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Abstract

In recent years, electrical tomography, namely, electrical resistance tomography (ERT), has emerged as a viable approach to

detecting, localizing and reconstructing structural cracking patterns in concrete structures. High-fidelity ERT recon-

structions, however, often require computationally expensive optimization regimes and complex constraining and reg-
ularization schemes, which impedes pragmatic implementation in Structural Health Monitoring frameworks. To address

this challenge, this article proposes the use of predictive deep neural networks to directly and rapidly solve an analogous

ERT inverse problem. Specifically, the use of cross-entropy loss is used in optimizing networks forming a nonlinear mapping

from ERT voltage measurements to binary probabilistic spatial crack distributions (cracked/not cracked). In this effort,

artificial neural networks and convolutional neural networks are first trained using simulated electrical data. Following, the

feasibility of the predictive networks is tested and affirmed using experimental and simulated data considering flexural and

shear cracking patterns observed from reinforced concrete elements.
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Introduction

Background

Structural health monitoring (SHM), in a broad sense, aims

to assess the integrity, condition and/or damage state of

target structures.1 Respectively, SHM frameworks have

proposed clear hierarchies including, for example, aspects

such as detection, localization, classification, assessment,

and prediction which serve as facets for monitoring.2 For

such hierarchies to be satisfied, SHM modalities should

therefore include systematic, automatic and continuous data

acquisition followed by accurate post-processing and

analysis. To address the latter needs, specifically rapid and

accurate damage assessment of structural concrete elements,

this work focuses on rapid probabilistic crack prediction and

localization enabled by machine learned models.

Prediction and localization of cracking in concrete ele-

ments is well documented in the field of non-destructive

testing (NDT) literature. Various traditional approaches

include ultrasonic, magnetic, electromagnetic, radiographic,

photographic, and infrared modalities.3–7 In contrast to

these well-established methods, electrical-based modalities

have recently shown promise in non-destructive testing and

evaluation of cement-based materials and structures.8 For

example, in their seminal work, Karhunen et al.9 demon-

strated industrial applicability of electrical modalities for

assessing the degree of cracking, localization of rein-

forcement, corrosion state and depth of the cover in concrete

elements. Additionally, previous studies have shown that

electric impedance spectroscopy (EIS) is relatively inex-

pensive and can be applied on concrete elements to detect

cracks to include their width/depth, reinforcement and in-

ternal moisture.10,11 On the other hand, electrical tomog-

raphy, more specifically electrical resistance tomography

(ERT, a specific electrical tomography modality), has been
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recently demonstrated as an effective modality for detecting

simple and complex cracking patterns in concrete elements 9,12–14;

meanwhile, ERT has low experimental costs, energy con-

sumption, fast data collection, high temporal resolution and

potential of continuous spatial monitoring.15 However, the

potential disadvantages of ERT include its lower spatial

resolution compared with other contemporary modalities

and (traditionally) high computational cost.16

In assessing the former realizations regarding ERT,

relatively low spatial resolution may be sufficient in terms of

localizing cracks – especially in large members.17 Fur-

thermore, the high computational cost that traditionally

arises in ERT stems from solving the ill-posed inverse

problem. Though previous research has demonstrated that

incorporating non-iterative reconstruction methods can

reduce the computational time at a significant cost to spatial

resolution (often overly smooth), computational demand

and interpretability of reconstructions remain factors in-

hibiting implementation of ERT in field applications. As

such, a new methodology promoting rapid and accurate

cracking prediction from ERT data sets is needed. To ad-

dress this issue, the following article proposes and inves-

tigates the implementation of neural networks (NNs) to

directly solve an analogous ERT inverse problem affording

(a) massive reduction in computing demand and prediction

time relative to high-fidelity ERT reconstruction frame-

works and (b) improved interpretability of (predicted)

cracking patterns.

Machine learning and damage prediction

The concept of using NNs for pattern recognition and

parameter space mapping originated in mid-20th century 18

and has drawn large research interest since the discovery of

back-propagation while computational power has been

increasing exponentially. In fact, previous studies have

indicated that a well-trained network with two neurons is

sufficient to recognize any linear functions between the

input and output data sets theoretically.19 However, real-

istically, a deeper network with nonlinear activation func-

tions is required to predict more complex representations.19

For this reason, we investigate the use of supervised deep

learned NNs for mapping input data to desired output pa-

rameters, as detailed in the following.

Feed-forward artificial neural networks (ANNs) have

architectures consisting of at least one hidden and one

output layer. In a pioneering work, Baum 20 proved that a

simple one-layer network can recognize a linear pattern.

Following, work by Papert et al. 19 discovered that an ANN

network with N� 1 neurons should be sufficient to learn an

arbitrary function with N data points. Subsequent early

research also indicated that networks having M � N � 1

weights have approximately 50% probability of success-

fully predicting a random function.21 Later, Lecun et al.22

identified that a well-trained binary classifier is capable of

linearly separating the error space by a hyper-plane. This

enabling feature is key in the ability of NNs to recognize

highly nonlinear patterns. However, despite tremendous

research progress in ANN research, tailoring ANN pa-

rameterizations still remains an ‘art’ in practice.

