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Abstract. Labelling data is expensive and time consuming especially
for domains such as medical imaging that contain volumetric imaging
data and require expert knowledge. Exploiting a larger pool of labeled
data available across multiple centers, such as in federated learning, has
also seen limited success since current deep learning approaches do not
generalize well to images acquired with scanners from different manufac-
turers. We aim to address these problems in a common, learning-based
image simulation framework which we refer to as Federated Simulation.
We introduce a physics-driven generative approach that consists of two
learnable neural modules: 1) a module that synthesizes 3D cardiac shapes
along with their materials, and 2) a CT simulator that renders these into
realistic 3D CT Volumes, with annotations. Since the model of geometry
and material is disentangled from the imaging sensor, it can effectively be
trained across multiple medical centers. We show that our data synthesis
framework improves the downstream segmentation performance on sev-
eral datasets. Project Page: https://nv-tlabs.github.io/fed-sim/ .

Keywords: CT synthesis · cardiac segmentation · federated learning.

1 Introduction

High quality pixel-level annotations, necessary for training fully supervised seg-
mentation approaches, are prohibitively expensive to source for medical imaging
data especially in the context of 3D volumes. This is due to the high dimensional-
ity of the data and the complexity of the task of identifying tissue boundaries and
manually delineating the object(s) of interest. Furthermore, identifying regions
of interests often requires expert knowledge.

An appealing alternative to labeling data, is to synthesize it [5,13,16]. Generat-
ing synthetic data sets to learn from, by simulating medical images, has been
proposed in several previous studies. This includes simulation of cardiac CTs [13]
from mesh-based parametric representations of cardiac shape. Among these, Un-
berath et al. [14] were the first to use deep learning to estimate X-ray scatter
and simulate digitally reconstructed radiographs (DRRs) from annotated CT
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2 D. Li et al.

volumes. [16] employed unpaired image-to-image style transfer to further im-
prove the similarity between real X-ray images and the DRRs. These methods
focus on synthesizing DRRs or CTs conditioned on (given) annotations, but
cannot produce novel shapes and annotations from the data distribution. Fur-
thermore, these methods work at the pixel-level and need to be re-trained per
modality. We, instead, break the synthesis process into both, synthesizing novel
3D shapes and materials, and physical sensor simulation allowing us to generate
multiple imaging modalities along with their annotations. We additionally aim
to effectively exploit pools of data available across different acquistion sensors
with as little as annotations as possible. We refer to this learning-based imaging
simulation framework as ‘Federated Simulation’.

We introduce a physics-driven generative approach that consists of two modules:
1) a module that synthesizes 3D cardiac shapes along with their materials, and
2) a CT simulator that renders these into realistic CT volumes. Both are im-
plemented as learnable neural network modules enabling us to simulate realistic
cardiac CTs. Since the model of geometry and material is disentangled from the
imaging sensor, it can effectively be trained across different centers in a privacy
preserving manner. Once trained, our model can synthesize a virtually infinite
amount of data in a desired imaging modality. By design, our approach also
produces ground-truth labels along with the CTs, enabling training of down-
stream machine learning models. We showcase our data simulation framework
to outperform the traditional federated learning approaches in our use case.

2 Methodology

We aim to learn a generative model Sθ, parametrized using neural networks, to
synthesize CT volumes and their corresponding labels (in our case voxel seg-
mentation labels). Here, θ are learnable parameters of our model that we learn
from a given CT dataset D with few annotated and several unlabeled volumes.
We wish to learn Sθ such that it captures the essence of the dataset D, and
can generate new realistic samples from its distribution. These samples are then
used as an auxilary labeled dataset for training downstream machine learning
models (in our case a 3D segmentation neural network).

We introduce our generative model in Sec. 2.1 and explain how we learn it for
a single site in Sec. 2.2. Finally, in Sec. 2.3 we propose how to implement the
algorithm in a federated setting across multiple data sites.

