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ABSTRACT: The lipid membrane is considered a crucial
component of opioid general anesthesia. The main drug used for
the induction and maintenance of opioid anesthesia is fentanyl and
its various analogues. However, these drugs have different clinical
effects, and detailed atomic-level insight into the drug−membrane
interactions could lead to a better understanding how these drugs
exert their anesthetic properties. In this study, we have used
extensive umbrella sampling molecular dynamics simulations to
study the permeation process of fentanyl and three of its analogues
into a variety of simple phospholipid membrane models. Our
simulations show that we can accurately predict the permeability
coefficients of these drug molecules, which is an important process
in understanding how pharmaceuticals reach their molecular
targets. We were also able to show that one phospholipid provides more accurate predictions than other lipids commonly used
in these types of permeation studies, which will aid future studies of these types of processes.

1. INTRODUCTION
The discovery of opioid molecules, for example, morphine, that
produce effects such as the desensitization to painful stimuli,
which is thought to be caused by binding to, and modulation of,
G-protein-coupled receptors, has contributed significantly to the
advance of modern medicine and surgical procedures. Fentanyl
is an opioid analgesic/anesthetic that is thought to be at least 80
times more potent than morphine,1 which has made fentanyl
one of the most used opioids in the general anesthesia process
and a prominent drug of abuse.2 Despite the highly addictive
nature of this drug, fentanyl and its various analogues are
routinely used in surgical procedures, owing to their rapid onset
times, duration of action, potentiation of general anesthetics,
and their excellent ability to effectively desensitize the patient to
painful stimuli. Fentanyl-based opioids have interesting proper-
ties, so they can be used as partial or complete general
anesthetics.3,4

To date, there is no widely accepted method by which these
drugs exert their anesthetic effect, even though it has been
related to both binding with various membrane proteins5,6 and
possible effects on the lipid membranes, as is commonly
associated with inhalational anesthetics.7,8 There is strong
evidence, put forward by Stone et al,9 that the lipid membrane is
crucial in the process to achieve opioid anesthesia. Their findings
show a relation between the calculated brain lipid membrane
concentrations of opiates with a defined minimum alveolar
concentration (MAC) and electroencephalographic changes,
which strongly suggests a lipid membrane site for the anesthetic
action of opiates, at least up to the 50% MAC reduction level.9

The correlation shown between the anesthetic effects and the
membrane lipid component, as opposed to serum opioid levels,
highlights the importance of studying opioid−lipid interactions.
The lipid membrane has also been shown to be crucial for
fentanyl binding to membrane proteins; because of the high
lipophilicity of fentanyl and its analogues, the lipid membrane
can act as a route for the drugs to bind to transmembrane
binding sites.10,11

The lipid membrane is a crucial component of the cell, which
acts as a barrier to passive diffusion of small molecules and ions,
although many small molecules, such as pharmaceuticals, can
permeate through the lipid membrane, depending on its
composition and the properties of the solute. Fentanyl and its
analogues are lipophilic in nature, so they are expected to be able
to easily enter the membrane environment. In this paper, we
study four fentanyl-based opioid drugs, that is, fentanyl,
alfentanil, remifentanil, and sufentanil (Figure 1) in four
model membrane bilayer systems, namely, 1,2-dimyristoyl-sn-
glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-oleoyl-glyc-
ero-3-phosphocholine (POPC), 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC), and 1,2-dipalmitoyl-sn-glycero-3-
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phosphocholine (DPPC). These different bilayers have a diverse
range of lipid tails with differing chain lengths and saturation,
which will provide insights into any changes in the
permeabilities of these drugs in different parts of the cellular
membrane.
Investigations into the permeation of drug molecules into the

cell membrane are highly important to understand and achieve
the delivery of drug molecules to their molecular targets. Many
experimental techniques have been developed to investigate this
important property, such as cell-based CaCo-2 assay12 and
parallel artificial membrane permeability assay (PAMPA).13