In contrast to ANNs, convolutional neural networks

(CNNs) are NN architectures first trained with back-

propagation by Lecun et al. and inspired by human ven-

tral visual stream.23,24 Convolutional neural networks are

widely used for handwriting, image, and voice

classification – along with other recognition applications.25

A typical CNN’s functionality depends on four basic layers

which are input layer, convolutional layer, pooling layer and

fully connected layer.26 Firstly, in the input layer, CNNs

take input information via an image matrix where (broadly

speaking) each entry is either a continuous entry or assigned

a whole number varying from 0 to 255 representing the

scale of each pixel from black to white. Secondly, within the

convolutional layers, learnable kernels are glided through

the raw input while the scalar products are calculated for

each entry in the kernels; the output of this convolution

operation is referred as feature maps. Each kernel has its

corresponding feature map which is stacked along the depth

of the input.27 Kernels can help the network to extract more

characteristic information from input data.26 The convo-

lution operation is mainly governed by the following three

hyperparameters: 1. depth of the convolutional layer, 2.

stride of the kernels and 3. padding.28 Reducing the depth of

the convolutional layers can lead to a significant decrease in

network’s recognition capability. Meanwhile, stride controls

the overlap when kernels are glided through the input data,

by reducing the stride, one can reduce the output volumes

however at the risk of missing potential features. In addi-

tion, the use of zero padding ensures that features at the

extents of the image input can be efficiently extracted.

Furthermore, parameter sharing can be used to reduce the

number of parameters in the network by constraining the

learned feature maps to have the same weight and bias.26

Thirdly, a pooling layer aims to further downsample con-

volved data. For example, a max pooling layer is applied on

the feature maps and only returns the maximum value

within the region. Finally, data are propagated to a fully

connected layer which has a similar structure to a typical

ANN. Of importance here, the inputs of the (first) fully

connected layer are the outputs of the last pooling layer

which are subsequently propagated through the remaining

fully connected layers during the training.27

Specifically, we are interested in direct classification of

spatially distributed damage (cracking) which is assigned a

binary form (0 or 1). As such, the use of probabilistic cross-

entropy classification is most appropriate given the binary

nature of the information to be mapped (i.e. classical re-

gression is not appropriate). Therefore, we select the binary
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cross-entropy function as the loss functional to be mini-

mized in the network training, written as follows

L ¼ �
1

N

XN

t¼1

½yt logðptÞ þ ð1� ytÞlogð1� ptÞ� (1)

In equation (1), L represents the binary cross-entropy

loss taking predictions pt and binary sample labels yt across

t 2 N training samples.29 The interpretation of minimizing

equation (1), in the learning process, may be viewed as

gradually improving the probability P that predictions pt
match the true distributions yt. As it pertains to this work,

this corresponds to learning the underlying patterns gov-

erning the predictions of cracks where, using relaxed no-

tation, P ¼ 1 and P ¼ 0, respectively, correspond to cracked

and not cracked locally. Pragmatically speaking, however,

minimizing equation (1) may lead to over fitting and re-

duced generalizability. Therefore, L2 regularization is herein

utilized to address the former by writing

L ¼ �
1

N

XN

t¼1

½yt logðptÞ þ ð1� ytÞlogð1� ptÞ� þ λkwk
2

(2)

where λ is a scalar regularization hyperparameter and w are

the network weights.

Generally speaking (and herein), equation (2) is mini-

mized by implementing gradient decent and back-

propagation via locating the minimum point within the

loss space. It is worth noting that, despite developments of,

for example, the Hopfield network and Boltzmann machine

which offer new insight of training networks with statistical

mechanics,30,31 many modern networks still rely on gra-

dient decent and back-propagation. Moreover, while local

minima can be reached by adjusting the weights of indi-

vidual neurons in the network iteratively, there exist studies

indicating a global minimum could be attained providing a

deep neural network with non-convex objective function,32

although the evidence supporting that is not substantial.

Therefore, for the purposes of this initial work, a local

minimum can be assumed to yield results deemed sufficient

for the purposes of damage detection.

It is worth highlighting that, in the context of contem-

porary SHM research, machine learning has been suc-

cessfully used in damage detection applications. For

example, Bao et al.33 utilized neural networks for optimi-

zation considering non-convex sparse time–frequency

analysis and consequently achieved more accurate instan-

taneous frequency identification. Moreover, Mousavi

et al.34 trained deep neural networks to extract damage-

sensitive features from vibration data. In addition, con-

volutional neural networks were also explored to retrieve

missing strain data due to sensor fault by Oh et al.35 while

Mohtasham used CNNs to detect cracks on gas turbines

with filtered image data.36 Inspired by such works, in this

article, neural networks are also utilized for the intended

purposes of SHM.

Article structure

This article first reviews the historical development and

application of ERT as well as a conventional solution to the

ill-posed ERT problem. Then, the deep learned direct in-

version framework is proposed. Thereafter, the data ac-

quisition and training methodology consisting of the

training data generation, neural network architecture as well

as the training process are detailed. Following, predictive

results for experimental and simulated crack patterns are

reported and discussed considering both their advantages

and drawbacks. Lastly, conclusions are provided.

Electrical resistance tomography and direct inversion

Electrical resistance tomography is a modality which aims

to reconstruct internal conductivity distributions from

boundary electrode measurement. To achieve this, a pre-

scribed number of electrodes are installed on the boundary

of the specimen, from which electrode potentials are

measured and electric currents are injected into. Resultingly,

potential differences are taken between one pair of elec-

trodes for each injection. As a whole, the measurement

protocol should be planned in a systematic manner to ensure

sufficient data can be collected during each injection.

