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Abstract

Background/Aims: There is growing interest in the use of adaptive designs to improve the efficiency of clinical trials.

We apply a Bayesian decision-theoretic model of a sequential experiment using cost and outcome data from the
ProFHER pragmatic trial. We assess the model’s potential for delivering value-based research.

Methods: Using parameter values estimated from the ProFHER pragmatic trial, including the costs of carrying out the

trial, we establish when the trial could have stopped, had the model’s value-based stopping rule been used. We use a
bootstrap analysis and simulation study to assess a range of operating characteristics, which we compare with a fixed

sample size design which does not allow for early stopping.

Results: We estimate that application of the model could have stopped the ProFHER trial early, reducing the sample
size by about 14%, saving about 5% of the research budget and resulting in a technology recommendation which was the

same as that of the trial. The bootstrap analysis suggests that the expected sample size would have been 38% lower, sav-

ing around 13% of the research budget, with a probability of 0.92 of making the same technology recommendation deci-
sion. It also shows a large degree of variability in the trial’s sample size.

Conclusions: Benefits to trial cost stewardship may be achieved by monitoring trial data as they accumulate and using a

stopping rule which balances the benefit of obtaining more information through continued recruitment with the cost of
obtaining that information. We present recommendations for further research investigating the application of value-

based sequential designs.
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Introduction and background

There is growing interest in the use of adaptive designs

to improve the efficiency of clinical trials. Adaptive

designs involve monitoring outcome data as they accu-

mulate, permitting changes to be made to the trial –

such as varying the allocation ratio, or stopping early –

in response to the evolving evidence. A large literature

surveys their development and application and the

potential they offer for improving efficiency.1–8

Despite this interest, little attention has been paid to

how statistical decision rules in an adaptive clinical trial

might formally account for the costs and benefits of the

trial itself. This hampers assessment of the value that

such designs might create for health care systems. A

growing number of theoretical papers, some with illus-

trative applications, have proposed the use of value-
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based criteria for fixed sample size designs,9–11 as well

as adaptive ones.12,13 However, lack of guidance on

how research costs should be measured and how accu-

mulating evidence about treatment costs and health

outcomes may inform decision rules as a trial pro-

gresses, means that incorporation of costs and benefits

in adaptive clinical trials remains an under-researched

area. The United Kingdom’s National Institute for

Health Research has recognised this and has recently

provided ‘Annual Efficient Studies’ funding to clinical

trials units to investigate further. The ‘Costing

Adaptive Trials’ (CAT) project14 will provide costing

guidance; the ‘EcoNomics of Adaptive Clinical Trials’

(ENACT) project15 will assess how cost-benefit criteria

may be incorporated.

In this article, we apply a recent contribution proposing

a Bayesian decision-theoretic model of a sequential clinical

trial13,16 – (a sequential trial is a special kind of adaptive

trial in which data are monitored as they accumulate over

a sequence of interim analyses – using retrospective data

from the) PROximal Fracture of the Humerus: Evaluation

by Randomisation (ProFHER) pragmatic trial. The

ProFHER trial was a multicentre randomised clinical trial

conducted in the United Kingdom National Health

Service which compared surgery with sling immobilisation

for the treatment of displaced proximal humeral frac-

ture.17–19 We believe that the application is the first of its

kind to use research cost data to inform this model. It is

presented as a ‘proof of concept’ study which contributes

to the gap in the literature discussed above.

The ProFHER trial was designed according to stan-

dard criteria for a fixed sample size clinical trial.

However, by considering how the effectiveness and

research cost data accumulated over the course of the

trial, we can estimate when the trial could have stopped,

had a decision rule based on evaluating the cost-

effectiveness of the research process been used. Our

interest is not in whether such a rule could replace a

fixed sample size, or group sequential, clinical trial

designed according to traditional criteria. Rather, we

are interested in whether such a rule could complement

such designs, by providing additional information to

trials teams about whether interim evidence suggests

that the benefit of randomising further patients into the

trial is worth the cost. This matter is of particular inter-

est for trials such as the ProFHER trial, where the extra

costs associated with surgery and subsequent revision

and secondary surgery, compared with the cheaper

alternative of sling immobilisation, meant that while

accumulating clinical evidence may not have suggested

that one treatment was superior to the other, accumu-

lating cost-effectiveness evidence might have done.

