
This is a repository copy of LayOpt : an educational web-app for truss layout optimization.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/176240/

Version: Published Version

Article:

Fairclough, H.E., He, L., Pritchard, T.J. et al. (1 more author) (2021) LayOpt : an 
educational web-app for truss layout optimization. Structural and Multidisciplinary 
Optimization, 64 (4). pp. 2805-2823. ISSN 1615-147X 

https://doi.org/10.1007/s00158-021-03009-8

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Structural and Multidisciplinary Optimization

https://doi.org/10.1007/s00158-021-03009-8

EDUCATIONAL PAPER

LayOpt: an educational web-app for truss layout optimization

Helen E. Fairclough1 · Linwei He1 · Thomas J. Pritchard2 ·Matthew Gilbert1

Received: 24 March 2021 / Revised: 25 June 2021 / Accepted: 28 June 2021

© The Author(s) 2021

Abstract

A new interactive truss layout optimization web-app has been developed for educational use. This has been designed to

be used on a range of devices, from mobile phones to desktop PCs. Truss designs are first generated via numerical layout

optimization and then rationalized via geometry optimization. It is then shown that these designs can be simplified using a

computationally inexpensive process that allows the user to control the trade-off between complexity and structural volume.

The process involves the use of smooth Heaviside representations of member existence variables, with nodal slack forces

employed that allow unstable intermediate truss structures. Full details of the web-app are provided in this contribution,

from underlying formulation to cloud computing implementation. A range of numerical examples are used to demonstrate

the efficacy of the web-app, and to show how it can potentially be used in educational and practical engineering settings.

Keywords Truss layout optimization · Web-app · Heaviside simplification · Topology optimization · Geometry optimization

1 Introduction

Interactive educational tools have been invaluable in raising

awareness of the power of continuum topology optimization

methods, from the TopOpt web-app launched in 2000

(Tcherniak and Sigmund 2001) to apps designed to run

on mobile phones or tablets (Aage 2013; Nguyen et al.

2020). These tools are able to demonstrate to interested

users the power of topology optimization, by allowing

them to solve simple, generally two-dimensional, user-

defined design problems. These tools, together with short

educational scripts written in MATLAB and other high level

languages (e.g. Sigmund 2001; Andreassen et al. 2011; Wei

et al. 2018), have contributed to the development of a vibrant

research and user community in the field.

Whereas those active in the continuum topology opti-

mization field have benefited from the availability of inter-

active educational tools for the last two decades, there

have to date been no similar interactive educational tools

Responsible Editor: Emilio Carlos Nelli Silva

� Linwei He

linwei.he@sheffield.ac.uk

1 Department of Civil and Structural Engineering,

University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK

2 LimitState Ltd, Sheffield, UK

for truss layout optimization (also known as ‘truss topol-

ogy optimization’), though a number of short educational

scripts have been made available (e.g. Sokół 2011; Zegard

and Paulino 2014; He et al. 2019b). Also, a truss opti-

mization method employing a ‘growth’ heuristic has been

made available as a downloadable software program for PCs

(Martinez et al. 2007). Truss layout optimization methods

can identify structurally efficient arrangements of discrete

structural elements forming a structure, and are particu-

larly well suited for problems where the proportion of the

available design domain occupied by structure is small, as

is common for design problems encountered by structural

engineers working in the construction industry.

However, until recently truss layout optimization meth-

ods have not found favour in industry. This is partly

because the solutions obtained using basic numerical lay-

out optimization methods will generally appear impractical

to engineers working in practice, comprising numerous

closely spaced elements that would be difficult to fabricate

using traditional methods. Nevertheless, details of projects

where optimal layouts have been used to guide and inspire

designers working in practice have recently been outlined

by Graczykowski and Lewiński (2020) and Zegard et al.

(2020).

New digital fabrication techniques are now expanding

the range of structures that can be fabricated and the

current climate emergency is making increased material

efficiency a far higher priority. Also, means of rationalizing

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-021-03009-8&domain=pdf
http://orcid.org/0000-0002-2537-2244
mailto: linwei.he@sheffield.ac.uk


H. E. Fairclough et al.

the raw solutions obtained via truss layout optimization

have been developed in recent years (He and Gilbert 2015).

Nevertheless, solutions will still often appear over-complex

to practitioners and in the present contribution a new

computationally efficient means of allowing the user to

manage the trade-off between complexity and volume is

presented.

To demonstrate the efficacy of truss layout optimization

when used in conjunction with the aforementioned post-

processing methods, these are here incorporated in a new

interactive truss layout optimization web-app, LayOpt,

publicly accessible via https://www.layopt.com. The web-

app is designed to allow users to interactively solve a

wide range of two-dimensional truss layout optimization

problems, on a range of devices.

Specifically, the use of web-technologies and comple-

mentary serverless cloud computing techniques mean that

computations can be carried out in the cloud, ensuring scala-

bility (thousands of simultaneous connections are possible),

and obviating the need for a powerful client, thereby allow-

ing a wide range of devices to be used to access the web-app,

including desktop computers, tablets and mobile phones,

as shown in Fig. 1. The use of industry standard proto-

cols means that the web-app will work on almost all web

browsers released since 2011, and many released earlier

than that too.

The paper is organized as follows: Section 2 presents

details of the underlying numerical methods, including the

new simplification process; Section 3 presents details of

the cloud computing-based software architecture used by

the web-app; Section 4 presents a wide range of example

problems that demonstrate the range of applicability of the

web-app; finally conclusions are drawn in Section 5.

2 Numerical methods

2.1 Truss layout optimization

Truss layout optimization (after Dorn et al. 1964) provides

a method of identifying minimum volume structures for

a given design domain and set of loads and boundary

conditions, e.g. see the example problem shown in Fig. 2a.

This contains only a single point load, but any number of

loads can be handled, applied either simultaneously or in

separate load-cases.

Here, a rigid-plastic material model is assumed. Many

common engineering materials exhibit a plastic response

as failure is approached, and, by utilizing this behaviour,

greater material savings can be realized. The use of a

plastic formulation also obviates the need to include elastic

compatibility constraints in the formulation. For single

load-case problems a statically determinate layout can be

found that will also be optimal when an elastic material

is involved. However, for multiple load-case problems the

optimal elastic and plastic solutions will diverge, with the

volumes computed using the formulation described herein

representing lower bounds on the corresponding elastic

solutions.

In the truss layout optimization procedure, the design

domain is first discretized using a series of nodes that

are then connected by potential truss members to form a

‘ground structure’. For a fully general solution, each node

should be connected to every other node; however, this

becomes computationally challenging when large numbers

of nodes are involved. To address this an adaptive ‘member

adding’ strategy can be used (Gilbert and Tyas 2003;

Pritchard et al. 2005; He et al. 2019b), which is guaranteed

Fig. 1 LayOpt web-app user

interface as viewed on (a) a

desktop computer; (b) a tablet;

and (c) a mobile phone

https://www.layopt.com


LayOpt: an educational web-app for truss layout optimization

Fig. 2 Stages of the LayOpt optimization process: (a) specification

of design domain, loading and supports; (b) discretization of problem

using minimally connected ground structure with unit nodal spac-

ing; (c) layout optimization solution (after member adding, volume =

57.60, assuming unit applied load and unit stress limits in tension and

compression); (d) geometry optimization of solution (c) (volume after

5 iterations = 56.69) and (e) simplification of solution (d) (2% volume

increase limit, volume = 57.71)

to obtain the same solution as would be obtained had all

members been connected from the outset.

