive simulation studies and shown the proposed method
outperforms its alternatives under some circumstances.Wehave
also applied the proposedmethod to some publicly available real
datasets and demonstrated the portfolio formed by the proposed
method yields much higher return than its alternatives in most
scenarios. In addition to the numerical demonstration of the
superiority of the proposed method over its alternatives, in this
article, we have also established the asymptotic theory of the
proposedmethod,which has theoretically justified the proposed
method.

The appendix contains the proofs of Theorems 1 and 2, and Lem-

mas 1–4 and their additional technical details.
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Appendix A: Proofs of the Theorems

For simplicity, we first introduce some notations. Let ‖X‖2� = X
T�X

denote the norm induced by matrix � for any vector X ∈ R
pn .

Proof of Theorem 1. Let θ = μT�−1μ denotes the square of the

maximum Sharpe ratio of the optimal portfolio, then it is easy to show

that σθ1/2 = σ√
θ

μT�−1μ. As shown in Ao, Li, and Zheng (2019),

the optimal portfolio w∗ has the explicit expression: w∗ = σ√
θ

�−1μ.

Using Cauchy–Schwarz inequality, we have

∣

∣

∣
ŵ
Tμ − σθ1/2

∣

∣

∣
=
∣

∣

∣
ŵ
Tμ − w

∗Tμ

∣

∣

∣
=
∣

∣

∣
(ŵ − w

∗)T�1/2�−1/2μ

∣

∣

∣

≤
√

(ŵ − w∗)T�(ŵ − w∗) × μT�−1μ

=
√

θ‖ŵ − w∗‖2� , (A1)

where ŵ is the estimated optimal large portfolio allocation, which is the

minimizer of Equation (7).

We first consider the convergence rate of ‖ŵ − w
∗‖� . By the

definition of ŵ in Equation (7) and the minimization property, we have

1

2n

n
∑

i=1

(

zi − Y
T
i ŵ

)2
+ λ‖ŵ‖1 ≤ 1

2n

n
∑

i=1

(

zi − Y
T
iw

∗
)2

+ λ‖w∗‖1.

(A2)
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By Equation (6), (A2) and some simple calculations, we have

1

2n

n
∑

i=1

(

zi − Y
T
i ŵ

)2
+ λ‖ŵ‖1

= 1

2n

n
∑
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T
iw

∗ + Y
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iw
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T
i ŵ

)2
+ λ‖ŵ‖1

= 1
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(

Y
T
iw
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i ŵ

)2
+ 1
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∑
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iw

∗)2

− 1

n
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∑

i=1

(zi − Y
T
iw

∗)YTi

(
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∗)+ λ‖ŵ‖1

≤ 1

2n

n
∑

i=1

(

zi − Y
T
iw

∗
)2

+ λ‖w∗‖1.

Thus, we have the following inequality:

1

2n

n
∑

i=1

(

Y
T
iw

∗ − Y
T
i ŵ

)2
+ λ‖ŵ‖1 (A3)

≤ 1

n

n
∑

i=1

(

zi − Y
T
iw

∗
)

Y
T
i

(

ŵ − w
∗)+ λ‖w∗‖1.

For simplicity, let f (θ) = σ(1 + θ)θ−1/2 and f (θi) = zi =
σ(1 + θi)θ

−1/2
i . By w

∗ = σ√
θ

�−1μ, it is easy to show that f (θ) =
1 + θ

θ
μTw∗. Thus, we have the following decomposition for the first

term in Equation (A3), that is,

1

n

n
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T
iw

∗
)
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i

(
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[
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T
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∗
]

Y
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(
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=: I1 + I2,

where

I1 = 1

n
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[

f (θi) − f (θ)
]

Y
T
i

(
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∗)

and

I2 = 1
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T
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∗
]

Y
T
i

(
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∗) .