Further, patient and surgeon preferences for the two

sharply contrasting treatment options were expected to

be a major threat to completing successfully recruit-

ment into the trial. Hence a value-based stopping rule

might have been useful.

Methods

The Bayesian model

Chick et al.13 model a two-armed sequential clinical

trial in which patients are randomised, in a pairwise

and sequential manner, to a new health technology, N,

and a control (or standard) health technology, S.

Follow-up of health outcomes and treatment costs for

each patient occurs after D ø 0 units of time. To reflect

beliefs concerning the cost-effectiveness of the technolo-

gies before starting the trial, the model places a prior

distribution on the expected value of the net monetary

benefit of N minus that of S, where net monetary bene-

fit for technology i 2 fN, Sg is defined as lEi � Ci,

where E is a random variable denoting effectiveness, C

is a random variable denoting treatment cost and l is

the willingness to pay for an additional unit of effective-

ness in the jurisdiction of interest (e.g. following advice

for the United Kingdom National Health Service,20 the

ProFHER trial set l equal to £20,000 per Quality

Adjusted Life Year (QALY)).

The objective of the model is to obtain a rule to halt

recruitment to the trial. This rule maximises the

expected net benefit of carrying out the trial and then

recommending one of the two technologies on cost-

effectiveness grounds for the treatment of P patients

who are expected to benefit from the adoption decision.

The costs of carrying out the trial and the costs incurred

in switching technologies are included in the measure of

expected net benefit. The Supplemental Material dis-

cusses the model’s objective function in more detail.

The trial can make a maximum number of Qmax

pairwise allocations. The outcome of interest is incre-

mental net monetary benefit, X, the difference between

the net monetary benefit of N and S. For pairwise allo-

cation j, j= 1 , 2 , . . . ,Qmax , this is

Xj = l EN, j � ES, j

� �

� CN, j � CS, j

� �

ð1Þ

We assume that X has a normal distribution and

that its expected value, W, is unknown and its variance,

s2

X , is known. Before starting the trial, beliefs about W

are modelled using a normal prior distribution with an

expected value of m
0
and variance of s2

0
. n0 =s2

X=s
2

0
is

the ‘effective sample size’, measured in pairwise alloca-

tions, of the prior distribution.

Assuming a fixed rate of recruitment to the trial, we

may express the delay in terms of time, D, or pairwise

allocations, tø0 . The trial comprises three distinct

stages:

1. Stage I: patients are recruited and randomised, but

no patient-level health outcome or treatment cost

data are observed owing to the delay in following

up;

2. Stage II: patient-level health outcome and treat-

ment cost data are observed and are used to update

2 Clinical Trials 00(0)



the prior distribution using Bayes’ rule. There is

the option to randomise another pair of patients,

or to stop recruitment to the trial. Define x as an

observation of incremental net monetary benefit.

Then the posterior mean for expected incremental

net monetary benefit after outcomes for n pairwise

allocations is21

mn =
m
0
n0 +

Pn
j= 1

xj

n0 + n

If, during Stage II, the expected benefit of randomis-

ing a further pair of patients is less than the cost, Stage

II finishes, having made T pairwise allocations, and the

trial moves to Stage III.

1. Stage III: health outcome and treatment cost data

for patients in the ‘pipeline’ – those who have been

treated but whose outcomes are yet to be observed

– are observed and Bayesian updating continues.

T is chosen so that the overall expected value of the

trial – the total incremental expected benefit which

accrues to the P patients, minus the fixed (cfixed) and

variable (c) research costs, together with any costs I

incurred in adopting one of the two technologies – is

maximised. The decision rule fully accounts for the

uncertainty in the data generating process and the prior

distribution for expected incremental net monetary

benefit. We call a rule which meets this objective an

‘Optimal Bayes Sequential policy’ and obtain such a

policy using dynamic programming methods.13

There are two scenarios in which it is not optimal to

enter Stage II: (1) the expected benefit from entering

Stage II is less than that of running a trial with a fixed

number of pairwise allocations in the range (0, t). In

this scenario, the Optimal Bayes Sequential policy

selects the same sample size as a trial designed to maxi-

mise the difference between the expected value of sam-

ple information and the cost of sampling.9–11 We call

this an ‘Optimal Bayes One Stage’ design; (2) the value

of the prior mean favours one of the two technologies

so strongly that the expected cost of conducting any

trial outweighs the expected benefit. In this scenario,

the Optimal Bayes Sequential policy is to run no trial

and base the adoption decision on the sign of the prior

mean alone.