Historically speaking, ERT was initially developed and

utilized for medical imaging by classifying organs based on

their different conductivities,37 later considering capacitive

and inductive tomographies.38 In the recent years, ERT has

been the source of significant research interest in the NDT/

SHM community. For this, ERT has been coupled with

sensing skins to detect damage in reinforced concrete 13,39,40

as well as imaging damage, strain and stress fields in a broad

suite of composite materials.41–48 Previous related studies

also demonstrate that ERT is capable of imaging internal

moisture flow within cement-based material in both 2D and

3D settings.8,49

Until recently, high-fidelity solutions to the ERT re-

construction problem have generally required solving an

optimization problem using conventional iterative regu-

larized computational methods (readers are referred to 16 for

a comprehensive review of ERT inversion methods used in

NDT). However, as earlier alluded to, such methods can be

demanding and pragmatically inhibiting. On the other hand,

linearized difference imaging schemes offer much faster

solutions at the cost of spatial resolution.50 As such, we

herein take a different approach to the ERT inversion

problem by utilizing direct inversion enabled by trained

NNs in order to attain rapid high-fidelity predictions. Re-

lated work has, for example, aimed at using NNs for solving
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the continuous ERT problem.51 Additional research has

shown that CNNs are capable of reconstructing ERT image

data 52,53 however not for detecting cracking in structural

applications. Recently, researchers in Reference 54 also used

NNs to optimize the electrode locations in ERTmeasurement

aiming at achieving more efficient data acquisition. In the

following section, written for contextualization, we will first

discuss the forward problem underlying ERT physics (and

used for generating training data), then discuss the con-

ventional ERT inverse problem and finally propose the

analogous ERT direct inversion framework.

The ERT forward model

In order to reconstruct the internal conductivity distribution,

an ill-posed ERT inverse problem needs to be solved. The

ill-posed nature of this problem results from a number of

factors, including (a) ill-conditioning of matrices used in the

optimization, (b) experimental measurement noise and (c)

the diffusive nature of electric fields.2 Nonetheless, in order

to implement ERT computationally, a numerical forward

model is required in order to map the internal conductivity

to boundary measurements. For this, we utilize the complete

electrode model (CEM), which is implemented using finite

elements55,56 discretizing the following equations

= � ðσ=uÞ ¼ 0, x2V (3)

Z

el

σ
∂u

∂n
dS ¼ Il, l ¼ 1,…:,L (4)

σ
∂u

∂n
¼ 0, x2 ∂V

�
[L

l¼1el (5)

uþ zlσ
∂u

∂n
¼ Ul, l ¼ 1,…:,L (6)

Equation (3) is the Laplace equation which describes

steady-state diffusion47 in a target domain V with a

boundary ∂V. Further, x represents Cartesian coordinates

within the domain while σ(x) and u(x) represents the

conductivity distribution and potential distribution within

the target. Equations (4)–(6) provide the necessary

boundary conditions to solve equation (3), where el rep-

resents the lth electrode; hence, Ul is the potential mea-

surement on the corresponding electrode. Il represents the

current injection on lth electrode. dS represents the infini-

tesimal surface of V while zl represents the contact im-

pedance between the lth electrode and the internal domain.

Equations (4)–(6) provide an accurate forward model so-

lution by taking the shunting effects of electrodes and their

contact impedance into account.57 Lastly, in order to satisfy

the current conservation law and fixed potential reference

level which would ensure an unique solution, the following

equations are written to complete the CEM

XL

l¼1

Il ¼ 0 (7)

XL

l¼1

Ul ¼ 0 (8)

We would like to emphasize that the CEM describes the

forward problem where the internal conductivity is known,

from which the electrode potentials can be computed. As

such, we adopt the CEM in generating training data sets

which consist of boundary voltage measurements ac-

companied by corresponding internal conductivity dis-

tribution is known. However, in pragmatic imaging

scenarios, the internal conductivity distribution is un-

known. Therefore, conductivity estimates must be ob-

tained using an inverse methodology as described in the

forthcoming sections.

The ERT inverse problem

The traditional nonlinear ERT inverse problem can be

conceptually characterized by the following observation

model

V ¼ UðσÞ (9)

where U is the finite element forward model mapping σ to

measured voltages V. Such a model implies that when the

measurements and the forward model match exactly, the

inverse problem is solved (i.e. when the L2 norm of the data

fidelity term is minimized: kV � U(σ)k2 = 0). In reality,

however, such a case is an unrealistic idealization as

measurement noise e is always present, resulting in the

noise-modified observation model written as

V ¼ UðσÞ þ e (10)

Unfortunately, due to the presence of noise, numerical

modelling error, nonlinearity of U(σ), and ill-conditioning

of resulting ERT matrices used in solving the inverse op-

timization problem, there are infinite solutions to equation

(10). Thus, we require advanced regularization to incor-

porate biasing prior information and, often, physical con-

straints in optimizing/solving the nonlinear (absolute

imaging) inverse problem. In order to avoid such com-

plexities, the observation model may be linearized in order

to obtain solutions with less up-front computational de-

mand/complexity.58

Linearized ERT, or simply difference imaging as we will

herein refer to it, is a framework which aims to reconstruct

the difference of internal conductivity Δσ based on dif-

ferences of boundary voltage measurements ΔV from two

different states (subscripts 1 and 2 representing baseline and

damaged states, respectively) expressed in the following
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ΔV ¼ V2 � V1 (11)

Δσ ¼ σ2 � σ1 (12)

As a consequence, the following linearized observation

model can be written

ΔV ¼ JΔσ þ Δe (13)

where J ¼ ∂Uðσ1Þ=∂σ1 is the Jacobian matrix computed at

the linearization point σ1 and Δe is the difference in mea-

surement noise between states 1 and 2.