We first consider I1, and we can show that

|I1| =

∣
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(A4)

Let Ȳj = 1

n

n
∑

i=1

Yij = μj +
σj√
n
ξj, where ξj, j = 1, . . . , pn, are

correlated standard normal random variables. By Lemma 1, we have

E
(

max
1≤j≤pn

|ξj|
)

≤
√

2 log(2pn). By Assumption 1 and log(pn)/n → 0

as n → ∞, then we have

max
1≤j≤pn

|Ȳj| = max
1≤j≤pn

∣

∣

∣

∣

μj +
σj√
n
ξj

∣

∣

∣

∣

≤ max
1≤j≤pn

|μj| + max
1≤j≤pn

|σj|
max1≤j≤pn |ξj|√

n

≤ L + Op

(
√

2M log(2pn)

n

)

= L + op(1).

(A5)

Obviously, f (θ) is a continuous function of θ , and its derivative is

f ′(θ) = 1

2
σθ−1/2(1 − θ−1). For a small constant 0 < l < L and

the closed interval [l, L], there exists a sufficiently large constant C > 0

such that |f (θi) − f (θ)| ≤ sup
ς∈[l,L]

|f ′(ς)| · |θi − θ | ≤ C|θi − θ | for each

i = 1, . . . , pn. In order to obtain the convergence rate of |f (θi) − f (θ)|
for each i = 1, . . . , pn, we only need to bound |θi − θ | for each i =
1, . . . , pn. Combining the results in Fan, Weng, and Zhou (2021) and

Fan, Liao, andMincheva (2011), and invokingAssumptions 1 and 3, we

can obtain that |θi − θ | = Op

(

sn log pn

n
∨ 1√

n

)

holds uniformly for

each i = 1, . . . , n as n → ∞. Thus, we have |f (θi)−f (θ)| ≤ C|θi−θ | =
Op

(

sn log pn

n
∨ 1√

n

)

for each i = 1, . . . , pn. Combining this result

with (A4) and (A5), we have

|I1| ≤ ‖ŵ − w
∗‖1 · Op

(

sn log pn

n
∨ 1√

n

)

. (A6)

Now we consider I2. By some simple calculations, we have

I2 = 1

n

n
∑

i=1

(

μT
w

∗ − Y
T
iw

∗
)

Y
T
i

(

ŵ − w
∗)

+μT
w

∗

θ

1

n

n
∑

i=1

Y
T
i

(

ŵ − w
∗)

=
pn
∑

j=1

(w∗
j − ŵj)

1

n

n
∑

i=1

pn
∑

k=1

w∗
k [(Yij − μj)(Yik − μk) − σjk]

+
pn
∑

j=1

(w∗
j − ŵj)

1

n

n
∑

i=1

pn
∑

k=1

w∗
k(Yik − μk)μj

+
pn
∑

j=1

(w∗
j − ŵj)

1

n

n
∑

i=1

pn
∑

k=1

w∗
kσjk

−μT
w

∗

θ

pn
∑

j=1

(w∗
j − ŵj)

1

n

n
∑

i=1

Yij

=:
1

n

⎡

⎣

pn
∑

j=1

(w∗
j − ŵj)I21,j +

pn
∑

j=1

(w∗
j − ŵj)I22,j

−
pn
∑

j=1

(w∗
j − ŵj)I23,j

⎤

⎦ , (A7)
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where

I21,j =
n
∑

i=1

pn
∑

k=1

w∗
k [(Yij − μj)(Yik − μk) − σjk],

I22,j =
n
∑

i=1

pn
∑

k=1

w∗
k(Yik − μk)μj,

I23,j =μT
w

∗

θ

n
∑

i=1

Yij −
n
∑

i=1

pn
∑

k=1

w∗
kσjk.

For I21,j, we first denote

ρj = corr

⎛

⎝Yij − μj,

pn
∑

k=1

w∗
k(Yik − μk)

⎞

⎠ =
∑pn

k=1
w∗
k
σjk

σjσ
,

where σj = sd(Yij) for j = 1, . . . , pn. Let {ξi, i = 1, . . . , n} and {ηij, i =
1, . . . , n} be iid standard normal randomvariables, where j = 1, . . . , pn.