Figure 1 presents a representation of the stopping

policy for the problem in (pairwise allocations 3

prior/posterior mean) space. If it is optimal to run a

sequential trial, recruitment of patients takes place dur-

ing Stage I but no outcomes are observed. At the start

of Stage II, health outcomes and treatment costs for

the first pairwise allocation are observed and used to

update the prior mean. Outcomes then arrive sequen-

tially, the posterior mean is updated sequentially and

interim analyses of the data are permitted. As long as

the posterior mean lies within the area defined by the

stopping boundary (we refer to this as the ‘continuation

region’), it is optimal to continue recruitment. Once the

posterior mean crosses the boundary, it is optimal to

halt recruitment and move to Stage III. There is no lon-

ger a continuation region in Stage III because recruit-

ment is no longer taking place. In the analysis that

follows, for consistency with the ProFHER application,

we assume that the cost of switching technologies, I, is

equal to zero. This means that, once outcomes for all

patients in the trial have been observed, the cost-

effectiveness of the new technology is judged according

to whether or not the posterior mean is greater than

zero. If it is greater than zero, the new technology is

deemed to be cost-effective; if not, the standard tech-

nology is deemed to be cost-effective.

The letters ‘A’ to ‘D’ in Figure 1 denote ranges for

the prior mean m
0
which define the optimal choice of

trial design. If m
0
lies between points ‘C’ and ‘D’, it is

optimal to run the sequential trial, with the starting

point for the path of the posterior mean in Stage II

being determined by the value of m0. If m0 lies between

‘A’ and ‘C’ or ‘D’ and ‘B’, it is optimal to run the

Optimal Bayes One Stage design. If m0 lies above A or

below B, no trial should be run and the adoption deci-

sion should be based on the value of the prior mean

alone: above A, prior information is strong enough to

Figure 1. Stopping boundary for the Optimal Bayes Sequential

model, showing the three stages of the trial (marked ‘I’, ‘II’ and

‘III’) and the continuation region. Stages II and III are shown

assuming that the sequential trial stops at the maximum sample

size of Qmax pairwise allocations. t is the delay, measured in

terms of the number of pairwise allocations, in observing the

health outcome and treatment cost for each pairwise allocation.

Interim analyses to inform early stopping are permitted during

Stage II as outcomes are observed.

Forster et al. 3



favour immediate adoption of N; below B, it is strong

enough to favour immediate adoption of S.

The shape of the stopping boundary and the ranges

for m
0
over which each of the three trial designs is opti-

mal are a function of the model’s parameter values and

so will vary across applications. Where there exists a

large degree of uncertainty over the values of a particu-

lar parameter, sensitivity analysis may be carried out.13

The application

The ProFHER trial. Between September 2008 and April

2011, 250 patients aged 16 years and older who pre-

sented to orthopaedic departments in United Kingdom

National Health Service hospitals with a displaced

proximal humeral fracture were randomised to either

(1) surgical treatment, which consisted of fracture fixa-

tion with plate and screws to preserve the humeral

head, or humeral head replacement, followed by active

rehabilitation, or (2) non-surgical treatment, which con-

sisted of sling immobilisation for the injured arm for as

long as was thought necessary, followed by active reha-

bilitation. Following discussions with the funder, it was

agreed that a single follow-up time point would not be

specified for the primary health outcome measure, the

Oxford Shoulder Score. Rather, follow-up points were

fixed at 6, 12 and 24 months. Analysis of clinical and

cost-effectiveness used the intention to treat principle

(during the trial, 16 patients randomised to surgery

switched to sling and 2 randomised to sling switched to

surgery).17–19 The economic evaluation consisted of a

cost-utility analysis which took the National Health

Service perspective. The European Quality of Life-5

Dimensions-3L instrument was used to obtain the

QALYs at 3, 6, 12 and 24 months using the area under

the curve method.