These methods are widely used in industry and academia to
calculate the permeabilities of various types of compounds, but
they provide no information on the biophysics of membrane
permeation.14 Various linear response models and mathematical
models, such as the quantitative structure permeability relation-
ship15 and steady-state models,16 have been developed to make
predictions based on experimental test sets, but their predictive
performance has been relatively poor, and atomistic details of
the processes of permeation cannot be deduced.17 To gain
atomic-level insight into the passive permeation of fentanyl and
its analogues (shown in Figure 1), we have employed atomistic
molecular dynamics (MD) simulations in combination with an
umbrella sampling technique and the weighted histogram
analysis method (WHAM) to construct the potential of mean
force (PMF) curves for the drug permeation. When trying to
predict properties such as permeability, many previous studies
use only one phospholipid system, such as DPPC,18 but we were
interested in comparing a number of phospholipid systems, as
well as a variation of fentanyl-type molecules. This study has two
main goals: First we wished to ascertain whether MD
simulations using the umbrella sampling method can accurately
predict permeability coefficients for fentanyl and its analogues
using simple bilayer models and second, we wished to determine
if the phospholipid used in the model makes a difference to the
permeability predictions and what lipid is most reliable for
simulation of such systems.

2. COMPUTATIONAL DETAILS
2.1. System Preparation and Simulation Setup. All

model membrane bilayers were constructed using the
CHARMM-GUI membrane builder.19 Each system consisted
of 64 lipids per leaflet with a water buffer of 35 Å on either side.
All of the simulations used the TIP3P water model20 and the
lipid14 parameters21 for the lipids. The drug molecule
parameters were generated using the antechamber program22

with the AM1-BCC charge model and the GAFF2 forcefield.23

Pure membrane systems containing no drug molecules were

initially minimized and equilibrated in multiple stages. In stage
1, the system was minimized for 10,000 steps using the steepest
descent method, then 10,000 steps using the conjugate gradient
method. The systems were then heated in two stages, with the
first stage heating the system to 100 K using a Langevin
thermostat24 with a 10 kcal/(mol Å2) harmonic restraint applied
to the lipid molecules. The second phase slowly heated the
system to the desired production temperature (303 K for
DOPC, POPC, and DMPC and 323 K for DPPC) for 100 ps.
Anisotropic Berendsen pressure regulation was introduced here
to control the pressure at 1 atm, in addition to the temperature
control provided by the Langevin thermostat. The same
restraints were applied to the lipid molecules. The final stage
of the equilibration involved slowly reducing the harmonic
restraints of the lipid molecules over 10 ns of NPT simulation.
225 ns production runs were then carried out on all the pure
membranes, which were then analyzed to confirm if the models
were in the correct, biologically relevant Lα phase. Analysis was
carried out using cpptraj25 and in-house scripts (results shown in
Supporting Information Section 1) and compared to exper-
imental data. The first 25 ns of the simulation of the pure
membrane systems was discarded, and analysis was performed
on the last 200 ns of the trajectories. All simulations in this paper
were carried out using the GPU implementation of the
AMBER18 code.26 Three-dimensional periodic boundary
conditions were used with the usual minimum image
convention, and the SHAKE algorithm27 was used to constrain
bonds involving hydrogen allowing for a 2 fs timestep. PME was
used with a cutoff of 10 Å to treat the electrostatic interactions,
and a long-range analytical dispersion correction was applied to
the pressure and energy. A collision frequency of γ = 1.0 ps−1 was
used for the Langevin thermostat, and a pressure relaxation time
of 1.0 ps was used for the anisotropic Berendsen barostat (1
atm). For the drug molecule simulations, the drug was added to
the center of the bilayer, and a harmonic restraint of 10 kcal/
(mol Å2) was applied. A 10 ns simulation was carried out to
equilibrate the lipid with the drugmolecule present. SteeredMD
simulations were used to pull each drug molecule through each
bilayer into the water phase at a speed of 1.0 Å/ns (35 ns for each
drug in each system). Coordinates of the system with the drug
molecule at equally spaced locations over the pathway were
extracted and used as starting states for the umbrella sampling
simulations. Full profiles were obtained by symmetrizing the
data as we are not using asymmetric ormulticomponent bilayers,
where it would be important to pull in both directions to study
the differences between each leaflet.