Thus, it is easy to show that

I21,j
d=

n
∑

i=1

σσj

[

ξi

(

ρjξi +
√

1 − ρ2j ηij

)

− ρj

]

= σσjρj

n
∑

i=1

(ξ2i − 1) + σσj

√

1 − ρ2j

n
∑

i=1

ξiηij,

(A8)

where “
d=” denotes equal in distribution. By Assumption 1, we have

E

(

max
1≤j≤pn

∣

∣

∣

∣

∣

σσjρj

n
∑

i=1

(ξ2i − 1)

∣

∣

∣

∣

∣

)

≤ σ
√
M

√

√

√

√E

(

n
∑

i=1

(ξ2i − 1)

)2

= σ
√
2nM,

By Lemma 3 and Assumption 1, we have

E

(

max
1≤j≤pn

∣

∣

∣

∣

∣

σσj

√

1 − ρ2j

n
∑

i=1

ξiηij

∣

∣

∣

∣

∣

)

≤ 2σ
√

nM log(2pn). (A9)

For I22,j, since w∗
k
is the optimal portfolio, then we have I22,j ∼

N(0, nμ2
j σ

2). Invoking Lemma 1 and Assumption 1, we have

E

(

max
1≤j≤pn

|I22,j|
)

≤ σL
√

2n log(2pn). (A10)

For I23,j, by w
∗ = σ√

θ
�−1μ and μT

w
∗ = σ

√
θ , we have

I23,j = σ√
θ

n
∑

i=1

(

Yij − μT�−1�(, j)
)

= σ√
θ

n
∑

i=1

(Yij − μj),

where �(, j) is the j-th column of �. Again using Lemma 1, we have

E

(

max
1≤j≤pn

|I23,j|
)

≤ σ√
θ
E

(

max
1≤j≤pn

∣

∣

∣

n
∑

i=1

(Yij − μj)

∣

∣

∣

)

≤ σ
√
M√
θ

√

2n log(2pn). (A11)

Summarizing the above results from Equations (A7) to (A11), we

have

|I2| ≤ ‖ŵ − w
∗‖1 · Op

(
√

log pn

n

)

. (A12)

By Equations (A3), (A6), and (A12), we have the following

inequality:

1

2n

n
∑

i=1

(

Y
T
iw

∗ − Y
T
i ŵ

)2
+ λ‖ŵ‖1

≤ 1

n

n
∑

i=1

(

zi − Y
T
iw

∗
)

Y
T
i

(

ŵ − w
∗)+ λ‖w∗‖1

≤ ‖ŵ − w
∗‖1 · Op

(

sn log pn

n
∨
√

log pn

n

)

+ λ‖w∗‖1.

(A13)

By Assumption 4 and log(pn)/n → 0 as n → ∞, it is easy to show

that Op

(

√

log pn/n
)

‖w∗ − ŵ‖1 has the faster convergence rate than

Op

(

√

log pn/n
)

. Thus, we can show that

Op

(

sn log pn

n
∨
√

log pn

n
∨
√

log pn

n
‖w∗ − ŵ‖1

)

= Op

(

sn log pn

n
∨
√

log pn

n

)

.