Based on the observation model in equation (13), the

ERT reconstruction problem is generally facilitated by a

one-step least squares solution minimizing the following

objective function

Ψ ¼ kLΔeðΔV � JΔσÞk2 þ αkLRΔσk
2

(14)

where LΔe and LR are Cholesky factorized noise weighting

and regularization matrices, respectively. The use of reg-

ularization, the magnitude of which is largely controlled by

the hyperparameter α > 0, is required to stabilize solutions

and incorporate prior information into the least squares

minimizer described below

Δbσ ¼
�
J TWJ þ αLT

RLR

��1
J TWΔV (15)

where W is a diagonal noise weighting matrix.

The advantages in adopting linearized schemes, such as

the difference imaging approach described previously, are

numerous. Firstly, since one-step optimization is used, in-

verse solutions are significantly less computationally de-

manding than nonlinear absolute imaging solutions.

Secondly, and of principle importance to this work, the use of

difference data ΔV results in subtraction of systematic errors.

Therefore, in cases where measurements are simulated for

use in training data, a significant portion of modelling errors

are subtracted – thereby reducing the influence of modelling

error corruption in training. In the following subsection, we

will detail the incorporation of difference data into the learned

direct inversion scheme analogous to the traditional linear-

ized scheme previously described.

Analogous ERT direct inversion framework

This section introduces the learned framework used to di-

rectly solve the analogous ERT (crack reconstruction) in-

verse problem. Following, we provide rationale for the

ANN and CNN architecture selections and learning ap-

proaches used in direct inversion.

Analogous ERT direct inversion approach

The overarching aim of the proposed direct inversion ap-

proach is to map ERT difference measurements ΔV to

probabilistic binary crack distributions. The purpose for

choosing a binary cracking representation is to simplify

the interpretability of damage predictions. More techni-

cally, we aim to predict the probability of local cracking

pσ 2 [0, 1], where a predicted value of 1 indicates that a

pixel contains a crack with 100% predicted confidence.

Conversely, a predicted value of 0 refers to 0% confidence

of a crack within the pixel while intermediate predicted

values convey uncertainty in the local occurrence of

cracking. Summarily, we aim to learn the following

mapping

AðΔV Þ→ pσ (16)

where A is a symbolic functional representation of the

learned network.

The function A, while roughly analogous to the line-

arized difference imaging scheme with respect to ΔV, is

highly nonlinear. This realization stems from the fact that

the mapping between data ΔV and binary crack distribu-

tions results from (a) the nonlinear transformation of the

parameterizations given by σ 2 (0, + ]→ pσ 2 [0, 1] and (b)

the fundamentally nonlinear relationship between ERT

measurements and conductivity (as the linearization as-

sumption in conductivity is not made in learned direct

inversion). Therefore, given the nonlinear relation between

network inputs and outputs coupled with the idealized

binary nature of pσ, the use of linear and regressive net-

works might not be the most appropriate option for this

work. Regarding the latter, this choice is justified because

(a) we are aiming at reconstruct crack patterns in a binary

manner which is categorized as a classification problem

and (b) the distribution of binary data is inappropriate for

regression. Hence, necessitating the use of deep networks

optimized following equation (2). In the following section,

we will describe the training and learning process for

predictive networks A.

Selection of machine learning architectures and

learning approach for cracking classification

In this section, we introduce the potential algorithm options

for solving a classification problem and justifications for our

ANN and CNN selections. A significant analysis and dis-

cussion on classification techniques by Kotsiantis and co-

authors59 show that there are options as following: 1. logic

based algorithms such as decision trees, 2. perceptron-based

techniques such as single layered perceptrons and deep

neural networks, 3. statistical learning algorithms such as

Naive Bayes classifiers (NB) and Bayesian networks (BNs),

4. instance-based learning such as k-nearest neighbour

(kNN) and 5. support vector machines (SVMs). Generally

speaking, SVMs and neural networks yield more accurate

outputs with multi-dimension input features. A quantitative

Chen et al. 5



study by Osisanwo et al.60 shows that SVMs and NNs have

better accuracy when tested with larger data sets and more

attributes. However, SVMs are designed to be binary al-

gorithms, and as a result, this feature can potentially limit

its applications when dealing with non-binary classifica-

tion problems. In addition, logic based algorithms are

highly interpretable; however, the accuracy of such al-

gorithms are significantly affected by the input features

which need to be discretized in exchange for a higher

classification accuracy.61 Furthermore, NNs have been

found to be more reliable in providing incremental learning

compared to decision trees.62 For statistical learning al-

gorithms, although most of them require less computa-

tional time when compared to NNs, the assumption of

independence between nodes has been shown to result in

comparatively lower accuracy.59As a result, BN classifiers

need large networks to reach high accuracy which is often

not feasible; therefore, these algorithms may not be suit-

able when using large feature data sets.63 For instance-

based learning such as kNN, the choosing of k is essential

especially when noise is present in the training input sets.

However, currently there is a dearth in rigorous selection

approaches for choosing k in pragmatic applications,

thereby leading to large computational time for classifi-

cations.64 Taken together, the above analysis suggests that

NNs are the most suitable selection for this work, owing to

their overall accuracy when solving classification prob-

lems having large feature inputs. Additionally, from a

practical standpoint, NNs (a) have the ability to train using

(input) data in the absence of prior knowledge on their

distribution65 and (b) without specifying an optimized

mathematical model.66

To further examine the performance of different neural

networks for classification problems, Jeatrakul compared

the performance between back-propagation neural network

(BPNN), general regression neural network (GRNN), radial

basis function neural network (RBNN), probabilistic neural

network (PNN) and complementary neural network

(CMTNN). Each network was tested against three bench-

mark data sets; in their work, the BPNN turned out to be the

most robust across all three training tasks.67 Furthermore,

Pasupa and Sunshem compared a CNN with an ANN using

smaller data sets showing that a CNN with regularization

and dropout can provide comparable results to ANN,68 thus

supporting the selection of CNN classifiers for the purposes

of this work.