The iterative member adding strategy begins with a

reduced ground structure, such as the one shown in Fig. 2b.

Then at each iteration the following optimization problem

(after He et al. 2019b) is assembled and solved, based on the

current ground structure:

minimize
a,q(k)

V = lTa (1a)

subject to Bq(k) = f(k) (1b)

−σ−a ≤ q(k) ≤ σ+a (1c)

a ≥ 0, (1d)

where V is the total volume of members, l = [l1, l2, ..., lm]T

is a vector of element lengths. a = [a1, a2, ..., am]T is the

vector of variables representing cross section areas of each

element, B is a matrix of direction cosines, q(k) is a vector

of variables representing the axial force in each element

in load-case k, and f (k) = [f
k,x
1 , f

k,y

1 , f
k,x
2 , ..., f

k,y
n ]T

is the vector of externally applied forces. σ+ and σ−

are the permitted stresses in tension and compression

respectively. Once the problem is solved, solutions for

both the primal (1) and dual problems (see He et al.

2019b for details) are extracted. The element forces and

areas obtained from the primal problem provide an interim

solution, the minimum volume structure possible using the

current ground structure, which can be presented to the

user to indicate progress. The solution of the dual problem

furnishes the virtual displacements of each node. These can

be used to calculate virtual strain values for each potential

member, regardless of whether or not this is present in the

current ground structure. If the virtual strain of a potential

member would violate the dual constraint value, then that

potential member is considered as a candidate for admission

to the ground structure in the next iteration. Figure 2c shows

the current ground structure at the final iteration (in grey),

as well as the identified optimal structure (where tensile

members are shown in red and compressive members in

blue; this convention is used throughout this paper).

Figure 3 shows the layout optimization process, which

ends with a filtering and validation stage.

2.2 Filtering and validation

Problem (1) generally has optimal solutions where the

majority of the variables a and q are zero, i.e. most elements

in the ground structure are not required in the final optimal

structure. However, the numerical methods used to solve

this optimization problem usually provide solutions where



H. E. Fairclough et al.

Solve LP
problem, eqn. (1), for

current ground
structure

Solution 
has virtual strain

violation?

Add violated
elements to ground

structure

Extract structure 
and virtual

displacements

Create initial ground
structure

Input problem
definition and nodal

grid

Output structure

Filter and validate
solution

Output interim
solutions

No

Layout 
optimization

Yes

Fig. 3 Layout optimization procedure

these variables are close to, but not exactly, zero. Thus,

in order to use the solutions obtained in the subsequent

geometry optimization stage, a filtering and validation step

is required.

Unlike the filter algorithm proposed, e.g., by Ramos

and Paulino (2016), where elements are removed during

the optimization process, thus potentially influencing the

form of the optimal solution, here filtering is only utilized

after the optimal solution has been found. The resulting

filtered solution is obtained by removing elements with an

area below a certain filter value (e.g., the grey lines in

Fig. 2d show the members that remain after filtering). Then

a validation problem is set up and solved to check that

the filtered solution is capable of supporting the required

loads. If the validation fails, then the process is repeated

using a different (lower) filter value. It is convenient to

set this filter value relative to amax, the largest area in the

solution; an initial filter value of 0.01amax is chosen by

default. On subsequent attempts this reduces by an order

of magnitude each time, to 0.001amax, then 0.0001amax etc.

Thus, relatively simple filtered structures are first tested,

and only if these are found to be structurally unviable are

structures with fewer filtered members tested.

The validation of the filtered problems involves solving

an optimization problem that is similar to problem (1):

minimize
a,q(k),f

(k)
s ,f̃s

Ṽ = lTa + μs

n
∑

j=1

(f̃ x
s,j + f̃

y

s,j ) (2a)

subject to Bq(k) = f(k) + f(k)
s (2b)

−σ−a ≤ q(k) ≤ σ+a (2c)

−f̃s ≤ f(k)
s ≤ f̃s (2d)

a ≥ 0, (2e)

where, f
(k)
s = [f

k,x
s,1 , f

k,y

s,1 , f
k,x
s,2 , ..., f

k,y
s,n ]T are slack

force variables for each node in load-case k, and f̃s =

[f̃ x
s,1, f̃

y

s,1, f̃
x
s,2, ..., f̃

y
s,n]

T are the maximum absolute values

of the slack forces across all load-cases, Ṽ is the penalized

structural volume, obtained using the sum of slack forces

f̃s, and μs is a large multiplier value, taken as 20V0, where

V0 is the volume after layout optimization. In a successful

validation, the objective value from (2) will be very close to

the objective value from (1), and the slack forces will not be

used. However, if key elements have been removed by the

filter, then the slack forces may be the only way constraint

(2b) can be satisfied, leading to a substantial increase in the

objective function. Alternatively, other load paths may be

able to transmit the load previously carried by the removed

key elements, but these will by definition generally be

sub-optimal, and therefore will also lead to an increase in

the objective value. A small tolerance of 1% increase in

volume is permitted in this stage. Due to this validation

requirement, the filtered structures may still contain some

thin, but structurally important, members; Fig. 5a shows an

example of such a structure.

2.3 Geometry optimization

Layout optimization can be used to identify the globally

minimum volume structure comprising joints that lie on the

original nodal grid. However, lower volume solutions can

usually be obtained if the joints are allowed to migrate to

other positions. Thus, a geometry optimization step can be

used to improve the layout optimization solution by adding

joint positions as optimization variables (see He and Gilbert

2015).

The geometry optimization formulation is very similar to

(2) except that the geometrical coefficients, such as element

lengths and direction cosines, are now calculated in the

optimization process from new nodal position variables.

Thus, objective function (2a) can now be written as:

minimize
a,q(k),f

(k)
s ,f̃s,x,y

Ṽ = lTa + μs

n
∑

j=1

(f̃ x
s,j + f̃

y

s,j ). (3)



LayOpt: an educational web-app for truss layout optimization

Formulate node move
limits and concave
domain constraints

Total node 
move distance less

than limit?

Input structure and
problem definition

Output interim
solutions

Solve NLP problem
 for current structure

Output structure

Create crossovers

Any 
intersecting
members?

Extract structure 
and calculate node
movement distances

No

No

Yes

Yes

Geometry
optimization

Merge nodes within
minimum radius

Fig. 4 Geometry optimization procedure

where x = [x1, x2, ..., xn]
T and y = [y1, y2, ..., yn]

T are

vectors containing x and y nodal positions, respectively.

Note that the problem is no longer convex, and a globally

optimum solution cannot be guaranteed. However, the use

of a layout optimization solution as a starting point tends to

ensure that high quality solutions can be obtained.