The trial’s results suggested that there was no differ-

ence between surgical intervention and sling, as mea-

sured by the average value of the Oxford Shoulder

Score at the three follow-up points. Surgical interven-

tion for one patient cost an estimated £1758 more than

sling (95% confidence interval = (£1126, £2389)) and

yielded an estimated 0.0101 fewer QALYs (95% confi-

dence interval = (20.13, 0.11)). A 5-year follow-up

found the main results unchanged.22

The ProFHER trial was funded by the National

Institute for Health Research, with a total budget of

£1,485,585. Figure 2 shows how the research budget

spend accumulated over the lifetime of the project (left

axis, continuous black line), together with the path for

the cumulative estimate of incremental net monetary

benefit at 1 year (right axis, dashed blue line), measured

in blocks of 10 patient pairs at a time.* Positive values

suggest that surgery is cost-effective. Key milestones in

the project are denoted by the letters ‘A’ to ‘E’. The

research costs plotted in Figure 2 are those relating to

the research budget itself. Treatment costs were not

charged to this budget, rather they were funded as part

of normal commissioning arrangements within the

National Health Service. For the purposes of this work,

we assume that treatment costs would have been the

same with or without the trial, on average, across the

hospitals participating in the trial.

The path of the cumulative estimate of expected

incremental net monetary benefit shown in Figure 2

was not available to the investigators as the trial pro-

gressed. The path shows that, although surgery

appeared cost-effective initially, the estimate favoured

sling by late 2010 and remained that way for the rest of

the follow-up. Viewed in terms of incremental effective-

ness versus incremental cost at 1 year, the overall story

of the trial is that there was no evidence that surgery

was more effective than sling (using both the primary

health outcome measure and QALYs), but there was

strong evidence that surgery was more costly than

sling. The Supplemental Material provides further

details about how the differences between the estimates

of incremental QALYs, Oxford Shoulder Score and

treatment costs evolved.

Estimation of parameter values. Using the research cost

data from the trial, we estimated that costs of approxi-

mately £161,000 were incurred prior to the recruitment

of the first patients in September 2008 (labelled as ‘A’

in Figure 2). During the recruitment phase (which fin-

ished in April 2011, labelled ‘B’) and the 2-year follow-

Figure 2. Cumulative budget spend for the ProFHER trial (left

axis, continuous line) and average of incremental net monetary

benefit at 1 year (right axis, dashed blue line, plotted in blocks

of 10 patient pairs, 10 receiving surgery and 10 receiving sling).

Key milestones: ‘A’ – recruitment starts; ‘B’ – recruitment

finishes; ‘C’ – 1 year follow-up finishes; ‘D’ – 2 year follow-up

finishes; ‘E’ – publication of principal articles.17,18
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up phase (which finished in April 2013, labelled ‘D’),

further costs of approximately £1,020,000 were

incurred. The main results17,18 were reported 2 years

later (‘E’), and the project concluded at the end of

December 2016. Approximately £289,000 of costs were

incurred post follow-up. These covered the tasks of

data preparation, cleaning, analysis and report writing.

The total spend was approximately £1,470,000. We

assume that the costs incurred during the recruitment

and follow-up phases were split 50:50 between fixed

and variable costs, which implies an estimate of an

average cost per pairwise allocation of c= £4, 080 .

For the purposes of exposition, we assume that the

delay D is equal to 1 year. We estimate that the rate of

recruitment is approximately 47 pairwise allocations

per year, so that t= 47 pairwise allocations. We

assume a near non-informative prior, setting m
0
= 0

and n0 equal to two pairwise allocations, representing

the lack of evidence for cost-effectiveness at the start of

the trial. The other parameter values used for the appli-

cation, together with their sources and the assumptions

used to obtain them, are reported in Supplemental

Table 2 of the Supplemental Material and accompany-

ing discussion.

Implementation of the model. We take the perspective of

the ProFHER researchers prior to commencing the

trial, but post trial commissioning. That is, we assume

that a decision to commission the research and commit

fixed costs cfixed has already been taken. The solution

to the model permits interim analyses to be made at

any point during Stage II, including one pairwise allo-

cation at a time. For the purposes of illustration, we

assume that interim analyses take place once every 10

pairwise allocations.

We run two versions of the model. The first assumes

that the maximum number of pairwise allocations that

can be made, Qmax , is equal to 125, that is, the sample

size of the ProFHER trial itself. The second assumes

that Qmax is equal to 250, that is, double this maxi-

mum sample size. We ran the latter version of the

model to test the sensitivity of results to a design which

permits the stopping time to exceed that of the

ProFHER trial. Matlab code which implements the

computations is provided at https://github.com/

sechick/htadelay.