Summarily, the studies reviewed in this subsection

suggest that ANN and CNN architectures are suitable for

the crack classification tasks investigated herein. There-

fore, these two neural networks are adopted for the

analogous ERT direct inversion framework, namely, the

mapping of input data ΔV to the probability of local

cracking pσ.

Training data acquisition and

training methodology

Overview

Training data were generated using the CEM equipped with

quadratic triangular discretizations. A set of training samples

herein consists of simulated electrode potential differences

generated using sampled conductivity distributions and com-

plimentary binary crack distributions described in the previous

subsection. Regarding the potential measurements more spe-

cifically, each simulated differencemeasurement set results from

subtracting baseline (undamaged) ERT measurements V1 from

ERT measurements V2 generated from a cracked configuration.

In this work, two cracking phenomena are studied:

flexure-induced cracking and shear-induced cracking. In

total, 40,000 sets of training samples were generated for both

flexural and shear cracks configurations. For validation

purposes, geometries of the domains where flexural and shear

cracks developed were chosen considering differing geom-

etries. Domain geometry and experimental data for flexural

cracking were adapted from the experimental ERT study13

while the domain geometry for shear crack was adapted from

Reference 7. However, since raw ERT experimental data

were not obtained during the shear testing, the shear cracking

investigation uses simulated data generated from randomized

shear crack distributions. Parameters of the domains that are

developing both types of cracking are provided in Tables 1

and 2. We note that the use of simulated data also facilitates

quantitative assessment with respect to true cracking patterns.

The discretizations for both investigations are shown in

Figures 1 and 2. Spacing and locations of electrodes can be

seen in the meshes with reference to Tables 1 and 2. In all

cases, internal conductivity distributions were mapped on

the discretizations in order to form a continuous distribution

within the domain. For this, prior Gaussian background

conductivity information was incorporated when generating

the samples. In generating homogeneous backgrounds,

conductivities in the range of 8–10 mScm�1 were assumed

in order to mimic realistic silver sensing skins (following

Reference 69) in the flexural case as well as incorporating

isotropic smoothness with a correlating length of 4 cm to

incorporate spatial inhomogeneity. In the case of shear

cracking, homogeneous background of 0.1 mScm�1 was

reasonably assumed in all instances to simulate potentially

low-conductive large elements (Tables 3–5).

In order to simulate measurement data with the ERT

forward model, we adopt opposite current injection patterns

while voltagemeasurementswere taken via adjacent electrode

pairs. Each flexural crack training sample consists of 3024

voltage measurements and a corresponding conductivity

vector with 5047 (nodal) entries. Downsampled flexural crack

training samples consist of the same number of measure-

ments; however, the size of conductivity vector is reduced to

6 Structural Health Monitoring 0(0)



915 entries using bi-linear interpolation. Similarly, shear crack

training samples consist of 196 voltage measurements (which

are reshaped to the 14 × 14 input size for use in CNNs).

Additionally, each shear crack training sample also contains a

conductivity vector having 1148 entries. Lastly, 2% Gaussian

noise was added to all voltage and conductivity training data

sets to improve regularization, prevent over fitting and im-

prove network generalizability.70–72

Crack pattern generation

In order to train the NNs, artificial cracks need to be

generated and incorporated into the training samples. For

the flexural cracking training set generation, cracks were

initialized at the bottom of the domain using prior

knowledge of the loading and boundary conditions (i.e.

three-point bending). For this, generators consisting of one

or two cracks were initialized at different starting locations

with various progressing directions. Cracks were simulated

by random incremental steps of which the total number is

randomized, leading to cracks that could reach arbitrary

length within the boundary, such that a sufficient number of

training samples were available. Meanwhile, shear cracks

were initialized within the domain, while crack progression

directions were controlled within a range of 0–45° resulting

from the experimental shear testing boundary condition

information. Representative internal conductivity distribu-

tions for both cracking mechanisms are shown in Figures 3

and 4.

Data processing and training

As indicated previously, the aim of the network training

process is to learn the nonlinear mapping between ERT

difference measurements and binary crack distributions. To

do this, Keras73 is implemented in a Python environment for

both generating NN architectures and training. In training an

individual NN, A, we utilize t 2 N training data comprising

Δ~V and ~pσ where the tilde denotes training data. This

process can be holistically written as

A
�
Δ~V

�
→ ~p

σ
(17)

Based on this information, we may now explicitly write

the desired training loss function as follows

L ¼ �
1

N

XN

t¼1

�
~p
σ,t logðptÞ þ

�
1� ~p

σ,t

�
logð1� ptÞ

�
þ λkwk

2

(18)

The preceding loss function minimization is augmented

with a dropout rate of 50%, effectively supplementing L2
weight regularization and noise addition to data, to further

improve network generalizability and prevent over fitting.74

Table 1. Geometry and mesh details for the flexural cracking
investigation.

Parameter Value

Width 18 cm

Height 4.3 cm

Horizontal electrodes (each side) 12

Horizontal spacing 1.5 cm, 2 cm

Vertical electrodes (each side) 2

Vertical spacing 2.3 cm

Electrode width 0.23 cm

Electrode depth 0.15 cm

Table 2. Geometry and mesh details for the shear cracking
investigation.