Once the nodes are permitted to move it is important

to ensure that the extents of the design domain are

Fig. 5 LayOpt stages: (a) layout optimization solution (post-filtering

volume = 66.485); (b) geometry optimization solution (volume =

64.639); (c) simplified solution (20% volume increase limit, volume

= 65.123). Stress limit in compression = 6 units, limit in tension = 1

unit. Point loads have unit magnitude except the right-most point load,

which has a magnitude of 0.5. Domain has dimensions of 16 × 7 units,

with nodes positioned 1 unit apart

respected. For a convex domain, this simply involves adding

constraints to ensure that each node does not move outside

the domain. However, when concave domains are involved

this becomes more complex. Here, the approach described

by He et al. (2019a) is used.

As the problem is now non-linear and non-convex,

numerical instabilities may be encountered. To counter this,

limits are placed on the distance moved by each node. This

greatly improves stability, but also necessitates an iterative

process so that nodes can gradually migrate towards their

optimal location. This iterative process is stopped once

the sum of the distances moved by all nodes is deemed

sufficiently small.

The resulting structure will often contain elements that

intersect, especially in the case of 2D problems. However,

in practice any intersection point would usually be viewed

as a joint, whose location therefore needs to be optimized.

Thus, new nodes are created at intersection points, and the

geometry optimization process is performed on the resulting

new structure. The overall algorithm for this procedure is

shown in Fig. 4.

A further complication is that nodes may migrate towards

each other. Thus any nodes that become too close to each

other are merged between iterations.

The overall effect of the geometry optimization process

is to rationalize the structures obtained via layout optimiza-

tion, often removing many thin members from the structure,

e.g. as is evident in Fig. 5b.

2.4 Structural simplification via Heaviside projection

Even if the filtering and geometry optimization procedures

detailed in the previous sections are applied, the solutions

obtained will often still be quite complex in form. This

can make them appear impractical to designers, hampering

uptake. Here a simplification method is proposed that allows

the total number of members in a given structure to be

reduced, thereby reducing overall structural complexity

(Fig. 6). In the interests of computational efficiency this is



H. E. Fairclough et al.

Input structure and
problem definition

Calculate aref

Add volume limit, 
and virtual force

variables. Set initial 
µ value.

Solve NLP problem,
eqn. (5)

Increase value of µ
Any 

members 
removed?

Output structure

Filter and validate
solution

Heaviside
simplification

No

Yes

Fig. 6 Automatic simplification procedure

achieved by handling integer member ‘existence’ variables

x via a smooth Heaviside projection H(x) (Guest et al.

2004). Here the selected projection function is:

H(x) = coth(μ) tanh(μx), (4)

where, μ is a predefined projection factor that determines

the accuracy of the approximation (see Fig. 7). Using this

Heaviside projection, the ‘existence’ of a given member i

can now be expressed by its cross-sectional area ai . Let aref

denote a reference member area such that the following is

satisfied:

H(ai/aref) ≈

{

0, if ai ≪ aref

1, otherwise.
(5)

Since reducing complexity is likely to lead to higher

volume structures, it is convenient to manage the trade-

Fig. 7 Form of Heaviside function (5) employed by the simplification

procedure

off between complexity and volume via the following

optimization problem (after He et al. 2018):

minimize
a,q(k),f

(k)
s ,f̃s,x,y

ΦM =

m
∑

i=1

H(ai/aref) (6a)

subject to Bq(k) = f(k) + f(k)
s (6b)

−σ−a ≤ q(k) ≤ σ+a (6c)

−f̃s ≤ f(k)
s ≤ f̃s (6d)

Ṽ ≤ (1 + ǫ)Vref (6e)

a ≥ 0, (6f)

where the optimization objective is to minimize the total

number of members ΦM. Also, constraint (6e) defines the

acceptable trade-off in structural volume, where ǫ is a

specified allowable volume increase ratio and Vref is a

reference structural volume (taken as the volume prior to the

start of the simplification step), and where aref is here taken

as amax.

Problem (6) is solved using various values of the

projection factor μ, progressively increasing this from 2,

5, 10 up to 20. Initially a small value of μ is used, which

provides rich gradient information that can be used to

minimize the objective function in the optimization; larger

values improve the speed of convergence. In each case the

goal is to remove members with small cross-sectional areas.

The process terminates if no member can be removed or if

μ has reached 20 (where the Heaviside projection closely

resembles the integer values). Since this is a heuristic

process, there is no guarantee that the simplification process

will always be successful, and the solutions obtained will

generally be only locally optimal. On the other hand, useful

solutions can often be obtained in practice, and the speed of

the process renders it suitable for use in the interactive web-

app described herein; a sample simplified design is shown

in Fig. 5c.



LayOpt: an educational web-app for truss layout optimization

The process described is effective at reducing the total

number of members in a structure. However, since the

volume of the resulting structures need only satisfy the

volume increase limit (6e), there is no requirement or

expectation that the volume will be a minimum, even

among structures with the same layout. Therefore, it is

useful to undertake a further geometry optimization step

(Section 2.3) after the simplification, which should be

preceded by a filtering and validation step (Section 2.2).

This does, however, mean that the resulting optimized

structure may often have a markedly lower volume than

implied by the specified volume increase ratio. This is

demonstrated in Figs. 8 and 9, which show how the specified

allowable volume increase ratio ǫ influences the layout of

the generated structures.

Note that although the problem shown in Fig. 8

is symmetrical, several of the simplified solutions are

asymmetric. Previous research has demonstrated that the

optimal solution may be asymmetric when various practical

constraints are considered, such as when discrete bar areas

are stipulated (Stolpe 2016), or when limits are placed

on the number of joints (Fairclough and Gilbert 2020).

Thus, although the simplification method used here does

not guarantee that the solutions will be globally optimal,

asymmetric solutions are to be expected.

If symmetrical solutions are desired, for aesthetic or other

reasons, this may be enforced using additional constraints,

as outlined in Fairclough and Gilbert (2020). However, this

may then result in solutions with a larger volume and/or a

higher level of complexity.

3 Software architecture

This section describes in more detail the main features

of the web-app and how these have been implemented.

Readers who are more interested in the results that can

be obtained using the web-app can proceed directly to

Section 4.

Fig. 8 Simple two load-case

problem: problem definition and

initial unsimplified solution (left

and right hand point loads active

only in load-cases 1 and 2

respectively; here and

henceforth grey lines represent

members that are required to

carry both tensile and

compressive forces, dependant

upon load-case)

The software comprises three main elements. Firstly, a

series of client-side Javascript/HTML5 files which form the

user interface, and allow the user to construct the desired

problem. Secondly, a cloud-hosted server, which serves

both the static user interface pages and dynamic pages

containing solutions to the user-specified problems. Finally,

the actual solving of the optimization problems occurs using

a serverless compute platform. The interaction between

these components is detailed in Fig. 10.

3.1 User interface

The user interface centres around a HTML5 canvas element

(Fulton and Fulton 2013) which displays the problem setup

and the solutions. The canvas is also the main input area,

where the user can add and remove features from the

problem. When the user interacts using a mouse input, a

visual change in size assists the user in editing the desired

point. When a touch input is detected, larger invisible touch

targets are added to points and symbols for ease of selection.

The main canvas is accompanied by a ribbon bar

containing various tools to allow the user to add elements

(e.g. loads and supports) to the problem, as well as to move,

rotate and delete problem elements. Implementation of the

tools is simplified by use of the paper.js library (Lehni and

Puckey 2011) which provides tools to assist drawing on the

canvas and interacting with it.