Letting λ0 = C0((sn log pn/n) ∨
√

log pn/n) with the large enough

constant C0 > 0, by Equation (A13) and Lemma 4, in probability, we

have

1

2
‖ŵ − w

∗‖2� + λ‖ŵ‖1 ≤ λ0‖ŵ − w
∗‖1 + λ‖w∗‖1. (A14)

Let S = {1 ≤ j ≤ pn : w∗
j �= 0} denote the nonzero position set for

optimal portfolio allocation w
∗, and Sc be complement of S. Note that

‖ŵ‖1 = ‖ŵS‖1 + ‖ŵSc‖1 and ‖w∗‖1 = ‖w∗
S‖1 + ‖w∗

Sc‖1 = ‖w∗
S‖1,

where w∗
Sc = 0. By (A14) and the inequality ‖ŵS − w

∗
S‖1 ≥ ‖w∗

S‖1 −
‖ŵS‖1, we have

1

2
‖ŵ − w

∗‖2� + λ‖ŵSc‖1 ≤ λ0‖ŵ − w
∗‖1 + λ‖ŵS − w

∗
S‖1. (A15)

Noting that ‖ŵSc‖1 = ‖ŵSc − w
∗
Sc‖1, by Equation (A15), we further

have

1

2
‖ŵ − w

∗‖2� + λ‖ŵSc − w
∗
Sc‖1 ≤ λ0‖ŵ − w

∗‖1 + λ‖ŵS − w
∗
S‖1

= λ0‖ŵS − w
∗
S‖1 + λ0‖ŵSc − w

∗
Sc‖1 + λ‖ŵS − w

∗
S‖1,

that is

1

2
‖ŵ−w

∗‖2� +(λ−λ0)‖ŵSc −w
∗
Sc‖1 ≤ (λ+λ0)‖ŵS−w

∗
S‖1. (A16)

If λ ≥ 2λ0, we have

1

2
‖ŵ − w

∗‖2� + λ

2
‖ŵSc − w

∗
Sc‖1 ≤ 3λ

2
‖ŵS − w

∗
S‖1. (A17)
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As ‖ŵ − w
∗‖2� ≥ 0, we have the basic constraint ‖ŵSc − w

∗
Sc‖1 ≤

3‖ŵS −w
∗
S‖1 on the set T (S, 3) defined in Assumption 2. By Equation

(A17), we further have

1

2
‖ŵ − w

∗‖2� + λ

2
‖ŵ − w

∗‖1

= 1

2
‖ŵ − w

∗‖2� + λ

2
‖ŵSc − w

∗
Sc‖1 + λ

2
‖ŵS − w

∗
S‖1

≤ 2λ‖ŵS − w
∗
S‖1. (A18)

By Assumption 2, and invoking the Cauchy–Schwarz inequality and

2ab ≤ a2/4 + 4b2, for ŵS − w
∗
S ∈ T (S, 3), in probability, we have

2λ‖ŵS − w
∗
S‖1 ≤ 2λ

√
sn‖ŵS − w

∗
S‖2 ≤ 2λ

√
sn‖ŵ − w

∗‖2
≤ 2λ

√
sn‖ŵ − w

∗‖�

/

φ0

≤
‖ŵ − w

∗‖2�
4

+ 4λ2sn

φ2
0

. (A19)

By Equations (A18) and (A19), we can show that

1

2
‖ŵ − w

∗‖2� + λ‖ŵ − w
∗‖1 ≤ 8λ2sn

φ2
0

(A20)

holds in probability. From the above inequality, we can obtain that

‖ŵ − w
∗‖1 ≤ 8λsn

φ2
0

and ‖ŵ − w
∗‖� ≤ 4λs

1/2
n

φ0
(A21)

holds in probability.

Note that λ ≍ (sn log pn/n) ∨
√

log pn/n, and s
3/2
n log pn/n → 0

as n → ∞ in Assumption 4, it is easy to show that ‖ŵ − w
∗‖� =

Op(λs
1/2
n ) = op(1). Thus, by this result, Equation (A1) and Assump-

tion 1, we finish the proof of Theorem 1. ✷

Proof of Theorem 2. Noting that w∗ = σ√
θ

�−1μ, and using the

triangular inequality for the norm ‖ · ‖� , we have

∣

∣

∣
ŵ
T�ŵ − σ 2

∣

∣

∣
=
∣

∣

∣
ŵ
T�ŵ − w

∗T�w
∗
∣

∣

∣

=
∣

∣

∣
‖ŵ‖� − ‖w∗‖�

∣

∣

∣
≤ ‖ŵ − w

∗‖� .