Parameter Value

Width 1.5 m

Height 1m

Horizontal electrodes (each side) 8

Vertical Electrodes(Each side) 8

Electrode width 0.055 m

Electrode depth 0.055 m

Figure 1. Domain discretization for the flexural cracking investigation consisting of 2557 nodes and 4896 elements.
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Regarding the generated training data, the overall di-

mensionality of both inputs ðΔ~V Þ and outputs ð~pσÞ is im-

mense due to (a) the fine discretizations and (b) the large

number of measurements used. Hence, a spatially inter-

polated downsampling step is additionally considered in

order to map the high-fidelity distributions of ~pσ onto a

smaller nodal space, thus aiming to reduce the overall

dimensionality of this mapping task for the NN. Such a

reduction is expected to result in a reduced error space

during gradient decent process.

Owing to the fact that the dimensionality of Δ~V is

significantly smaller than ~pσ (a common feature in ERT), the

training process effectively stretches and amplifies infor-

mation in Δ~V via NN throughput of Δ~V → ~pσ . Therefore,

given the dimensionality mismatches, the design of NN

architectures is conducted via trial and error. To this end, an

ANN is applied for both flexural and shear cracking ap-

plications while the use of a CNN is explored for re-

constructing shear cracking alone. Regarding the latter, the

central reason for not utilizing a CNN for flexural cracking

predictions is owed to realizations made during preliminary

trial and error processes – namely, that ANNs of basic

architectural complexity were sufficient for flexural

cracking predictions thereby negating the need for com-

putationally demanding CNN training. Schematic ANN and

CNN architectures are provided in Figures 5 and 6,

respectively.

The finalized ANN architecture used for flexural crack

predictions is comprised of one input layer, two hidden

layers each consisting of 2000 neurons equipped with ReLU

activation functions, and an output layer consistent with the

number of entries in an individual sample in ~pσ . Addi-

tionally, the ANN architecture for shear cracking predic-

tions includes three hidden layers of each consisting of 900

neurons with ELU activation functions followed by output

layer with the same number of entries in an individual

sample in ~pσ . Procedurally, the ANN training processes are

set to stop when the loss function for validation data

consisting of 5000 independent samples exceeded a pa-

tience of 100 epochs.

Unlike in the straightforward implementation of ANNs

where we map a vector to a vector, we utilize image-based

CNNs. As such, we require a rectangular input; consequently,

we choose to reshape the input data Δ~V to a 14 × 14 matrix

form. This information is then fed into one convolutional

layer with 32 filters having a kernel size of 2 × 2 followed by

a 1 × 1 max pooling layer. Secondly, the same sets of

convolutional and max pooling layers were added. Then, a

flatten layer was added before a fully connected ANN

structure consisting of three hidden layers with 4500 neurons

each. ReLU activation functions were used in hidden layers

while sigmoid functions were applied in the output layer. In

training, 5000 samples were utilized and found to be suffi-

cient to adequately train the network. However, in previous

trial and error procedures, it was found that significant

computational resources were needed in order to optimize the

CNN parameters. This was owed to the lack of distin-

guishability in input voltage data corresponding to con-

ductivity changes central region of the domain (a common

sensitivity issue in ERT).

Figure 2. Domain discretization for the shear cracking
investigation consisting of 5047 nodes and 9680 elements.

Table 3. Summary of the artificial neural network architecture
used for reconstructing flexural cracks.

Neural network input Δ~V with size (1,3024)

Layer (type) Output shape Activation function

Input layer (1, 3024) ReLU

Hidden layer 1 (dense) (1, 2000) ReLU

Dropout (dropout rate: 0.5) (1, 2000)

Hidden layer 2 (dense) (1, 2000) ReLU

Dropout (dropout rate: 0.5) (1, 2000)

Output layer (dense) (1, 915) Sigmoid

Neural network output ~p
σ
with size (1915)

Table 4. Summary of artificial neural network architecture used
for reconstructing shear cracks.

Neural network input Δ~V with size (1,3024)

Layer (type) Output shape Activation function

Input layer (1, 3024) ELU

Hidden layer 1 (dense) (1, 900) ELU

Dropout (dropout rate: 0.5) (1, 900)

Hidden layer 2 (dense) (1, 900) ELU

Dropout (dropout rate: 0.5) (1, 900)

Output layer (dense) (1, 1148) Sigmoid

Neural network output ~p
σ
with size (1,1148)
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Based on the former preliminary realizations, we propose

and investigate an alternative approach to CNN predictions

where the conductivity vector is segmented to five pieces.

As a result, five different NNs are trained and developed

with reduced dimensionality aiming at improving prediction

accuracy for individual segments and overall domain pre-

dictions after the final assembly of segments. Another

advantage of this methodology relates to regions where

information is poor – especially the central region – where

(a) more training samples can be added or (b) other pa-

rameters could be adjusted to improve the training per-

formance avoiding the need to retrain a large (entire

domain) CNN.

Lastly, to provide more detailed information on network

training, Figures 7 and 8 show the training processes for two

typical NNs. In these figures, we observe a near immediate

reduction in the loss indicating rapid learning. Following

Table 5. Summary of convolutional neural network architecture used for reconstructing shear cracks.