The menu bars are laid out using responsive design

principles (Marcotte 2011) to allow use on any size of

screen, with the layout automatically collapsing to multiple

rows, or drop-down menus, at small screen sizes, as shown

in Fig. 1. Thus, the web-app is usable on a range of

platforms from desktop computers to smartphones, and

should remain compatible with new devices and platforms

as long as they support a standard web browser.

All user interface actions are handled entirely client-side

to improve responsiveness and to provide a smoother user

experience. This permits features such as the snapping of

points to the nodal grid.



H. E. Fairclough et al.

Fig. 9 Simple two load-case problem: effect of varying the allowable volume increase limit. Shaded regions indicate when the same solution is

obtained across a range of allowable volume increase values

Solutions are displayed on screen with members coloured

according to the forces they carry: members that carry

only tensile forces are coloured red, members carrying

only compressive forces are coloured blue, and members

carrying both tensile and compressive forces in different

load-cases are coloured grey. The thickness of the line

representing each member is proportional to the square root

of its area, i.e. all members are assumed to be constructed

from the same cross-sectional shape that is then scaled by

a fixed factor to the desired size. The volume of the current

and benchmark solutions are also displayed on the user

interface; this corresponds to the expression in (1a).

The client-side scripts also handle export of the problem

to the user’s computer. This can be in an XML format, which

can be re-loaded by the app at a later date. Alternatively,

downloads in a range of image formats are available. Static

images showing the final structure may be downloaded in

raster (.png) or vector (.svg) formats. An animation, which

also shows all of the interim solutions generated during the

member adding and geometry optimization phases, is also

available (.gif). For all of the image download types, the

view can be customized by adding or removing details such

as the nodal grid or the design domain.

3.2 Cloud Server

To keep the user fully informed with progress towards a

solution, and to provide increased educational value, the

web-app displays solutions from intermediate iterations

in the member adding (see Section 2.1) and geometry

optimization (see Section 2.3) procedures. These are

displayed in real time, as they are calculated, and can also

be exported as an animation. Each problem that the user

sends is handled with one AJAX (Asynchronous Javascript

And XML) request-response pair (Brinzarea-Iamandi et al.

2009). This avoids the need to keep track of individual

sessions on the server, as each problem request contains

all the input data required to solve it. This is known

as a RESTful, or stateless architecture (Richardson and

Amundsen 2013).

To provide all intermediate solutions as they become

available, the response is chunked. This is implemented on

the server by using a PHP script (Brinzarea-Iamandi et al.

2009) to process messages from the serverless function,

allowing flushing of the output buffers at appropriate

points. This is the major hurdle in a fully serverless

implementation.

The server interface also provides the ability to save

and load solutions from the global database. The current

problem is saved to the global database when ‘Get sharable

link’ is clicked in the menu, and the generated ID for that

problem is returned to the user. The ID of the problem is

then added as a query string to the URL to produce a link

that will allow anyone to access that problem. When the

app is opened in this way, all functionality is maintained, so

the new user can modify the opened problem. To save their

modifications, they must generate a new sharable link, and

cannot overwrite the existing saved file. This feature allows

easy sharing of solutions on social media, with co-workers

or in a classroom setting.



LayOpt: an educational web-app for truss layout optimization

Fig. 10 Overall program flow

and interaction of software

components. Grey components

refer to the procedures outlined

in Figs. 3, 4 and 6

Request layopt.com

Return homepage
resources (HTML,

Javascript, CSS etc.) 

Display interface.
Handle user input.
Encode problem and
send as request.

Client web
browser

Serverless
compute
service

Create message
queue. Invoke

serverless compute
function.

Cloud server 

Import problem 
and validate

Send request
acknowledgement

Listen for incoming
solutions

Problem 

allows geometry

optimization?

Receive solution from
queue. Output to

client.

Display solution

Output termination
message to queue

Receive message
from queue.

Terminate connection.

Solve layout
optimization (Fig. 3)

Solve geometry
optimization (Fig. 4)

Solve Heaviside
simplification (Fig. 6)

Problem allows

simplification?

Solve geometry
optimization (Fig. 4)

Listen to message
queue

Interim

solutions

Interim

solutions

Interim

solutions

No

No

Yes

Yes

Display "solve
complete" message

3.3 Serverless processing

To allow for maximum scalability, the main processing of

the problems is implemented using serverless technology,

namely the Lambda service offered by Amazon Web

Services (AWS). This allows functions to be run without

pre-provisioning the computational resources (Chapin and

Roberts 2020). Whilst there is a small initial time

overhead, this is comparatively small for all but the

smallest truss optimization problems. Using this serverless



H. E. Fairclough et al.

approach, it is possible to avoid the substantial extra

time that would be needed to dynamically provision

additional computational resources to handle peaks in

usage.

Note that there are limits on both source code size

and duration of execution with most serverless platforms;

however, these are generally sufficient for problems which

would be solved in a while-you-wait scenario such as a web-

app (at the time of writing, the execution time limit for the

AWS Lambda service is 15 min).

This function has been programmed in the C++ language,

using the Lambda runtime API. This allows the use of

efficient third party solvers, namely MOSEK (MOSEK ApS

2019) for the solution of the linear layout optimization

problem, and IPOPT (Wächter and Biegler 2006) for

the non-linear geometry optimization and simplification

problems. The use of C++ also allowed reuse of the

codebase previously employed by He et al. (2019a,

2021a, 2021b), and also means that future versions of

LayOpt can potentially readily take advantage of additional

enhancements in that codebase. Note that the user interfaces

described in He et al. (2019a), He et al. (2021a), and

He et al. (2021b) are more powerful and provide access

to more advanced features (e.g. solution of 3D design

problems and CAD geometry design domain import), but

have a considerably steeper learning curve for users than the

LayOpt web-app. Links to these more advanced software

tools can be found on the ‘About’ page of the LayOpt

web-app.

4 Examples

4.1 Simple examples

A number of simple example problems that illustrate key

features of the LayOpt web-app are first considered. These

also allow a range of structural insights to be drawn.

4.1.1 Variation of support conditions

The first example, shown in Fig. 11, demonstrates the

influence of boundary conditions on the identified optimal

structures.

It is evident that as the level of support restraint is

increased, lower volumes can be achieved. It is also evident

that significantly simpler structures can be obtained using

the Heaviside projection method, and that these structures

require relatively little more material than the corresponding

unsimplified designs.

In terms of the specific structures obtained, the structure

shown in Fig. 11b may not seem intuitive at first sight.

However, it can perhaps be better understood by considering

a beam with the same loading and support conditions. The

bending moment diagram for such a beam would have

sagging moments over the majority of its length, but with a

hogging moment in the vicinity of the fixed support. This

is reflected in the solution obtained by the presence of two

separate structures in Fig. 11b; the left hand structure has

a typical cantilever form, with members in tension along

Fig. 11 Midspan point load problem: influence of varying support conditions (a), (b) and (c) on form of optimized structures (20 × 5 unit design

domain; nodal grid spacing = 0.5; unit applied load and limiting stresses)



LayOpt: an educational web-app for truss layout optimization

the top edge, i.e. resisting a hogging moment, whilst the

right hand structure resembles the spanning structure in

Fig. 11a, with compressive elements on the top edge, i.e

resisting a sagging moment. These two structures meet at a

single point, coinciding with the point of zero moment in

the bending moment diagram.