2.2. Umbrella Sampling Simulations. The reaction
coordinate for the drug permeation was defined as the z-
component of the distance between the center of mass of the
lipid nitrogen atoms and the heavy atoms in the drug molecule.
For each drug in each bilayer, a total of 35 windows separated by
1.0 Å were used with a biasing harmonic restraint of 2.5 kcal/
(mol Å2) using the AMBER umbrella COM restraint code. Each
window for each drug molecule was simulated for 100 ns,
totaling 3.5 μs of sampling per drug molecule per bilayer, which
totals 56 μs of sampling for all systems. The probability
distributions obtained from these simulations were reweighted
using the WHAM (histograms shown in Supporting Informa-
tion Section 2).28 The local diffusivity for each window was
estimated using the Hummer positional autocorrelation
extension to the Woolf−Roux estimator29

Figure 1. Chemical structures of the four opioid drugs studied.
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where β = 1/kBT and z is the position of the drug molecule along
the transmembrane axis, and W(z) is the PMF. The lower and
upper integration bounds are points in the center of the
membrane and water phase.
Umbrella sampling histograms were unbiased by the WHAM

with 720 bins and a tolerance of 1× 10−8 for window offsets. The
statistical uncertainty at each bin was estimated using boot-
strapping, with 100 bootstrap trials for each PMF.

3. RESULTS AND DISCUSSION

The permeation free energy profiles for the selected four
fentanyl molecules, simulated in DOPC, POPC, DPPC, and

Figure 2. Free energy profiles calculated for all permeating molecules and bilayers.

Figure 3. (A) Water molecules solvating remifentanil (yellow) at the head group/hydrophobic interface (blue). (B) Hydrogen-bond plot for
remifentanil and alfentanil. (C) Hydrogen-bond plot for sufentanil and fentanyl. Hydrogen-bonding data were calculated in the 21−25 Å windows,
where energy barriers were observed and averaged for each drug. Transparency has been added to alfentanil and fentanyl to improve visibility.
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DMPC, are shown in Figure 2. These opioid molecules are all
hydrophobic to varying extents, but the PMF profiles show
expected behavior for these types of drug molecules. There is a
small positive energetic barrierlargest at 1.94± 0.10 kcal/mol
for remifentanil in DPPCwhen the drugs permeate into the
hydrophilic phosphatidylcholine headgroup followed by a global
minimum in the bilayer interior with the lowest being −7.86 ±
0.24 kcal/mol for alfentanil in DOPC.
To rationalize the position of the minima in our PMF profiles,

we can use the four-region model, which has been described in
previous publications.30,31 In this model, region three from 6 to
13 Å from the bilayer center is the high-tail density region.
Hydrophobic molecules will have many favorable hydrophobic

interactions with the lipid tails in this region, so the difference in
free energy here can be explained by the greater number of
contacts between the drug molecules and the lipid tails. The
barriers observed at the center of the bilayers for all drug
molecules could be a consequence of entropic factors, such as a
reduction in the lipid tail mobility when the drug molecule is
present. However, the more likely explanation is the decrease in
the drug−lipid interactions at the center, because of the lower
density of atoms in this region, where the lower interaction
energies would therefore disfavor the presence of the drug
molecule in this region. This behavior has been shown to be the
main factor for the local anesthetic, benzocaine, and the
antiepileptic drug, phenytoin.32 The slight variation in the PMF

Figure 4. z-diffusion profiles calculated for all permeating molecules and bilayers.

Figure 5. Resistance to permeation calculated for each drug molecule in each bilayer.
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profile shapes between certain drug/lipid combinations is due to
the diversity in the structure and properties of each drug
molecule and the differences in the structure of the lipid chains.
The different packing arrangements and dynamics of the chains
will lead to slightly different interactions with each drug
molecule and hence slight changes in the PMF shape.
We can see from our PMF profiles (Figure 2) that even

though all the bilayers have the same PC headgroup, they have
different tails, which clearly alter the permeation process. From a
visual inspection of the umbrella sampling windows from the
different bilayer systems, we observe clear differences in the
mobility of the head groups because of the different lipid chains,
which causes local rearrangements to the extent that exposure of
the drug molecules to the tail regions varies. We also observe
water molecules entering the head group/hydrophobic interface
with both alfentanil and remifentanil, which stabilizes these
molecules through hydrogen-bonding and accounts for the
energetic barriers observed (Figure 3). These two analogues
have the most hydrogen-bond acceptor sites, and hence they
interact with more water molecules than the other two solutes.
Hydrogen-bonding plots (Figure 3B,C) confirm thatmore water
molecules are bound to alfentanil and remifentanil in the head
group/hydrophobic interface region, where the data were
calculated. We note that the extent of sampling in these
simulations is much greater than that in other studies of solute
permeation, and we are therefore more likely to observe
rearrangements that are not achievable in shorter simula-
tions.33,34