Neural network input Δ~V with size (1,14,14)

Layer (type) Output shape Activation function

Input layer (1, 14, 14)

Convolutional layer 1 (Conv2D) (7, 7, 32)

Max pooling layer 1 (max pooling) (7, 7, 32)

Convolutional layer 2 (Conv2D) (6, 6, 32)

Max pooling layer 2 (max pooling) (6, 6, 32)

Flatten layer (flatten) (1, 1152)

Hidden layer 1 (dense) (1, 4500) ReLU

Dropout (dropout rate: 0.5) (1, 4500)

Hidden layer 2 (dense) (1, 4500) ReLU

Dropout (dropout rate: 0.5) (1, 4500)

Hidden layer 3 (dense) (1, 4500) ReLU

Dropout (dropout rate: 0.5) (1, 4500)

Output layer (1, 1148) Sigmoid

Neural network output ~p
σ
with size (1,1148)

Figure 3. Sample conductivity distribution used in flexural cracking training data.

Figure 4. Sample conductivity distribution used in shear cracking
training data.
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this initial phase, a gradual decrease in the loss function is

observed, characterized by fine-tuning of the network

weights and biases. It is worth noting here that, since dif-

ferent network architectures and training samples are used

in this work, the number of epochs varies needed to reach

respective stopping criteria varies significantly.

Results and discussion

In this section, we report and discuss cracking predictions

from experimental flexural and simulated shear testing

campaigns. Tabulated images showing these cracking

predictions are reported in Figures 9 and 10. In the spatial

mappings reported, colour bars represent the probability of

cracks existing at a nodal location. For the purpose of

quantitative comparison, the mean square error (MSE)

metric, measured between the predictive results and simulated
Figure 7. Loss function minimization for an artificial neural
network used in this work.

Figure 5. Schematic trained artificial neural network architecture.

Figure 6. Schematic trained convolutional neural network architecture.
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results, for shear cracks are summarized in Table 6. In the

forthcoming subsection, we will detail results for flexural

testing, followed by a subsection detailing shear testing

predictions, and lastly, discussion will be provided.

Flexural crack reconstruction

Flexural cracking predictions are shown in Figure 9 alongside

experimental photographs with highlighted crack. Column a

shows the experimental photographs, column b shows the

crack predictions based on full conductivity sampling, and

column c reports predictions using based on downsampled

conductivity. Generally speaking, NN predictions correctly

localize the initial crack topology (top row) in comparison to

the experimental photographs as observed in ai, bi and ci. In

addition, crack growth can be observed in bii and cii for both

data types while the downsampled data prediction visually

outperforms the full data prediction in terms of the actual

length of the growing crack. In biii and ciii, only a single crack

can be observed, which matches the left crack shown in aiii.

Further, in biv and civ, both the full and downsampled pre-

dictions accurately capture both cracks.

As a whole, we observe improved predictions when

utilizing downsampled data. It is worth nothing, however,

that this qualitative observation comes at a loss of spatial

resolution in predictions pσ. It can also be observed that in

predictions biii and viii, the reconstructions do not capture

the right crack, irrespective of sampling fidelity, this

drawback can be potentially explained by the presence of

the left crack, which effectively shields electric fields and

leads to a reduction in measurement information needed in

resolving the right crack.13 In addition, the inability to

accurately predict the right crack in the third row could also

be due to the relatively large width to depth ratio of this

domain, where electric fields flowing horizontally are, in as

rough sense, more constrained than in geometries having

aspect ratios approaching 1:1. Moreover, the presence of

small artifacts can be observed in ciii and civ which result

from NN predictive errors (a function of, for example,

Figure 9. NN predictions of experimental flexural cracking patterns.

Figure 8. Loss function minimization for a convolutional neural
network used in this work (non-segmented data).
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measurement noise and geometrical discretization error);

however, these errors are small relative to topological crack

prediction errors and do not significantly corrupt the overall

assessment of crack predictions.

Shear crack reconstruction

Artificial neural network and CNN shear cracking pre-

dictions based on downsampled data are reported in

Figure 10. Column a shows the true cracking binary

representation. Column b reports ANN predictions for the

entire domain. Column c reports CNN predictions results

for the entire domain. Lastly, column d reports segmented

CNN predictions. In addition, consolidating five seg-

mented networks. In total, four differing cracking patterns

of increasing complexity are considered (least complexity

in the top row and most complexity in the bottom row).

Generally speaking, for simple crack patterns (i.e. the

first and second rows), both the ANNs and CNNs provide

valid predictions in terms of crack lengths and locations.

However, when observed in closer detail, the ANN visually

outperforms the CNN predictions slightly as in bi and bii
where the length of cracks are more accurately predicted.

For more complex crack patterns (i.e. the third and fourth

rows), all NN cracking predictions are satisfactory near the

domain boundaries. On the other hand, near the centre of the

domains (the area of least sensitivity), CNNs appear to

localize and separate complex cracks better than ANNs as

observed from ciii, diii civ and div. Furthermore, segmented

CNN predictions consistently show improved qualitative

results in comparison to the conventional CNN network.

In totality, both the ANNs and CNNs predict less ac-

curately towards the central region of the domain relative to

the boundary. This is likely caused by the diffusive nature of

electricity and is also a common feature of ERT.39However,

despite the generally better qualitative results predicted by

CNNs, we require a quantitative metric to more closely

assess predictions. For this, we utilize the MSE metric,

effectively comparing true and predicted images; these

metrics are reported in Table 6.

Figure 10. NN predictions of simulated shear cracking patterns.
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In contrast to visual observations, assessment of MSEs

reported in Table 6 indicates that ANNs generally perform

quantitatively slightly better than CNNs – with the notable

exception of one cracking pattern. This could potentially be

due to fact that the CNNs’ architecture and data processing

add additional nonlinearity in the training and prediction

process. While this initially seems counterintuitive, as

CNNs are commonly regarded as more powerful predictive

tools than ANNs, additional discussion is required to attain

a more full picture of the realizations made in this sub-

section. Such discussion will be provided henceforth.