A similar effect can be observed in Fig. 11c, where

the principal tensile member is partially supported by

compressive members emanating from the supports and by

a wheel structure at midspan. Again, this approximately

reflects the bending moment diagram of the corresponding

beam. However, the depth of the beam here is such that these

additional elements provide only a slight volume saving,

and the Heaviside simplification produces a structure

consisting of only two tensile members.

4.1.2 Variation of simplification tolerance

The second example involves a classical cantilever problem,

shown in Fig. 12. The first row shows the solution after

layout and geometry optimization, which resembles the

solution given by Chan (1960). However, the presence of

ribs of members that are incomplete introduces irregularity

to the structure. These incomplete ribs offer only minimal

advantage in terms of volume, and can therefore be removed

by specifying a small permitted volume increase in the

Heaviside simplification phase. In this example a 0.1%

permitted volume increase removes all incomplete ribs from

the solution.

When larger volume increases are permitted in the

simplification stage, more significant changes to the

solutions obtained are evident. The objective of the non-

linear optimization problem solved in the simplification

stage is to reduce the number of members; however, the

simplified solutions also demonstrate improvements in a

number of other measures that would affect the real-world

difficulty of fabricating a design, such as the number of

joints and the presence of small inclined angles between

adjacent members.

As previously noted, asymmetric solutions are often

obtained, even when considering symmetrical or antisym-

metrical problems, as seen in Fig. 12. When an asymmetric

solution is obtained, it can be observed to frequently con-

sist of parts of two neighbouring symmetrical solutions. For

example in Fig. 12, the 2% permitted volume increase solu-

tion has characteristics of both the 1% and 3% solutions.

Whilst this may not seem immediately intuitive, it means

that a wider range of solutions can be identified. Addi-

tionally, the speed of the proposed simplification approach

means that it is feasible to try a wide range of permitted vol-

ume increases in order to obtain the most visually satisfying

result.

Fig. 12 Cantilever problem: influence of permitted volume increase on

form of optimized structures generated using Heaviside simplification

procedure (24 × 16 unit domain; unit applied load and limiting

stresses)

4.1.3 Problems with non-convex design domains

Figure 13 shows variants of the problem presented in

Fig. 12 though now with a hole placed in the centre of the

design domain, rendering this non-convex. When the design

domain is non-convex, it is necessary to remove elements

from the ground structure if they protrude outside the

domain. In the layout optimization stage this can be easily

calculated a priori, whilst in the geometry optimization and



H. E. Fairclough et al.

Fig. 13 Cantilever problem:

influence of hole size on form of

optimized structures (unit

applied load and limiting

stresses; unit nodal grid spacing

with dimensions of design

domain shown in first column)

simplification stages, additional constraints must be added,

using the method described by He et al. (2019a).

Figure 13 shows solutions for a range of hole sizes.

The first solutions shown for each problem have a

small permitted volume increase (0.1–0.5%) during the

simplification stage, chosen to eliminate incomplete ribs

and to provide a clearer layout. The second solution for each

problem includes a more significant level of simplification,

corresponding to a permitted volume increase of 10–15%.

Again the exact value for each problem has been chosen

to produce visually satisfying results, for example by

favouring symmetrical structures or minimizing the number

of incomplete ribs.

4.2 Educational examples

In this section examples are presented that demonstrate

a range of principles of optimal structures. These could

provide suitable starting points for using the LayOpt web-

app as a teaching aid on a taught module, with the

concepts involved illustrated in an engaging and interactive

way.

4.2.1 Statically determinate and indeterminate problems

In Michell’s seminal 1904 paper on optimal structures

(Michell 1904), the half-wheel structure problem shown in



LayOpt: an educational web-app for truss layout optimization

the first column of Fig. 14 is considered. Michell gives the

volume of this structure as

Volume = Fa
π

2

(

1

σC

+
1

σT

)

(7)

where F is the magnitude of the force (here taken as

1), a is the distance from a support to the load (here

taken as 8), and σT and σC are the limiting tension

and compression stresses respectively. Thus, for the first

structure shown in Fig. 14b, the minimum volume would

be 8π ≈ 25.13. The numerical techniques embedded in

the LayOpt web-app provide upper bound solutions, which

closely approximate the corresponding analytical solutions

when high nodal resolutions are employed. An interesting

exercise for students could include observing the volume

as the ‘grid refinement’ slider is changed, and potentially

extrapolating the results to infer the solution with infinitely

many nodes, using the approach described by Darwich et al.

(2010).

The 1
σC

+ 1
σT

multiplier in (7) is common to all of the

solutions presented by Michell, and originates from his use

Fig. 14 Midspan point load problem: influence of changing tensile and

compressive stress limits on form of optimized structures for statically

determinate and indeterminate problems (unit applied load)

of Maxwell (1872)’s earlier theorem. It can be seen from

the first column of Fig. 14 that this proportionality holds for

the sub-optimal layout depicted. Furthermore, this implies

that the layout of the optimal structure does not change with

different stress ratios, since only member sizes are changed.

This can also be observed in the first column of Fig. 14.

However, as outlined by Rozvany (1996), Michell and

Maxwell’s theories are only valid for support conditions

which are statically determinate. For statically indetermi-

nate problems, the criteria given by Hemp (1973) must be

used instead.

The second column of Fig. 14 shows a variant of the

problem where both supports are fixed pins, rendering the

problem statically indeterminate. It is evident that the layout

of the optimal solution now changes as the limiting stresses

are changed. These different layouts also generate different

reaction forces (the direction of the resultant reaction force

will coincide with that of the single bar connected to each

support). Finally, it is evident that there is no longer a simple

relationship between the volumes of the different solutions.

4.2.2 Near-optimal structures

Figure 15 shows solutions for a simple cantilever problem

for a range of limiting tensile and compressive stress values.

This problem has been widely studied in the literature

since it was first studied by Chan (1960). In contrast to

the circular/radial members present in Fig. 14, the optimal

cantilever layouts involve tensile and compressive members

that follow more complex curved trajectories, but which

remain (near-)orthogonal to each other.

As the numerical methods of the LayOpt app cannot

obtain true truss-like continua, the tension and compression

members can generally only be near-orthogonal. Similar

discretised structures have been considered previously, for

example by Prager (1978) and Mazurek et al. (2011), where

regular meshes comprising triangular and quadrilateral cells

have been constructed. Similar regular meshes can often

be identified using the LayOpt app, especially if a small

level of simplification is used to remove incomplete and

branching ribs, as has been done in Fig. 15 (see also Fig. 12).