The position-dependent diffusion coefficients for fentanyl and
its analogues do not vary significantly from one another (Figure
4). The average diffusion within the hydrophobic core of the
bilayer (z = −20 to 20 Å) for the drug molecules range from ∼1
× 10−6 to∼2× 10−6 cm2/s.Within the bilayer core, the diffusion
coefficient values for the drug molecules reach their minimum
plateau at z ≈ 5−10 Å, but increase slightly as the drug
approaches the center (z = 0 Å), which is the most disordered
area of the bilayer core. All the drugs show an increase in
diffusion in the bulk water phase that is close to an order of
magnitude greater than the calculated results within the bilayer
core. This finding is consistent with previous constrained MD
simulations for drug molecules passing through lipid bilayers,35

and the results obtained for our four drug molecules are
therefore as expected for lipophilic compounds.
Profiles for the resistance to permeation for each drug

molecule are shown in Figure 5. Fentanyl and its analogues are
lipophilic drug molecules, and we would therefore expect the
largest resistance to permeation to occur at the lipid−water
interface, which is indeed observed. The lipid head group region
is partially charged and polar, which for hydrophobic molecules
offers the largest resistance to permeation. The resistance plots
follow the free energy profiles for all molecules, shown
particularly clearly for remifentanil. This agreement is expected,
and its occurrence is therefore important for the validation of
our calculations. The resistance increases steeply as the
molecules pass through the head group region and again
increases slightly at the disordered bilayer center, indicating that
the resistance is dominated by the free energy component. This
behavior shows that higher free energy contributions lead to
higher resistance to permeation for fentanyl-based opioids.
The calculated permeability coefficients from our simulations

are presented in Table 1 along with experimentally determined
permeability coefficients from a variety of different experimental
techniques.

It is clear from our calculated results that the umbrella
sampling method can predict the correct trend in permeability
coefficients for these drug molecules. The main experimental
methods used in industrial and pharmaceutical research to
obtain permeability coefficients for drug molecules are PAMPA,
BBB-PAMPA (blood−brain barrier), and Caco-2 methods, and
the data in Table 1 show that our simulated results compare very
well with the available experimental data for alfentanil (−3.73
(DMPC), −3.53 (PAMPA), −3.49 (Caco-2), −3.54 (Caco-2/
MDCK)), fentanyl (−5.42 (DMPC), −4.32 (BBB-PAMPA),
−6.16 (PAMPA)), and sufentanil (−5.00 (DMPC), −3.87
(BBB-PAMPA)). The results for remifentanil agree less well
with the small amount of experimental data available, because of
the uncertainty in the charge state of the drug as a result of its
susceptibility to ester hydrolysis. Remifentanil was modeled in
its neutral phase, which is its expected state in the studies for
which experimental data are available. We also note good
comparisons between our simulations and other experimental
data, for example, from spinal meninges and human skin. This is
unexpected, as models for these systems would usually include
multiple different lipids with varying cholesterol concentrations,
whereas we have achieved good correlation with simple bilayer