2.1 Generative Model

Our generative model (Fig. 1) generates an organ shape and a material map, both
independent from an imaging device, that are then passed through a CT simu-
lator to generate a synthetic CT volume with labels. Additionally, we enhance
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Fig. 1. Our Generative Model: We sample a latent vector from a normal distri-
bution, and pass it through two neural networks to produce the organ’s shape and a
material map. These are then input to a differentiable CT renderer to produce a CT
volume. A conditional GAN is then used to further improve the realism of the volume.

the generated CT volume using a conditional Generative Adversarial Network
(GAN) [8] to further improve on realism. In the federated simulation setting,
different sites jointly learn a global shape and material model, while each site
maintains a site-specific GAN. Federated setting is discussed in details in Sec 2.3.

Shape/Material Generation: From a latent vector z ∈ Z, we aim to learn to
generate a 3D organ shape and material properties around the shape. To ensure
tractable learning, we constrain generated shapes to be physically plausible and
provide control over the shape using a reduced set of parameters through a
Statistical Shape Model (SSM). Thus, the shape parameter τS = GθS (z) ∈ R21

operates on the SSM in order to generate a mesh of the organ. Along with a vector
of SSM weights (in R14), we also generate a rigid transformation to be applied
to the mesh (in R7, 3 rotation, 3 translation and 1 scale). In our case, the SSM
is a parametric representation of the whole heart and its associated great vessel
trunks (pulmonary artery and aorta), including seven regions, namely, the blood
pool and myocardium of the left ventricle, the right ventricle, the left and right
atria, and the vessels. We estimated our SSM using PCA [10](see supplementary
material for details). We obtain the organ’s mesh and convert it to a volumetric
(voxel) representation for the CT simulator as S = voxelize(B(τS)), with B

being our PCA basis.

From the same latent vector z, we also generate a coarse material voxel map
τM = GθM (z) ∈ R16×16×16. The material map is a combined representation of
the voxel-wise tissue-properties, energy-dependent linear attenuation coefficient
and material density at each point in the object. See supplementary material for
implementation details of GθS and GθM .

CT Simulation: The generated shape S and material map τM are passed
through a physics-based CT renderer to generate a voxelized label map Yz ∈
R128×128×128 and a CT voxel volume X̃z ∈ R16×16×16. Note that the generated
CT volume is coarse due to the coarseness of the material map.
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We use PYRO-NN [12] as our CT renderer, a python-based CT reconstruction
framework which provides cone-beam forward and back-projection operations
embedded as Tensorflow layers, enabling easy integration of the renderer within
our generative neural network. As highlighted in [12] the forward and back-
projection operators are differentiable, thus gradients can be efficiently propa-
gated for end-to-end training of CT reconstruction networks.

CT Volume Enhancement: CT-Images are dependent on factors such as the
scanning machine and acquisition protocol at a site, which are not all modelled
by our CT simulator. Additionally, our generated CT volume is a coarse rep-
resentation. We thus use a GAN to both enhance and translate our simulated
CT slices to look similar to target images, bridging the gap between simulation
and real data. The generated coarse CT volume X̃z and label map Yz are used
to generate the final high resolution synthetic CT slices. Specifically, we utilize
GauGAN [8] (GGAN) to take a slice k of X̃z, Yz and slice index k as input and
produce a final CT slice image Xz,k, with label Yz,k. We choose GauGAN since
it is designed to respect semantic shape input, which is the label map in our
case. Particularly, 1) we take the kth slice of X̃z and trilinearly upsample it
to R128×128, 2) take the kth slice of Yz and 3) create a 128 × 128 slice with a
constant value of k

128
and concatenate them together as the input to GGAN.

Complete generative process can be written succinctly as,

Sz = SSM(GθS (z))

X̃z, Yz = CTsim(Sz, GθM (z))

Xz,k = GGAN(X̃z,k, Yz,k, k) ∀ k

where Sz represents the shape obtained from the SSM with parameters GθS (z).