Discussion

The feasibility of NNs for probabilistically predicting

cracking patterns was qualitatively and quantitatively af-

firmed in the preceding subsections using experimental and

simulated data. Generally speaking, the networks were able

to localize binary crack representations with regional cer-

tainty exceeding 50% – with the notable exception of cases

where measurement quality was impeded by crack

shielding. As alluded to, the use of NNs for predicting

cracks using boundary voltage measurements is analogous

to ERT, with the caveat that the learned methodology

proposed herein predicts binary cracking representations

rather than reconstructing continuous conductivity distri-

butions. Interestingly, the proposed NN crack prediction

framework also exhibits similar susceptibilities present in

ERT; the primary weaknesses include (a) insensitivity to the

central region of the prediction domain and (b) low spatial

resolution. Conversely, and again similar to ERT, the NN

prediction framework also has analogous advantages in-

cluding (i) high sensitivity near the boundaries and high

temporal resolution. In contrast to ERT, however, the NN

prediction framework enables substantial computational

speedups and simpler representation of cracking topology

relative to conventional ERT.

Despite the noted advantages, two observations made in

the results subsections remain yet to be explained. Reali-

zations from these observations have key implications on

the potential use of predictive networks for probabilistic

crack assessment in future work. Firstly, the use of spatial

downsampling proved highly effective and generally im-

proved prediction quality. Secondly, the use of CNNs,

commonly considered a more powerful classification net-

work, only outperformed ANNs in one case considered.

In response to the first observation, we need to first

investigate the general structure of input and output data sets

used herein. We note that, when binary crack representation

data (output) are not downsampled, the output dimen-

sionality is an order of magnitude larger than input mea-

surement data. As such, information stemming from

measurements is significantly diffused and stretched before

reaching the outputs. This is similar to the process of de-

coding, that is, mapping low dimensional information to

high dimensional information, as commonly adopted in

autoencoder applications.75,76 A primary challenge pre-

sented in the decoding process lies in the preservation of

information transferred from input to output. Potential for

corruption in decoding, however, can be reduced by opti-

mizing the NN architecture and decreasing discrepancy

between input/output data size. Regarding the latter,

downsampling of the outputs (as used herein) is an effective

method for matching data sizing discrepancies and therefore

underscores the effectiveness of downsampling in crack

prediction quality observed.

Responding to the second observation, regarding the

reduced effectiveness of CNN cracking predictions in

comparison to those of ANNs, we would like to remark

that this was an unexpected result. Nowadays, applica-

tions of CNNs range from image processing to inverse

problems. Recent scholarly work has even investigated

the ‘unreasonable effectiveness of CNNs’.77 Yet, like

many machine learning tools, the use of specific archi-

tectures and data processing techniques should be con-

sidered with respect to the application and underlying data

structure(s).

In this work, the input data (potential differences) may

have a positive or negative sign and the magnitude can vary

significantly, depending on the cracking pattern, domain

geometry, electrode configuration, and measurement/

stimulation protocol. In turn, reshaping such data into a

rectangular ‘voltage image’ unquestionably represents

a much more complex data structure than if it were, for

example, a black and white image consisting of positive

integer values ranging from 0 to 255. Therefore, the use of

convolutional operations in comparison to feed-forward

(ANN) operations may not be ideal in many cases. Such

a realization may contribute to the fact that CNNs performed

less favourably than ANNs in predicting all but one

cracking representation.

Table 6. Mean square errors for shear crack predictions.

Network type Crack pattern MSE

ANN Complex pattern 1 0.057
Complex pattern 2 0.046
Simple pattern 1 0.019
Simple pattern 2 0.022

CNN with complete figure Complex pattern 1 0.097
Complex pattern 2 0.065
Simple pattern 1 0.022
Simple pattern 2 0.015

CNN with segmented figure Complex pattern 1 0.088
Complex pattern 2 0.067
Simple pattern 1 0.025
Simple pattern 2 0.021

ANN: artificial neural network, CNN: convolutional neural network.
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The former deduction is not a general conclusion of this

work, however, as CNNs (and fully connected networks)

offer opportunities for deeper data representation. For ex-

ample, derivative operations have equivalencies to con-

volution operations78,79 meaning that higher order data

representations are possible using CNNs. Therefore, the use

of deeper non-fully connected networks highly tailored to

data and prediction may, in eventuality, lead to substantially

improved predictions of cracking representations than those

reported herein, and this is the source of ongoing research.

Conclusions

In this article, fast neural network–driven direct inversion

frameworks were proposed to predict binary cracking

distributions in concrete elements. The aim of the proposed

framework was to map boundary electrical measurements to

probabilistic binary crack distributions. The purpose for

choosing a binary cracking representation was to simplify

the interpretability of damage predictions. To test the fea-

sibility of the approach, experimental flexural cracking

representations were successfully predicted with using

ANNs. To facilitate quantitative evaluation of networks’

efficacy, simulated shear cracking representations were

predicted using ANNs and CNNs. Simulation results

generally indicated that ANNs slightly outperformed CNNs

quantitatively, while both architectures showed the potential

to accurately reconstruct simple and complex crack patterns.

In summary, the feasibility of the proposed learned

frameworks was affirmed and discussion was provided to

offer guidance on the potential for improving network

predictions.
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