In such a structure, quadrilateral cells are always cyclic

(i.e. opposite angles sum to 180◦). LayOpt’s image export

feature allows solutions to be exported to a graphics

software package so this could potentially be checked as

part of an exercise. When the limiting stresses in tension

and compression are equal, two of the angles (the top and

bottom in Fig. 15) in each cell are exactly equal to 90◦,

whatever the discretization level. This can be more easily

seen in the structures with fewer members, e.g. see the

3% simplification solution shown in Fig. 12. When the

allowable stresses are unequal, one of these angles will

approach a right angle from above, and the other from



H. E. Fairclough et al.

Fig. 15 Cantilever problem: influence of changing tensile and

compressive stress limits on form of optimized structures (16 × 16

unit domain; supports 6 units apart; unit applied load; 0.1% volume

increase permitted during simplification)

below. Of the remaining two angles, the one in the direction

where the coordinate curves diverge (i.e. the right side

in Figs. 15 and 12) approaches 90◦ from below, whilst

the remaining angle approaches a right angle from above.

LayOpt provides a useful interface for students to explore

variants of the problems presented in Fig. 15, helping them

to gain an intuitive understanding of the different behaviours

possible.

As the problem in Fig. 15 is statically indeterminate, the

layout changes with different stress limits. However, the

(near-)orthogonality of tension and compression members

is still maintained. The differences in layout may perhaps

be most clearly seen in the triangle formed by the edge of

the domain between the two supports, and the innermost

elements of the two fan regions. Deriving the angles of this

triangle may prove a useful exercise for students, following

a Mohr’s circle based approach similar to that presented by

Rozvany and Gollub (1990). It is found that the angle at the

top support (for the truss-like continuum solution) becomes

α = arctan
(√

σC

σT

)

, with the angle at the bottom support

being α − 90◦. The numerical results available from the

LayOpt app will approach these values (from above) as the

resolution is increased.

4.2.3 Multiple loads andmultiple load-cases

The simply supported spanning structure problems shown in

Fig. 16 can be used to illustrate fundamental differences bet-

ween single and multiple load-case problems. In an educa-

tional setting students can be asked to consider how they expect

the loads applied to influence the optimal structural forms.

Initially the two loads can be considered entirely

separately, with Fig. 16b and c showing the resulting

optimal solutions.

If both loads will always be applied at the same time, then

these can be considered together as part of a single load-

case. This gives the optimal structure shown in Fig. 16a.

Note that the volume of the structure shown in Fig. 16a is

less than the sum of the volumes of the structures shown in

Fig. 16b and c, indicating the benefits that can be accrued

by considering the two loads together. However, it can be

observed that if the structure shown in Fig. 16a were to

be loaded with only one of the loads (or indeed with any

unequal combination of these), then it would collapse as it

is in a state of unstable equilibrium.

Conversely, suppose that the two loads shown in Fig. 16b

and Fig. 16c can only be applied separately. In this case,

they can be applied as part of two separate load-cases,

giving rise to the optimal structure shown in Fig. 16d.

This structure again has a significantly smaller volume than

would be obtained by combining the structures shown in

Fig. 16b and c.

The form of the structure shown in Fig. 16d may be

better understood by considering the superposition prin-

ciple described by Nagtegaal and Prager (1973). For a

problem involving a material with equal limiting ten-

sion and compression stress, and supporting external force

vectors f(1) and f(2) in load-cases 1 and 2 respectively,

the solution may be found by superimposing the opti-

mized structures obtained by solving two single load-

case problems. However, these single load-case prob-



LayOpt: an educational web-app for truss layout optimization

Fig. 16 Two loads problem: (a) optimized structure when both loads

are applied in a single load-case, (b) and (c) optimized structures to

resist only one of the loads, (d) optimized structure when loads are

applied in separate load-cases, (e) and (f) optimized structures for

component load-cases of (d), using superposition principle (24 × 4

unit domain; unit loads applied at span/3 from supports; unit limiting

stresses; nodal grid spacing = 2
3

units)

lems are not simply the two load-cases of the original

problem; instead they have external force vectors given

by:

f̄(+) =
f(1) + f(2)

2
f̄(−) =

f(1) − f(2)

2
(8)

These are referred to as component load-cases, or ‘sum’

and ‘difference’ load-cases respectively. Figure 16e and f

show the component load-cases and their solutions for the

two load-case problems considered earlier. Note that these

combine, both in form and volume, to give the structure

shown in Fig. 16d. The signs of the forces in the members

in Fig. 16f are different in each of the two load-cases; thus,

these members appear in grey in Fig. 16d.

Note that the form of the structure shown in Fig. 16d is

also capable of handling any convex combination of the two

loads. This can be easily seen from the component load-

case solutions, by combining the forces of Fig. 16e with

the forces of Fig. 16f multiplied by an appropriate factor

between −1 and 1.

Finally, Fig. 17 shows the result of performing Heaviside

simplification on the structure shown in Fig. 16d, using a

20% permitted volume increase. The structure obtained in

this case resembles a Warren truss, a commonly adopted

design in structural engineering practice. This suggests

that the Warren truss provides a reasonably economical

design for a spanning problem of this sort. Note that in

general the superposition principle cannot be used during

the simplification stage and the full multiple load-case

problem must instead be solved.

4.3 Structural engineering examples

Finally, examples are presented that show how the LayOpt

web-app can be applied to problems of the sort tackled

Fig. 17 Two loads problem: simplified form of structure shown in

Fig. 16d, which resembles a Warren truss (20% permitted volume

increase)



H. E. Fairclough et al.

by structural engineers. Although the problems considered

here are highly simplified, they suggest that the web-app

could be useful when seeking structurally efficient layouts

at the initial conceptual design stage. Alternatively, more

complex problems can be tackled when the same underlying

technology is embedded in parametric CAD software (He

et al. 2021a, b).

4.3.1 Portal structure

Figure 18 shows a portal structure designed to enclose a

large open space, e.g. for a warehouse or sports centre.

Fig. 18 Portal structure: (a) problem definition, showing design

domain and force locations (nodal grid spacing = 0.5 units), (b)

optimized structure generated via layout and geometry optimization,

(c) simplified structure obtained with a 20% permitted volume increase

(three load-cases: vert. only, vert. + left horiz., vert. + right horiz.; all

loads have unit magnitude; grey lines represent members carrying both

tensile and compressive forces in different load-cases.)

The problem involves three load-cases, the first involving

only vertical gravity loading (represented here by a midspan

vertical load), the second also involving wind type loading

(represented here by the addition of a left to right horizontal

point load), and the third with the direction of the horizontal

load reversed.

The structure obtained following layout and geometry

optimization, Fig. 18b, is clearly quite complex. However,

Fig. 18c shows that the Heaviside simplification method can

be used to provide a much simpler alternative, with a volume

only 7.9% higher in this case.

4.3.2 Multi-storey building

The example shown in Fig. 19 shows a simplified

representation of a multi-storey building structure. Initially,

the design domain is restricted to a rectangular region, with

forces applied in three load-cases, to points lying on the

outer envelope of the building as shown in Fig. 19a. As

with the portal frame example, the first load-case involves

only vertical gravity loading (represented here by vertical

loads applied at each storey), the second also involves wind

type loading (represented here by the addition of left to

right horizontal point loads applied at each storey), and the

third load-case is the same but with the directions of the

horizontal loads reversed.

Figure 19b shows the outcome of performing layout

optimization (only) — a standard cross braced design.