2.2 Learning

We train our generative model using the Generative Latent Optimization (GLO) [2]
framework in two stages: pre-training and unsupervised training. First, we pre-
train the model using the labeled training subset, and then fine-tune the model
in a semi-supervised fashion using the rest of the unlabelled training data. We
first introduce the GLO framework and then describe our training stages.

GLO [2]: GLO is a technique for learning generative networks using only recon-
struction losses. In our case, every volume in the training set is coupled with a
particular latent vector zi (initialized from a unit normal distribution), which is
simultaneously learnt along with a generation process that transforms zi into a
volume. Learning is done by optimizing reconstruction losses between the gener-
ated volume and the corresponding ground truth volume. The set of learnt latent
vectors {zi} can be fit to a parametric distribution (eg. multivariate normal),
which is sampled from to generate new volumes. We choose GLO due to its sta-
bility in training while enjoying visual-appealing samples property of GANs. We
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Fig. 2. Federated Simulation: Cen-
tral server trains a generative model of
3D organ shape and material, which
is deployed to centers. Clients train
local device models that mimic their
sensors. Clients send gradients w.r.t.
shape and material back to server.

also found that GLO has better sample quality in small-data regime comparing
to Meta-Sim[5].

Pre-training: We use the training CT volumes which have ground truth an-
notations to pretrain the parameter generation module (GθS and GθM ). We use
the mean Intersection-Over-Union (mIoU) metric to learn GθS (in our case, gen-
erated Y i

z and ground-truth Y i are binary), and a combination of mean-square-
error and perceptual loss [4] using all VGG-19 [11] layer features for GθM .

LIoU(θS) = 1− Y i
z ⊙ Y i

Y i
z + Y i − Y i

z ⊙ Y i

L(θM ) =
∥

∥

∥
X̃i

z − X̃i
∥

∥

∥

2

2
+ Lperc(X̃

i
z, X̃

i)

where X̃i ∈ R16×16×16 is the trilinearly downsampled real CT volume Xi , ⊙
represents the hadamard product and other operations are element-wise for ma-
trices. Lperc is implemented following [8]. Backpropagation through the SSM is
done by calculating the gradients using finite-differences on the low-dimensional
SSM parameters.

After pre-training GθS and GθM , we pre-train our conditional GAN GGAN.
Specifically, in this phase, we use a slice k of the ground truth labels Y i in-
stead of the generated labels Y i

z , and the generated material X̃i
z as input to the

GAN, and supervise it with the associated real CT Volume Xi, using the same
loss functions as [8]. Using the ground truth label ensures that the input label
and the output image have the same exact shape, resulting in the GAN learning
to generate a high-resolution CT that respects the input shape.

Semi-Supervised Learning: We utilize the unlabelled data (which is typically
more widely available) in the training set to improve our simulation. The abun-
dance of unlabelled data and the cost of annotation makes this a compelling
proposition. In this stage, we alternate between training on supervised data (ex-
plained above), and training on unsupervised data. We first fit a multivariate
normal distribution to the latent vectors optimized in the pre-training phase,
and sample new random latent vectors zi for the new unlabelled data-points
from this distribution. To train unsupervised, we run our full generative process
from every zi to generate a high resolution CT image Xi

z,k for some random slice

index k from zi and use the same loss function for the GAN as above to train.
This phase adapts the model to be able to learn shape and material properties
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for data points without ground-truth segmentation annotations. Note that we
freeze the GAN discriminator in this phase, and observe that it strongly improves
training stability.

2.3 Federated Simulation

Medical data (CTs in our case) is usually available at multiple sites, each with
their specific acquisiton parameters and privacy concerns, which makes both,
consolidating data and training on consolidated data (domain adaptation) diffi-
cult. With our learning-based simulation, we demonstrate federated simulation,
where we learn our generative model with data from multiple hospitals in a fed-
erated fashion. Because of our disentanglement of shape and material from the
CT process, we are in an advantageous position where we can learn shape and
material parameters across multiple sites, and render generated shapes and ma-
terials from this global distribution into CT volumes from a particular hospital’s
distribution through the CT simulator and the site-specific (local) enhancement
GAN. This mitigates both issues of data consolidation and domain adaptation.