Table 1. Calculated and Experimentally Determined
Permeability Coefficients for Fentanyl and the Analogues
Studied

drug
calculated permeability
coefficient (cm/s)

experimental permeability
coefficient (cm/s)

alfentanil −6.49 (DOPC) −0.06 (porcine polar brain
lipid)36

−6.15 (DPPC) −2.11 (microvessel lipid)36

−8.35 (POPC) −2.88 (microvessel lipid +
cholesterol)36

−3.73 (DMPC) −1.75 (dodecane)36

−4.42 (spinal meninges)37

−3.53 (PAMPA)38

−3.49 (Caco-2)38

−3.54 (Caco-2/MDCK)39

fentanyl −8.67 (DOPC) −2.13 (porcine polar brain
lipid)36

−8.12 (DPPC) −2.48 (microvessel lipid)36

−10.94 (POPC) −3.60 (microvessel lipid +
cholesterol)36

−5.42 (DMPC) −4.81 (spinal meninges)37

−4.32 (BBB-PAMPA)40

−5.81 (human skin)41

−6.16 (PAMPA)42

−4.89 (human skin)43

−3.22 (BBB-PAMPA)39

sufentanil −10.09 (DOPC) −3.15 (porcine polar brain
lipid)36

−8.09 (DPPC) −2.69 (microvessel lipid)36

−9.33 (POPC) −2.78 (microvessel lipid +
cholesterol)36

−5.00 (DMPC) −3.57 (dodecane)36

−4.90 (spinal meninges)37

−5.48 (human skin)41

−4.84 (human skin)43

−3.87 (BBB-PAMPA)44

remifentanil −2.49 (DOPC) −0.33 (porcine polar brain
lipid)36

−0.80 (DPPC) −2.49 (microvessel lipid)36

−5.81 (POPC) −2.40 (microvessel lipid +
cholesterol)36

−0.93 (DMPC) −3.76 (dodecane)36
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models but with large amounts of sampling. It has been shown
previously that poor sampling leads to inaccurate free energies,
which can lead to an order of magnitude of difference in
permeability owing to exponential dependence.45,46 Upon the
addition of cholesterol, we would expect that the lipid tails
would become highly ordered because of the favorable van der
Waals interactions that would be formed between the
cholesterol and the other lipid tails. Thus, when the drug
molecules are added, strong van der Waals contacts would be
broken, leading to large voids around the drug molecules. A
previous experimental study47 has shown that the incorporation
of cholesterol into a DMPC bilayer increased the hydro-
phobicity of the bilayer center, hence causing a large
hydrophobic barrier to the permeation of polar molecules.
With regard to opioid molecules which are hydrophobic in
nature, high cholesterol concentrations could increase the
barrier significantly and decrease their permeability, which has
been shown to occur for other hydrophobic drugs.48 Good
spinal meninges and human skin comparisons are important for
opioid research, as these drugs are often administered as epidural
anesthetics and through transdermal patches as analgesics for
various chronic conditions. The differences in permeability
obtained in each different bilayer show that the basic structural
and dynamic properties of simple model bilayers can have a
significant impact on the membrane permeability of these drug
molecules. The bilayers with the shorter, saturated tails gave
better comparisons, which suggests that the higher lipid tail
packing in saturated lipids is important for drug permeability.
Our results also show that the DMPC bilayer consistently gives
the best comparison to the experimental results for our opioid
drug molecules, which is an important observation as many
studies only use one model bilayer to make predictions, which
could introduce errors into the obtained results. However, our
results suggest that testing of multiple bilayers in simulation
studies is a more rigorous procedure and, where possible, should
be carried out to find the best model bilayer for any given drug
molecules, thereby leading to more consistent results that
minimize potential errors when comparing to experimental data.

4. CONCLUSIONS

In this article, extensive umbrella sampling simulations of
fentanyl and three analogues in four different membrane bilayers
were performed to calculate their permeability coefficients and
determine which bilayer provides the most accurate results
compared to experimental data. Our simulations revealed that
for all drug molecules the main resistance to permeation was
observed at the lipid head group because of its partially charged,
polar nature and the hydrophobic nature of the drug molecules.
Our simulations were able to identify the DMPC lipid bilayer as
the most reliable lipid to use in the simulations of these drug
molecules, as the results obtained compared best with
experimental data from the PAMPA and Caco-2 experimental
methods used in pharmaceutical drug permeability studies.
Using the umbrella sampling method, properties such as local
resistance, free energy, and diffusion can be calculated for
fentanyl-based drugs in atomic-level detail in different regions of
the bilayer and produce accurate permeability coefficients. This
method could therefore be of importance in the future design of
new fentanyl-based analgesic/anesthetic drugs.
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