Results

When would the Bayesian sequential version of the

ProFHER trial have stopped?

Figure 3 plots the Stage II stopping boundaries for the

two versions of the model. Also drawn is the path of

the posterior mean for expected incremental net mone-

tary benefit, derived using the data as it accumulated in

the ProFHER trial (continuous black line, markers:

‘8’). This is drawn using the summary data for effective-

ness and treatment costs from the trial, arranged in

blocks of 10 pairwise allocations, and reported in

Supplemental Table 1 of the Supplemental Material.

The other paths in Figure 3 are described in the next

section. Figure 3 shows that doubling the maximum

sample size from 125 to 250 pairwise allocations has lit-

tle impact on the shape and location of the stopping

boundary between the start of Stage II and

Qmax = 125.

The first point on the path for the posterior mean,

at the start of Stage II and at an effective sample size of

49 pairwise allocations (equal to n0 = 2 plus the delay

of 47 pairwise allocations), is equal to the prior mean

(m
0
= 0 ). Figure 3 shows that, independently of

whether Qmax = 125 or 250, Stage II would have con-

cluded after 107 patient pairs had been recruited, with

a posterior mean equal to 2£1110. This is shown by

the interim analysis marked ‘X’ in Figure 3 and corre-

sponds to the first point at which the posterior mean

lies outside the stopping boundary. Follow-up of the 47

patient pairs in the pipeline is shown by the remaining

circles on the path and would have led to a posterior

mean for expected incremental net monetary benefit

equal to approximately 2£1810, suggesting that sur-

gery is not cost-effective. Hence, irrespective of whether

Qmax is set to be 125 or 250 pairwise allocations, the

sequential trial would have stopped early, with no

change in the technology recommendation and little

change in the estimate of cost-effectiveness, saving 18

patient pairs (14% of the trial’s actual sample size) and

approximately 18 3 £ 4, 080 = £ 73, 000 (5% of the

total cost of the trial).

Bootstrap analysis

To investigate the degree of variability in the sample

size and other operating characteristics, we used a non-

parametric bootstrap analysis. We sampled at random,

and with replacement, from the data in Supplemental

Table 1 of the Supplemental Material and obtained

5000 bootstrapped paths for the posterior mean. For

each path, we compared the posterior mean with the

stopping boundary, assuming it would be practical to

run interim analyses in blocks of 10 pairwise alloca-

tions. For each interim analysis, we established when

Stage II would have stopped, as well as the adoption

decision, cost of the trial and the posterior mean for

expected incremental net monetary benefit at the end

of Stage III. Three bootstrapped paths are shown in

Figure 3 for a trial with Qmax = 125, with interim and

follow-up analyses marked. Resampled Path 3 (cyan

and marked ‘8’) stops the trial at the third interim anal-

ysis, having crossed the upper part of the boundary;

resampled Path 1 (magenta and marked ‘+ ’) stops at

the second interim analysis, having crossed the lower

part of the boundary; and resampled Path 2 (green and

Forster et al. 5



marked ‘�’) runs to the maximum sample size. Paths 1

and 3 suggest that sling is cost-effective at the end of

follow-up (the posterior mean is negative); Path 2 sug-

gests that surgery is cost-effective (the posterior mean

is positive).

Some operating characteristics are summarised in

Table 1, labelled ‘bootstrap’. They show that, when

Qmax = 250 , the average sample size of the Optimal

Bayes Sequential design is 77 pairwise allocations (min-

imum 57; maximum 250), 38% lower than the trial’s

actual sample size. The expected saving in the trial’s

budget resulting from the reduced sample size is esti-

mated to be £196,000 (13% of the research budget).

The posterior mean for expected incremental net mone-

tary benefit at the end of Stage III is estimated to be

2£1853. This design recommended sling for 92% of

the bootstrapped paths, with 82% of the paths

stopping having first crossed the lower part of the stop-

ping boundary. Also shown in Table 1 are the operat-

ing characteristics for a fixed sample size trial in which

each resampled path in the bootstrap analysis runs to

Qmax = 250 pairwise allocations: 99.3% of paths con-

clude with a recommendation of sling, but this improve-

ment is achieved at a cost of approximately £706,000

((250 2 77) 3 £4080) when compared with the

Optimal Bayes Sequential design.