Fig. 2 depicts this process. We learn one GθS and GθM to model the distribution
of shapes and materials across sites, and learn a site-specific GGAN. In every
case, we take one step update from each site, accumulate gradients and run a
step of gradient descent at the server, and broadcast the updated weights θS
and θM back to the sites. Note that this is a simple federated setting and serves
to demonstrate our method; but a real deployment would require additional
engineering considerations. See supplementary material for details.

3 Experiments

We validate our method on three Cardiac-CT datasets on both the single hospital
train/test and our federated scenario. Additional ablation studies are conducted
to validate our design choices. We split each dataset into train, validation and
test subsets and experiment with different sizes of labels made available in the
training set. All experiments are done using five-fold cross validation, and we
report the mean and std. deviation of the test set performance.

Table 1. Dataset Split Sizes

Dataset Train Val Test

CT20 [17] 12 4 4

CT34LC [15] 20 7 7

CT34MC[15] 20 7 7

Table 2. Ablation Studies

Method Perf.

Rand Shape + GAN 67.07

+ Alpha blend 68.80

+ Poisson blend 76.44

Ours Fix-Mat 78.92
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Datasets: We will refer to our datasets as CT20, CT34LC and CT34MC.
CT20 data was collected from healthy adults at the Shanghai Shugang Hospital,
China, and provided as part of the MM-WHS challenge [17]. The CT34LC and
CT34MC data [15] were collected from congenital heart disease patients, whose
ages ranged from 1 month-21 years. We split it into two equal-sized datasets
based on pathological differences. Tab. 1 details the split sizes for each of the
three datasets. Large difference in age demographics and the presence/absence of
pathology correspond to substantial variations in cardiac shape pose a significant
challenge for generalization in learning.

Evaluation Metric: To evaluate the performance of our generated dataset, we
train a 3D-Unet [3] for binary segmentation of the heart region and measure its
performance on the respective test set. Such task-based performance evaluation
of generative models has been proposed in [1], and we adopt it here. For every
experiment with synthetically generated data, we evaluate by first pre-training
on the synthetic data and then fine-tuning on the available real data. We note
that semi-supervised training techniques [6] could be used for the segmentation
model to make use of unlabelled CT-volumes in all cases, which we omit here.

Single Site Simulation:We first evaluate our model independently per dataset.
We compare against training a supervised model using the subset of training
dataset with labels (Lower Bound) and training the supervised model on
the full training dataset (Upper Bound) using extra training labels that our
method does not have access to. We also compare three variants of our model,
1) instead of predicting a material map, using a fixed atlas of attenuation coeffi-
cients [14] (Ours Fix-Mat) (in this setting, the material map and the rendering
is already high-resolution), 2) using only our pre-trained method (Ours Pre)
and 3) using our full method with semi-supervised training (Ours-Full). We
also evaluate with different amounts of labels available from the training set. 20
synthetic volumes are generated when using our generative model to synthesize
data, and all 3D-Unet training was done with a batch size of one. Tab. 3 sum-
marizes these results, and shows the effect of learning material parameters, as
well as utilizing unlabelled data to learn the simulator. We see that our method
beats the lower bound across all datasets, sometimes even beating the upper
bound, meaning that using our synthesized data improves performance more
than using all annotations from the training set. Some generated samples per
dataset are shown in Fig. 3. In the figure, we also show that our method gener-
ates novel samples by showing the nearest neighbour sample (computed on the
whole CT-Volume) from the training set.