However, when geometry optimization is also undertaken,

the structure shown in Fig. 19c is obtained. This closely

resembles the alternative optimized bracing form identified

in previous studies (e.g. Stromberg et al. 2012).

If the design domain is expanded then a slightly lower

volume structure involving the use of outrigger members

lying outside the envelope of the main building can be

obtained (Fig. 19d, e); in this case the load locations and

magnitudes have not been changed and the solution shown

is after both layout and geometry optimization steps have

been performed.

4.3.3 Bridge structure

Figure 20 shows an example of a simplified bridge type

problem. The problem is statically indeterminate and

therefore, as previously discussed, the optimal form will

vary based on the specified limiting stress in tension and

compression. Solutions for a range of limiting stress values

are shown in Fig. 20b–f. These solutions display similarities

with the results obtained by Pichugin et al. (2015), though in

that work a problem involving an infinite number of spans

was considered.



LayOpt: an educational web-app for truss layout optimization

Fig. 19 Multi-storey building: (a) design domain for (b) and (c), (b)

layout optimization solution (vol. = 184.0), (c) solution after geometry

optimization (vol. = 179.0), (d) design domain for (e), (e) new lay-

out and geometry optimization solution (vol. = 164.5) (16 unit high

domain, nodal grid spacing = 4 units; vert. and horiz. loads = 1 and

0.5 respectively; three load-cases: vert. only, vert. + left horiz., vert. +

right horiz)

Fig. 20 Bridge structure: (a) problem specification, showing design

domain, loads and supports, (b–f) optimized structures for a range of

limiting stress values; the first and second columns respectively show

structures before and after Heaviside simplification with a permitted

volume increase of 1% (nodal grid spacing = 1; all loads have unit

magnitude and are applied in a single load-case)



H. E. Fairclough et al.

It is evident that when the limiting compressive stress

is larger than the limiting tensile stress, arch type solutions

are produced. Conversely, when the limiting tensile stress is

much higher, cable stayed forms are produced.

Even a small permitted volume increase at the simpli-

fication stage can make the optimized structures obtained

clearer. For example in the case of the structures shown

in Fig. 20e and f, regions of isotropic strain (so-called

Maxwell regions or type S regions) are evident. In

these regions, every possible all-tensile set of members

is equally optimal, and thus the unsimplified solutions

typically comprise multiple, redundant sets of members.

However, specifying even an infinitesimal volume increase

in the simplification stage allows redundant paths to be

eliminated.

5 Conclusions

A new interactive truss layout optimization web-app has

been developed for educational use. The web-app first uses

layout and geometry optimization methods in sequence to

rapidly find optimized truss layouts. However, since the

resulting structures can be rather complex in form, a means

of reducing their complexity has also been developed. This

simplification step involves the use of smooth Heaviside

representations of member existence variables, with the

user able to manage the trade-off between complexity and

structural volume.

In designing the web-app priority has been given to speed

and ease of use. Thus no plugins need to be downloaded

or installed to use the web-app and the web based interface

developed is compatible with a wide range of computing

devices (e.g. phones, tablets and desktop PCs). Also, to

ensure scaleability and responsiveness, advantage has been

taken of modern serverless cloud computing resources.

Finally, the utility of the web-app has been demonstrated

via application to a wide range of educational and more

practical example problems.

Appendix. Web links for example problems

Table 1 provides web links corresponding to the problems

presented in this paper. For cases where several similar

problems are presented in one figure, only a single link is

given; the related problems may be obtained by altering

the parameters as specified in the relevant figure. The links

by default show the saved optimal layout; pausing and

re-starting solving allows the solution process to be viewed.

Funding This work received financial support from the Engineering

and Physical Research Council (EPSRC) under grant reference

EP/N023471/1 and a follow up Knowledge Exchange grant that has

enabled the web-app to be made available for long-term educational

use.

Declarations

Conflict of interest The authors declare that they have no conflict of

interest.

Replication of results Web links are provided in Table 1 in the

Appendix for all the problems presented in the paper.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

Table 1 Web links for the problems presented

Figure Link Figure Link

2 www.layopt.com/truss/?prob=0qq2ghd 15 www.layopt.com/truss/?prob=0qq2fmf

5 www.layopt.com/truss/?prob=0qon7r8 16a www.layopt.com/truss/?prob=0ql1143

8 and 9 www.layopt.com/truss/?prob=0qn6u0m 16b www.layopt.com/truss/?prob=0qq2g32

11a www.layopt.com/truss/?prob=0qola34 16c www.layopt.com/truss/?prob=0qq2g0q

11b www.layopt.com/truss/?prob=0qola6l 16d www.layopt.com/truss/?prob=0ql113a

11c www.layopt.com/truss/?prob=0qolaa4 16e www.layopt.com/truss/?prob=0qomih1

12 and 13a www.layopt.com/truss/?prob=0qokci9 16f www.layopt.com/truss/?prob=0qomiga

13b www.layopt.com/truss/?prob=0qokcdr 17 www.layopt.com/truss/?prob=0ql111l

13c www.layopt.com/truss/?prob=0qokcb0 18 www.layopt.com/truss/?prob=0qn8djt

13d www.layopt.com/truss/?prob=0qokc4b 19a–c www.layopt.com/truss/?prob=0ql11oa

14, Determinate www.layopt.com/truss/?prob=0qq2fjb 19d–e www.layopt.com/truss/?prob=0ql161h

14, Indeterminate www.layopt.com/truss/?prob=0qq2fk7 20 www.layopt.com/truss/?prob=0qmj9er

https://layopt.com/truss/?prob=0qq2ghd
https://layopt.com/truss/?prob=0qq2fmf
https://layopt.com/truss/?prob=0qon7r8
https://layopt.com/truss/?prob=0ql1143
https://layopt.com/truss/?prob=0qn6u0m
https://layopt.com/truss/?prob=0qq2g32
https://layopt.com/truss/?prob=0qola34
https://layopt.com/truss/?prob=0qq2g0q
https://layopt.com/truss/?prob=0qola6l
https://layopt.com/truss/?prob=0ql113a
https://layopt.com/truss/?prob=0qolaa4
https://layopt.com/truss/?prob=0qomih1
https://layopt.com/truss/?prob=0qokci9
https://layopt.com/truss/?prob=0qomiga
https://layopt.com/truss/?prob=0qokcdr
https://layopt.com/truss/?prob=0ql111l
https://layopt.com/truss/?prob=0qokcb0
https://layopt.com/truss/?prob=0qn8djt
https://layopt.com/truss/?prob=0qokc4b
https://layopt.com/truss/?prob=0ql11oa
https://layopt.com/truss/?prob=0qq2fjb
https://layopt.com/truss/?prob=0ql161h
https://layopt.com/truss/?prob=0qq2fk7
https://layopt.com/truss/?prob=0qmj9er


LayOpt: an educational web-app for truss layout optimization

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Aage N (2013) Nobel-Jørgensen M, Andreasen CS, Sigmund O.

Interactive topology optimization on hand-held devices. Struct

Multidisc Optim 47(1):1–6

Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O

(2011) Efficient topology optimization in MATLAB using 88 lines

of code. Struct Multidisc Optim 43(1):1–16

Brinzarea-Iamandi B, Darie C, Hendrix A (2009) AJAX and PHP:

Building Modern Web Applications, 2nd edn. Packt

Chan ASL (1960) The design of Michell optimum structures. College

of Aeronautics Cranfield, Tech. rep.