Figure 3 showed that there is very little difference

between the stopping boundary when the maximum

sample size is reduced to that used in the ProFHER

trial itself (Qmax = 125 pairwise allocations). Table 1

shows that, when Qmax = 125 , the expected sample

size falls by four pairwise allocations, from 77 to 73;

the trial saves slightly more of the budget (£210,000)

and the model shows sling to be cost-effective for 91%

Table 1. Results for the 5000 resampled paths from the bootstrap and Monte Carlo analysis.

Average % change Standard deviation Minimum Maximum
Qmax = 250

Optimal Bayes Sequential
Sample size (pairwise allocations) – bootstrap 77 238 27 57 250
Sample size (pairwise allocations) – Monte Carlo 88 230 20 57 250
Change in budget (£000) – bootstrap 2196 213 110 2277 510
Change in budget (£000) – Monte Carlo 2151 210 82 2277 510
Posterior mean for cost-effectiveness
(£)– bootstrap

21853 – 1322 25900 3046

Posterior mean for cost-effectiveness
(£)– Monte Carlo

21820 – 449 24190 2617

Fixed sample size
Sample size (pairwise allocations) 250 – 0 250 250
Posterior mean for cost-effectiveness 21832 – 720 24047 1017
Qmax = 125
Optimal Bayes Sequential
Sample size (pairwise allocations) – bootstrap 73 242 19 57 125
Sample size (pairwise allocations) – Monte Carlo 84 233 16 57 125
Change in budget (£000) – bootstrap 2210 214 78 2277 0
Change in budget (£000) – Monte Carlo 2167 211 63 2277 0
Posterior mean for cost-effectiveness
(£)– bootstrap

21845 – 1347 25778 3670

Posterior mean for cost-effectiveness
(£)– Monte Carlo

21811 – 460 23900 2451

Fixed sample size
Sample size (pairwise allocations) 125 – 0 125 125
Posterior mean for cost-effectiveness 21804 – 988 24951 2100

Qmax = 250 Qmax = 125

Bootstrap Sling Surgery Total Sling Surgery Total

Optimal Bayes Sequential
First crossing lower part of stopping boundary 0.815 0.020 0.835 0.805 0.023 0.828
First crossing upper part of stopping boundary 0.102 0.063 0.165 0.106 0.066 0.172
Total 0.917 0.083 1 0.911 0.089 1
Fixed sample size
Total 0.993 0.007 1 0.961 0.039 1

Percentage changes in sample size reported in Column 3 are calculated as (a� 125)=125 3 100, where a is the relevant average value from Column

2 and 125 refers to the number of pairwise allocations in the ProFHER trial. For rows which report a percentage change in the budget, the

percentage refers to the change in the number of pairwise allocations, (a� 125), multiplied by the cost per pairwise allocation (£4080), expressed as

a percentage of the total budget of £1,470,000.
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of the bootstrapped paths, which is little change from

the 92% when Qmax = 250 .

Figure 4 presents some graphical summaries of the

bootstrap analysis. Figure 4(a) shows that, when

Qmax = 250 , approximately 37% of the resampled

paths stop the trial at the first interim look and approx-

imately 23% stop it at the second interim look, so that

approximately 60% of bootstrapped paths have a sam-

ple size that is approximately half of the one used in

the ProFHER trial (Figure 4(c)). Reducing Qmax to

125 pairwise allocations makes little difference (Figure

4(b) and (c)). Figure 4(d) shows that the relative fre-

quency histograms for the posterior mean for expected

incremental net monetary benefit at adoption are

almost identical and appear slightly right-skewed.

Sensitivity analysis

To investigate the sensitivity of our main results to dif-

ferent assumptions about how the data accumulated

over the course of the trial, we also carried out a Monte

Carlo simulation which took repeated draws of incre-

mental net monetary benefit from a normal distribution

with expected value equal to the value that was used for

the bootstrap (approximately 2£1808) and n0 = 2.

Results are also presented in Table 1 and labelled

‘Monte Carlo’. Averages are qualitatively in line with

those of the bootstrap analysis and standard deviations

are smaller. For example, when the maximum sample

size of the trial is set to 250 pairwise allocations, the

expected sample size of the trial is 30% lower (com-

pared with 38% lower in the bootstrap), the reduction

in the budget is 10% (compared with 13%) and the

posterior mean for expected incremental net monetary

benefit is almost unchanged.