Federated Simulation: Next, we evaluate our method in the Federated set-
ting. Specifically, we simulate the federated setting by using our three datasets
as three different sites. We compare against training the segmentation network
directly in a federated setting [7] (Direct-FL). In the federated simulation sce-
nario (Ours-Sim-FL), each hospital generates data by sampling shapes and
materials from the shared model and using their local GAN (see Fig. 2). We
argue that this can reduce domain-adaptation issues in sharing data (different
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Table 3. Quantitative Results of training a Unet-3D binary segmentation model on
our generated data on three datasets. We see that data generated by our methods (with
access to a small subset of training labels) outperforms baselines on both the single
site and federated simulation case. It sometimes outperforms the upper bound of using
the full training set as well. Method with highest mean is in bold.

CT20 CT34LC CT34MC
Label Sz. 4 Label Sz. 8 Label Sz. 6 Label Sz. 12 Label Sz. 6 Label Sz. 12

S
in
g
le

S
it
e

S
im

u
la
ti
o
n

Lower Bound 87.65±2.20 86.33±2.09 85.25±4.57 87.27±2.52 85.32±1.50 84.65±2.23
Ours-Fix-Mat 87.87±4.28 88.32±5.11 86.33±1.69 88.32±1.81 83.13±2.19 84.91±1.97
Ours-Pre 87.78±4.28 91.35±1.55 87.39±2.34 88.01±1.30 85.92±1.37 84.91±1.35
Ours-Full 88.95±2.97 91.39±1.27 85.91±3.61 88.98±1.86 84.79±1.73 85.13±2.31

Upper Bound 89.81 ± 2.50 88.76 ± 1.82 85.75 ± 2.43

F
e
d
e
.

S
im

Direct-FL 91.65±2.69 92.45±1.52 89.34±1.27 90.17±1.40 87.11±1.55 87.29±1.84
Ours-Sim-FL 90.71±1.62 93.45±1.21 88.33±2.10 90.19±2.21 87.15±1.66 87.40±1.71

devices, protocols etc.), since shapes and materials from other hospitals’ dis-
tributions can be rendered under another hospital’s conditions using the CT
Simulator and the site-specific GAN. The federated learning baseline (Direct-
FL) averages three gradients from the sites, and thus runs at an effective batch
size of three. Therefore, for fair reporting, all other 3D-Unet training also uses
a batch size of three. Tab. 3 presents these results. For all methods, we used the
combination of lower label sizes (4,6,6) of all datasets for one experiment, and
all the higher label sizes (8,12,12) for another. Every model was fine-tuned on
the particular site’s labelled training data before reporting. We see that using
federated-simulation performs comparably or slightly worse with the federated
baseline across all datasets, showing that we can indeed learn to simulate and
share a simulator across sites instead of sharing/working on real data samples,
which comes with significant privacy concerns.

Performance on out-of-distribution samples: We simulate the case where a
patient from one hospital A goes to hospital B, by running the GAN trained for
hospital B on the patient’s GT segmentation mask and downsampled CT image.
An ideal segmentation network would perform well on this out-of-distribution
sample. See supplementary material for results.

Ablation Studies: We ablate our choice of learning shape parameters for the
SSM in Tab. 2. These experiments use are performed in the Ours-Fix-Mat
setting. Specifically, we compare with randomly generating shapes (instead of
learning) from the SSM, alpha blending the heart (foreground) from the CTsim

output with the background from the GAN output, poisson blending [9] in the
same case and our method of learning the shape and using the full output of the
GAN. These results show the efficacy of learning the shape parameters, and using
the conditional GAN to generate the final enhanced output. All experiments here
train only on synthetic data and are trained on the CT20 dataset (with 4 training
labels).
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Fig. 3. Qualitative Results: Two sets of examples per dataset. First two columns show
random samples (one slice) from our full model on each of the datasets. Last two
columns show nearest neighbour (same slice) from the training set. Our model can
generate plausible yet novel data samples with annotations.