Chapin J, Roberts M (2020) Programming AWS Lambda. O’Reilly

Darwich W, Gilbert M, Tyas A (2010) Optimum structure to carry

a uniform load between pinned supports. Struct Multidisc Optim

42(1):33–42

Dorn WS, Gomory RE, Greenberg HJ (1964) Automatic design of

optimal structures. J Mècanique 3:25–52

Fairclough H, Gilbert M (2020) Layout optimization of simplified

trusses using mixed integer linear programming with runtime gene-

ration of constraints. Struct Multidisc Optim 61(5):1977–1999

Fulton S, Fulton J (2013) HTML5 Canvas: Native interactivity and

animation for the Web, 2nd edn. O’Reilly

Gilbert M, Tyas A (2003) Layout optimization of large-scale pin-

jointed frames. Eng Comput 20(8):1044–1064

Graczykowski C, Lewiński T (2020) Applications of Michell’s theory

in design of high-rise buildings, large-scale roofs and long-span

bridges. Computer Assisted Methods in Engineering and Science

27(2-3):133–154

Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum

length scale in topology optimization using nodal design variables

and projection functions. Int J Num Meth Eng 61(2):238–254

He L, Gilbert M (2015) Rationalization of trusses generated via layout

optimization. Struct Multidisc Optim 52(4):677–694

He L, Gilbert M, Shepherd P, Ye J, Koronaki A, Fairclough H, Davison

B, Tyas A, Gondzio J, Weldeyesus A (2018) A new conceptual

design optimization tool for frame structures. In: Mueller C,

Adriaenssens S (eds) Creativity in Structural Design: Proceedings

of the IASS Symposium 2018, Boston, USA

He L, Gilbert M, Johnson T, Pritchard T (2019a) Conceptual design of

AM components using layout and geometry optimization. Comput

Math Appl 78(7):2308–2324

He L, Gilbert M, Song X (2019b) A Python script for adaptive layout

optimization of trusses. Struct Multidisc Optim 60(2):835–847

He L, Li Q, Gilbert M, Shepherd P, Rankine C, Pritchard TJ, Reale

V (2021a) Optimization-driven conceptual structural design in a

parametric modelling environment. (Submitted)

He L, Pritchard T, Maggs J, Gilbert M, Lu H (2021b) Peregrine user

manual (v5.0). https://www.limitstate.com/documentation-pereg

rine

Hemp WS (1973) Optimum structures. Clarendon Press, Oxford

Lehni J, Puckey J (2011) Paper.js. http://paperjs.org/, Accessed 2021-

03-12

Marcotte E (2011) Responsive web design. A Book Apart

Martinez P, Marti P, Querin O (2007) Growth method for size,

topology, and geometry optimization of truss structures. Struct

Multidisc Optim 33(1):13–26

Maxwell JC (1872) On reciprocal figures, frames and diagrams of

force. Trans Roy Soc Edinb 21(1)

Mazurek A, Baker WF, Tort C (2011) Geometrical aspects of optimum

truss like structures. Struct Multidisc Optim 43(2):231–242

Michell AGM (1904) The limits of economy of material in frame-

structures. Phil Mag 8(47):589–597

MOSEK ApS (2019) MOSEK Optimizer API for C 9.1.13. https://

docs.mosek.com/9.1/capi/index.html

Nagtegaal J, Prager W (1973) Optimal layout of a truss for alternative

loads. Int J of Mech Sci 15(7):583–592

Nguyen TT, Bærentzen JA, Sigmund O, Aage N (2020) Efficient

hybrid topology and shape optimization combining implicit

and explicit design representations. Struct Multidisc Optim

62(3):1061–1069

Pichugin AV, Tyas A, Gilbert M, He L (2015) Optimum structure

for a uniform load over multiple spans. Struct Multidisc Optim

52(6):1041–1050

Prager W (1978) Optimal layout of trusses with finite numbers of

joints. J Mech Phys Solids 26(4):241–250

Pritchard T, Gilbert M, Tyas A (2005) Plastic layout optimization of

large-scale frameworks subject to multiple load cases, member

self-weight and with joint length penalties. 6th World Congresses

of Structural and Multidisciplinary Optimization, Rio de Janeiro,

Brazil

Ramos AS, Paulino GH (2016) Filtering structures out of ground

structures - a discrete filtering tool for structural design

optimization. Struct Multidisc Optim 54:95–116

Richardson L, Amundsen M (2013) RESTful Web APIs. O’Reilly

Rozvany G, Gollub W (1990) Michell layouts for various combina-

tions of line supports — I. Int J Mech Sci 32(12):1021–1043

Rozvany GIN (1996) Some shortcomings in Michell’s truss theory.

Struct Optim 12(4):244–250

Sigmund O (2001) A 99 line topology optimization code written in

MATLAB. Struct Multidisc Optim 21(2):120–127

Sokół T (2011) A 99 line code for discretized Michell truss

optimization written in Mathematica. Struct Multidisc Optim

43(2):181–190

Stolpe M (2016) Truss optimization with discrete design variables: A

critical review. Struct Multidisc Optim 53(2):349–374

Stromberg LL, Beghini A, Baker WF, Paulino GH (2012) Topology

optimization for braced frames: combining continuum and

beam/column elements. Eng Struct 37:106–124

Tcherniak D, Sigmund O (2001) A web-based topology optimization

program. Struct Multidisc Optim 22(3):179–187

Wächter A, Biegler LT (2006) On the implementation of an

interior-point filter line-search algorithm for large-scale nonlinear

programming. Math Program 106(1):25–57

Wei P, Li Z, Li X, Wang MY (2018) An 88-line MATLAB code for

the parameterized level set method based topology optimization

using radial basis functions. Struct Multidisc Optim 58(2):831–

849

Zegard T, Paulino GH (2014) GRAND — ground structure based

topology optimization for arbitrary 2D domains using MATLAB.

Struct Multidisc Optim 50(5):861–882

Zegard T, Hartz C, Mazurek A, Baker WF (2020) Advancing building

engineering through structural and topology optimization. Struct

Multidisc Optim 62:915–935

Publisher’s note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.limitstate.com/documentation-peregrine
https://www.limitstate.com/documentation-peregrine
http://paperjs.org/
https://docs.mosek.com/9.1/capi/index.html
https://docs.mosek.com/9.1/capi/index.html

	LayOpt: an educational web-app for truss layout optimization
	Abstract
	Introduction
	Numerical methods
	Truss layout optimization
	Filtering and validation
	Geometry optimization
	Structural simplification via Heaviside projection

	Software architecture
	User interface
	Cloud Server
	Serverless processing

	Examples
	Simple examples
	Variation of support conditions
	Variation of simplification tolerance
	Problems with non-convex design domains

	Educational examples
	Statically determinate and indeterminate problems
	Near-optimal structures
	Multiple loads and multiple load-cases

	Structural engineering examples
	Portal structure
	Multi-storey building
	Bridge structure


	Conclusions
	Appendix A Web links for example problems
	Declarations
	References