By Theorem 1, it is easy to show that
∣

∣ŵ
T�ŵ − σ 2

∣

∣ = Op(λs
1/2
n ) =

op(1) under Assumption 4. Thus, we finish the proof of Theorem 2. ✷

Appendix B: Some Lemmas and Proofs

Lemma 1. Suppose that ξi ∼ N(0, σ 2
i ) for i = 1, . . . ,m, which need

not be independent, then

E

(

max
1≤i≤m

|ξi|
)

≤ max
1≤i≤m

σi
√

2 log(2m).

The proof of Lemma 1 can be found in Chatterjee (2013), hence we

omit the details here.

Lemma 2. Suppose that ζi ∼ χ2(n) for i = 1, . . . ,m, which need not

be independent. If
√

log(2m)/2n ≤ 1/4, then

E

(

max
1≤i≤m

|ζi − n|
)

≤ 2
√

2n log(2m).

Lemma 3. Suppose that ξj ∼ N(0, 1) for j = 1, . . . , pn, and ηk ∼
N(0, 1) for k = 1, . . . , qn. The two sequences {ξj, j = 1, . . . , pn}
and {ηk, j = 1, . . . , qn} are independent, but ξj’s do not need to be

independent, neither do ηk’s. Let ξij and ηik be iid copies of {ξj, j =
1, . . . , pn} and {ηk, j = 1, . . . , qn} respectively, where i = 1, . . . , n. If

log(2pnqn)/n ≤ 1/2, then

E

(

max
j,k

∣

∣

∣

n
∑

i=1

ξijηik

∣

∣

∣

)

≤ 2
√

n log(2pnqn).

The proofs of Lemmas 2 and 3 can be found in Ao, Li, and Zheng

(2019), hence we omit the details here.

Lemma 4. Suppose that Yi = (Yi1, . . . ,Yipn)
T, i = 1, . . . , n, are iid

random vectors from N(μ,�), where μ = (μ1, . . . ,μpn )
T and � =

(σjk)1≤j,k≤pn . For j, k = 1, . . . , pn, let ξjk = E(YjYk) − 1

n

n
∑

i=1

YijYik. If

max
1≤j≤pn

|μj| ≤ L and max
1≤j≤pn

|σjj| ≤ M, then

‖w∗ − ŵ‖2� ≤ 1

n

n
∑

i=1

(YT
i w

∗ − Y
T
i ŵ)2 + Op

(
√

log pn

n

)

‖w∗ − ŵ‖21.

Proof. Let F be the σ -algebra generated by {Yij, i = 1, . . . , n; j =
1, . . . , pn}, and Y = (Y1, . . . ,Ypn)

T be a future return. Note that

ŵ is estimated by the observed data, then ŵ is independent of Y =
(Y1, . . . ,Ypn)

T. By some simple calculations, we have

E

⎡

⎢

⎣

⎛

⎝

pn
∑

j=1

w∗
j Yj −

pn
∑

j=1

ŵjYj

⎞

⎠

2
∣

∣

∣
F

⎤

⎥

⎦

=
pn
∑

j,k=1

(w∗
j − ŵj)(w

∗
k − ŵk)E(YjYk)

=
pn
∑

j,k=1

(w∗
j − ŵj)(w

∗
k − ŵk)

[

E(Yj − μj)(Yk − μk) + μjμk

]

= (w∗ − ŵ)T�(w∗ − ŵ) +

⎛

⎝

pn
∑

j=1

(w∗
j − ŵj)μj

⎞

⎠

2

≥ (w∗ − ŵ)T�(w∗ − ŵ) = ‖w∗ − ŵ‖2� (B1)

and

1

n

n
∑

i=1

(YT
i w

∗ − Y
T
i ŵ)2 = 1

n

n
∑

i=1

pn
∑

j,k=1

(w∗
j − ŵj)(w

∗
k − ŵk)YijYik.