4 Conclusion

In this paper, we introduced a generative model for synthesizing labeled cardiac
CT volumes that mimic real world data. Our model abstracts modeling of the
shape and material away from the imaging sensor, which enables it to learn
in a federated setting, within a framework we call federated simulation. We
show that using data generated by our method in both single-site and federated
settings improves performance of a downstream 3D segmentation network. Our
method currently is using a SSM to parameterize the shape which has limited
representation ability. In the future work, we aim to explore a more flexible
shape representation and extend the current framework to generate and learn
from multiple image sensors (MR, CT etc.).
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1 Out-of-Distribution Simulation Experiments

We simulate the case where a patient from one hospital A goes to hospital B, by
running the GAN trained for hospital B on the patient’s ground truth segmen-
tation mask and downsampled CT image. An ideal segmentation network would
perform well on this out-of-distribution sample. We summarize results in Tab. 1,
where we see that our method consistently outperforms or performs similarly
to our baseline methods on dealing with these (simulated) out-of-distribution
inputs, which comes from our disentanglement of the sensor and content (shape
and material), helping segmentation models trained on our simulated data gen-
eralize better. This experiment is in simulation since gaining such data (a patient
with data at two different sites) is a challenge, but we hope to be able to perform
this experiment on real data in the future.

Table 1. Quantitative Results of the Out-Of-Distribution simulation experiment,
where we test performance on simulated data of patient from one hospital going to
another hospital. Method with highest mean is in bold.

CT20 Label Sz. 8 CT34LC Label Sz. 12 CT34MC Label Sz. 12
CT34LC CT34MC CT20 CT34MC CT20 CT34LC

S
in
g
le

S
it
e

S
im

u
la
ti
o
n

Lower Bound 72.56±2.02 67.52±1.94 84.88±3.31 83.03±3.47 84.41±3.13 86.27±2.79
Ours-Fix-Mat 73.96±3.12 69.79±1.49 87.30±2.65 84.41±2.41 84.14±2.62 86.94±2.75
Ours-Pre 76.58±3.01 71.84±2.21 86.22±2.20 83.65±2.38 81.54±2.01 84.46±3.20
Ours-Full 75.61±1.28 70.55±0.77 84.87±2.92 84.08±3.11 83.13±2.63 85.93±2.17

Upper Bound 76.19±1.64 71.69±1.91 84.01±2.54 82.73±3.23 84.15±1.86 86.39±2.63

F
e
d
e
.

S
im

Direct-FL 78.33±3.37 73.05±3.53 85.63±2.13 84.67±2.90 83.86±2.06 87.95±2.16

Ours-Sim-FL 78.07±3.53 74.11±2.77 86.79±1.86 84.70±2.41 84.52±2.94 87.76±2.83

2 Shape Preprocessing Details

Our shape model are obtained from MM-WHS challenge [5] MRI annotation.
We convert the 20 cardiac volume label into mesh using Marching Cube [2]. The

⋆ Correspondence to {daiqingl,sfidler}@nvidia.com
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extracted mesh model contains 4319 vertices and 8610 faces. We then estimate
our SSM model using PCA to obtain the mean shape and the vectors of SSM
weights. The shape class mean and covariance can be written as:

s̃ =
1

M

M
∑

i=1

si (1)

C =
1

M − 1

M
∑

i=1

(si − s̃)(si − s̃)T (2)

The PCA of the shape produces l eigenvectors Φ = [ϕ1ϕ2...ϕl] and the cor-
responding eigenvalues Λ = diag(λ1, λ2, ..., λl]). Then the new shape can be
approximated from the following linear generative model:

s ≈ s̃+ Φb (3)

where b ∈ R14 are shape parameters. In our experiment, we use the first 14
eigenvectors and we limite the range of b from −1.5

√
λ to 1.5

√
λ.