A discussion of further sensitivity analysis is pre-

sented in the Supplemental Material.

Discussion and conclusion

With growing interest in the use of adaptive clinical

trials, there is a need to explore how new approaches

perform, from both economic and statistical perspec-

tives. Our application of a Bayesian decision-theoretic

model of a sequential clinical trial to the ProFHER

pragmatic trial suggests that it could have stopped the

trial early, saving about 5% of the research budget.

The bootstrap analysis suggests that the sample size

would have been reduced by approximately 38%, sav-

ing around 13% of the budget, with a probability of

0.92 of making a technology recommendation consis-

tent with that of the trial itself. It also shows a large

degree of variability in the trial’s sample size.

It is important to note that, although the model may

be applicable in a range of trial settings with a pragmatic

element, it will not be applicable to all trials. For exam-

ple, it is unlikely to be suitable for Type C trials, which

are more concerned with safety than with effectiveness or

cost-effectiveness, as well as trials where the length of

follow-up of the outcome of interest is close to the length

of the recruitment period (these present little or no scope

for using interim analyses) and trials where the health

outcome measure of interest is the time to an event rather

than a period of fixed duration (this breaks the model’s

assumption about a fixed period of follow-up).

We conclude with some directions for future research:

1. Approximately 37% of resampled paths from the

bootstrap analysis stop at the first interim analysis,

with a sample size equal to just under half of that

of the ProFHER trial. Given that about half of the

surgeons who responded to a recent survey23 stated

that they had changed practice because of

ProFHER, it is unlikely that such a sample size

will be deemed credible for changing practice. One

extension would be to investigate the sensitivity of

results to choice of follow-up period.

2. Some of the parameters used to populate the model

are difficult to estimate, suggesting that additional

sensitivity analysis is warranted. For example, the

size of the population to benefit is a function of

both the incidence rate and the time horizon over

which an adoption decision applies. Defining fixed

and variable costs may also be challenging, and the

Figure 3. Stopping boundaries for the two versions of the

model, together with the path for the posterior mean generated

using the trial’s data (black line, marker: ‘8’) and three resampled

paths from the bootstrap analysis (dashed lines, markers: ‘+ ’,

‘�’ and ‘8’). X marks the first interim analysis at which the

posterior mean lies outside the stopping boundary (for both

versions of the model).
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CAT project14 may provide helpful guidance. The

costs of monitoring a sequential design may be

higher than those for a fixed design.

3. The model assumes that patients are randomised in

a pairwise manner to treatments, but there exists a

large statistical literature on the use of allocation-

adaptive randomisation in frequentist designs.24

4. The handling of missing data could be explored in

further sensitivity analysis. This matter is being

investigated as part of the ENACT project.15

5. The sampling variance is assumed to be known. This

requires that either it be estimated at the start of the

trial or that the methods of Chick et al.,13 Section 4,

are used for the case of unknown sampling variance.

6. We assume a prior mean that is equal to zero and

a prior variance which assigns a low weight to

prior information. Choice of the prior mean is

important because it determines whether no trial, a

fixed sample size trial or a sequential trial are the

preferred designs. It also affects the point at which

the Stage II path for the posterior mean starts.

Choice of the prior variance affects the weights

placed on the prior information and the data.

Although we believe that a non-informative prior

is reasonable for the ProFHER trial, it may not be

for other trials. This is another topic that is being

investigated further in the ENACT project.15

7. The stopping boundary could be compared with a

Bayesian design which uses a stopping rule based

on the probability that a technology is cost-effec-

tive, together with frequentist group sequential

stopping rules, as in Pertile et al.12

Figure 4. Graphical analysis of the bootstrap results: (a) relative frequency histogram for the number of pairwise allocations made

upon first crossing the stopping boundary (Qmax = 250), (b) relative frequency histogram for the number of pairwise allocations

made upon first crossing the stopping boundary (Qmax = 125), (c) empirical cumulative distribution functions for the number of

pairwise allocations made upon first crossing the stopping boundary and (d) relative frequency histograms for posterior mean for

E½ incremental net monetary benefit � once follow-up has concluded.
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how the model presented may be populated retrospectively
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