By the definition of ξjk = E(YjYk) − 1

n

n
∑

i=1

YijYik, we have

E

⎡

⎢

⎣

⎛

⎝

pn
∑

i=1

w∗
j Yj −

pn
∑

i=1

ŵjYj

⎞

⎠

2
∣

∣

∣
F

⎤

⎥

⎦
− 1

n

n
∑

i=1

(YT
i w

∗ − Y
T
i ŵ)2

=
pn
∑

j,k=1

(w∗
j − ŵj)(w

∗
k − ŵk)E(YjYk)

− 1

n

n
∑

i=1

pn
∑

j,k=1

(w∗
j − ŵj)(w

∗
k − ŵk)YijYik

=
pn
∑

j,k=1

(w∗
j − ŵj)(w

∗
k − ŵk)ξjk ≤ ‖w∗ − ŵ‖21 max

1≤j,k≤pn
|ξjk|. (B2)
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Now we will bound the term max
1≤j,k≤pn

|ξjk| above. Some simple

calculations yield that

n
∑

i=1

YijYik =
n
∑

i=1

(Yij − μj)(Yik − μk) +
n
∑

i=1

(Yij − μj)μk

+
n
∑

i=1

(Yik − μk)μj + nμjμk

and

ξjk = E(YjYk) − 1

n

n
∑

i=1

YijYik = σjk − 1

n

n
∑

i=1

(Yij − μj)(Yik − μk)

− 1

n

n
∑

i=1

(Yij − μj)μk − 1

n

n
∑

i=1

(Yik − μk)μj.

(B3)

Let Ajk =
n
∑

i=1

(Yij − μj)(Yik − μk),Bjk =
n
∑

i=1

(Yij − μj)μk, Cjk =

n
∑

i=1

(Yik − μk)μj and ρjk = corr(Yj,Yk). Further, let {ξij, i = 1, . . . , n}

and {ηik, i = 1, . . . , n} are iid standard normal random variables. For

Ajk, we have

Ajk
d= √σjjσkk

n
∑

i=1

ξij

(

ρjkξij +
√

1 − ρ2
jk

ηik

)

= σjk

n
∑

i=1

(ξ2ij − 1) + nσjk +
√

σjjσkk(1 − ρ2
jk

)

n
∑

i=1

ξijηik

(B4)

and

σjk − 1

n
Ajk = −

⎡

⎢

⎣

σjk

n

n
∑

i=1

(ξ2ij − 1) +

√

σjjσkk(1 − ρ2
jk

)

n

n
∑

i=1

ξijηik

⎤

⎥

⎦
.

(B5)

By Lemmas 2 and 3, we have

E

(

max
1≤j≤pn

∣

∣

∣

n
∑

i=1

(ξ2ij − 1)
∣

∣

∣

)

≤ 2
√

2n log(2pn), (B6)

E

(

max
1≤j≤pn

∣

∣

∣

n
∑

i=1

ξijηik

∣

∣

∣

)

≤ 2

√

n log(2p2n). (B7)

It is easy to show that Bjk ∼ N(0, nμ2
k
σjj) and Cjk ∼ N(0, nμ2

j σkk).

Thus, we can show that by Lemma 1

max

(

E

(

max
1≤j,k≤pn

|Bjk|
)

,E

(

max
1≤j,k≤pn

|Cjk|
))

≤ L

√

2nM log(2p2n).

(B8)

Summarizing the above results from (B3)–(B8), we have

E

(

max
1≤j,k≤pn

|ξjk|
)

≤ 2M

√

2 log(2pn)

n
+ (2M + 2L

√
2M)

√

log(2p2n)

n
,

(B9)

which implies that max
1≤j,k≤pn

|ξjk| = Op(
√

pn/n). Combining this result

with Equations (B1) and (B2), we have

‖w∗ − ŵ‖2� ≤ 1

n

n
∑

i=1

(YT
i w

∗ − Y
T
i ŵ)2 + Op

(
√

log pn

n

)

‖w∗ − ŵ‖21.