3 Shape/Material Parameter Generative Model
Implementation Details

In all our experiments, we choose our latent vector z ∈ R32. Our Genera-
tive Model of Shape GθS is parametrized as a three layers Multilayer Percep-
tron(MLP). Each layer is a linear layer followed by an Leaky-ReLU activation
except for the last layer where the activation function is Tanh. The layer weights
are of size 32× 256, 256× 128, and 128× 21. The design of our generative model
of material GθM is based on [4]. It consists of three fully convolutional layers with
{256, 128, 1} number of channels , kernel sizes of {3, 3, 3} with a stride of 1. Sim-
ilar to [4], we add batch normalization and ReLU layers between convolutional
layers, and a Tanh layer at the end. Instead of using Transposed Convolutions
to increase the output spatial dimension, we use Nearest-Neighbour Upsam-
pling before each convolution to avoid checkerboard artifacts [3]. Specifically, we
upsample with a scaling factor 4 to transform input z with spatial dimension
1× 1× 1 (and 32 channels) into 4× 4× 4. Then we use two more upsampling
layers with scaling factor 2 before each convolution layer to get the final output
in R16×16×16.

4 Semi-Supervised Learning Training Details

At the beginning of this phase of training, we fit a multivariate normal distribu-
tion to the latent vectors optimized in the pre-training phase and sample new
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random latent vectors zi for the new unlabelled data-points from this distribu-
tion. The intuition is that unlabelled data and labelled data come from the same
data distribution, thus the latent representation of unlabelled data-point should
come from the same latent distribution. While training, we use two Adam [1]
optimizers with two different learning rate schedules for labelled and unlabelled
data respectively. When training with labelled data (data used in the pre-training
phase), we use a learning rate 1e−4 for zi, GθS and GθM and 1e−5 for GGAN .
For the unlabelled data, we use a learning rate 1e−3 for zi, GθS and GθM and
1e−4 for GGAN . As the unlabelled data was not used in the pre-trained stage,
we use a larger learning rate these data points. These learning rates are used for
the first 30 epochs, and we linearly decay the learning rate of all the models to
0 for the last 30 epochs. Note that we freeze the weights of Discriminator during
the training with the assumption that it can already distinguish fake/real data
well by learning from labelled data, which we found this stabilize the training
process significantly.

5 Federated Learning Setup Details

In our Federated Learning experiment, we setup the gradient communication
between the clients and the server synchronously with a gradient update step 1.
Specifically, we assume each client holds a private dataset (in our case, CT20,
CT34 LC and CT34 MC) and the same model as in the server’s site. At each
training step in the client site, the clients will send back the gradient with respect
to the current model sequentially to the server. In the server site, the server will
do gradient aggregation and update the model parameters once it receives all the
gradient from the clients. After the gradient update, the server will send back
the new model to each of the client. This process continues until a maximum
number of iteration. Implementation wise, this is equivalent to maintain a mini-
batch of each client’s private data and at each training step, the model will do
a forward pass sequentially for each of the mini-batch. And then update the
current model’s parameters using the averaged accumulated gradient from all
the mini-batches. In our experiment, we choose batch size one for each of the
client, which makes the overall effective batch size three since we do one gradient
update step after three forward passes. To compromise it, we also use batch size
three for our method in FL setup. Note that in the FL baseline implementation,
we use validation set from all the clients to select the best model and adjust the
learning rate, which is different from our methods where we use fix number of
iteration to pick the model. This difference might give our FL baseline advantage
since it can learn a more generalized model using average score from all validation
set. Under this setup, our model shows comparable performance comparing to
the baseline. We will further exploit different options and a more realistic FL
implementation for future work.
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Fig. 1. Qualitative Results: First two columns show random samples (full volume) from
our full model on each of the datasets. Last two columns show nearest neighbour from
the training set. We see that our model can generate plausible yet novel data samples
with annotations (second column).



Federated Simulation for Medical Imaging Appendix 5

O
u
rs
-F

ix
-M

a
t

O
u
rs
-P

re
O
u
rs
-F

u
ll

Fig. 2. Qualitative Results: Three random samples(Full Volume) from our different
methods. Ours-Pre has better image quality and slice consistency comparing to Ours-
Fix-Mat. Ours-Full has more diverse object shape and background comparing to the
other two methods.
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Fig. 3. Qualitative Results: Three samples generated by our method in different
datasets. The first column is the generated shape, the second column is the generated
material, the last column is the generated image. Note how the shape and material are
consistent and correlated.
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