Thus, we finish the proof of Lemma 4.

References

Ao, M., Li, Y., and Zheng, X. (2019), “Approaching Mean-Variance Effi-
ciency for Large Portfolios,” Review of Financial Studies, 32, 2890–2919.
[1,2,3,4,5,7,8,11]

Avella-Medina,M., Battey, H., Fan, J., and Li, Q. (2018), “Robust Estimation
of High Dimensional Covariance and Precision Matrices,” Biometrika,
105, 271–284. [1]

Basak, G. K., Jagannathan, R., and Ma, T. (2009), “Jackknife Estimator for
Tracking ErrorVariance ofOptimal Portfolios,”Management Science, 55,
990–1002. [1]

Berthet, Q., and Rigollet, P. (2013), “Optimal Detection of Sparse Principal
Components in High Dimension,” The Annals of Statistics, 41, 1780–
1815. [1]

Bickel, P., and Levina, E. (2008a), “Covariance Regularization by Thresh-
olding,” The Annals of Statistics, 36, 2577–2604. [1]

(2008b), “Regularized Estimation of Large Covariance Matrices,”
The Annals of Statistics, 36, 199–227. [1]

Bickel, P., Ritov, Y., and Tsybakov, A. B. (2009), “Simultaneous Analysis of
Lasso and Dantzig Selector,” The Annals of Statistics, 37, 1705–1732. [4]

Birnbaum, A., Johnstone, I. M., Nadler, B., and Paul, D. (2013), “Mini-
max Bounds for Sparse PCAWith Noisy High-Dimensional Data,” The
Annals of Statistics, 41, 1055–1084. [1]

Britten-Jones, M. (1999), “The Sampling Error in Estimates of Mean-
Variance Efficient Portfolio Weights,” The Journal of Finance, 54, 655–
671. [1]

Brodie, J., Daubechies, I., De Mol, C., Giannone, D., and Loris, I. (2009),
“Sparse and Stable Markowitz Portfolios,” Proceedings of the National
Academy of Sciences, 106, 12267–12272. [1]

Bunea, F., Tsybakov, A., andWegkamp,M. (2007), “SparsityOracle Inequal-
ities for the Lasso,” Electronic Journal of Statistics, 1, 169–194. [4]

Candès, E., and Tao, T. (2007), “The Dantzig Selector: Statistical Estimation
When p is Much Larger Than n” (with discussion), The Annals of
Statistics, 35, 2313–2351. [4]

Chatterjee, S. (2013), “Assumptionless Consistency of the Lasso,”
arXiv:1303.5817. [11]

DeMiguel, V., Garlappi, L., and Uppal, R. (2009), “Optimal Versus Naive
Diversification: How Inefficient is the 1/N Portfolio Strategy?” Review of
Financial Studies, 22, 1915–1953. [1]

El Karoui, N. (2008), “Operator Norm Consistent Estimation of a Large
Dimensional Sparse Covariance Matrices,” The Annals of Statistics, 36,
2717–2756. [1]

Engle, R., Ferstenberg, R., and Russell, J. (2012), “Measuring and Modeling
Execution Cost and Risk,” Journal of Portfolio Management, 38, 14–28.
[7]

Fama, E., and French, K. (1993), “Common Risk Factors in the Returns on
Stocks and Bonds,” Journal of Financial Economics, 33, 3–56. [2]

Fan, J., Fan, Y., and Lv, J. (2008), “High Dimensional Covariance Matrix
Estimation Using a Factor Model,” Journal of Econometrics, 147, 186–
197. [1,2,4]

Fan, J., Liao, Y., and Mincheva, M. (2011), “High Dimensional Covariance
Matrix Estimation in Approximate Factor Models,” The Annals of Statis-
tics, 39, 3320–3356. [1,4,9]

(2013), “Large Covariance Estimation by Thresholding Principal
Orthogonal Complements” (with discussion), Journal of Royal Statistical
Society, Series B, 75, 603–680. [1]

Fan, J., Weng, H., and Zhou, Y. (2021), “Optimal Estimation of
Functionals of High-Dimensional Mean and Covariance Matrix,”
arXiv:1908.07460v2. [4,9]

Guo, S., Box, J., and Zhang, W. (2017), “A Dynamic Structure for High
Dimensional Covariance Matrices and Its Application in Portfolio Allo-
cation,” Journal of the American Statistical Association, 112, 235–253. [1]

Kan, R., and Zhou, G. (2007), “Optimal Portfolio Choice With Parameter
Uncertainty,” Journal of Financial and Quantitative Analysis, 42, 621–
656. [2]

Lam, C. (2016), “Nonparametric Eigenvalue-Regularized Precision or
Covariance Matrix Estimator,” The Annals of Statistics, 44, 928–953. [1]

Ledoit, O., andWolf, M. (2004), “AWell-Conditioned Estimator for Large-
Dimensional Covariance Matrices,” Journal of Multivariate Analysis, 88,
365–411. [4]



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 13

(2008), “Robust Performance Hypothesis Testing With the Sharpe
Ratio,” Journal of Empirical Finance, 15, 850–859. [6]

Ledoit, O., and Wolf, M. (2017), “Nonlinear Shrinkage of the Covariance
Matrix for Portfolio Selection:MarkowitzMeetsGoldilocks,”TheReview
of Financial Studies, 30, 4349–4388. [1,4]

Markowitz, H. M. (1952), “Portfolio Selection,” The Journal of Finance, 7,
77–91. [1]

Meinshausen, N., and Yu, B. (2009), “Lasso-Type Recovery of Sparse Rep-
resentations for High-Dimensional Data,” The Annals of Statistics, 37,
246–270. [4]

Raskutti, G., Wainwright, M. J., and Yu, B. (2010), “Restricted Eigenvalue
Properties for Correlated Gaussian Designs,” Journal of Machine Learn-
ing Research, 11, 2241–2259. [4]

Rothman, A. J., Levina, E., and Zhu, J. (2009), “Generalized Thresholding
of Large Covariance Matrices,” Journal of the American Statistical Asso-
ciation, 104, 177–186. [1]

Sun, Y., Zhang, W., and Tong, H. (2007), “Estimation of the Covariance
Matrix of Random Effects in Longitudinal Studies,” The Annals of Statis-
tics, 35, 2795–2814. [1]

van de Geer, S. (2006), “High-Dimensional Generalized LinearModels and
the Lasso,” The Annals of Statistics, 36, 614–645. [4]

Yuan,M. (2010), “HighDimensional InverseCovarianceMatrix Estimation
Via Linear Programming,” Journal of Machine Learning Research, 11,
2261–2286. [1]

Zou, C., Ke, Y., and Zhang, W. (2020), “Estimation of Low Rank High-
Dimensional Multivariate Linear Models for Multi-Response Data,”
Journal of the American Statistical Association, 1–11. [4]


	Abstract
	1.  Introduction
	2.  Estimation of Optimal Large Portfolio Allocation
	2.1.  Optimal Portfolio Allocation
	2.2.  A Synthetic Regression Model For Large Portfolio Allocation
	2.2.1.  Estimation of Σ
	2.2.2.  A Synthetic Regression Model


	3.  Asymptotic Properties
	4.  Simulation Studies
	4.1.  Portfolios Under Comparison
	4.2.  Parameter Setting
	4.3.  Comparisons

	5.  Real Data Analysis
	6.  Conclusion
	Acknowledgments
	Funding
	Appendix A:  Proofs of the Theorems
	Appendix B:  Some Lemmas and Proofs
	References


