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Abstract  

Objective: There are three common causes of Transient Loss of Consciousness (TLOC), 

syncope, epileptic and psychogenic nonepileptic seizures (PNES). Many individuals who 

have experienced TLOC initially receive an incorrect diagnosis and inappropriate treatment. 

Whereas syncope can be distinguished relatively easily with a small number of “yes”/”no” 

questions, the differentiation of the other two causes of TLOC is more challenging. Previous 

qualitative research based on the methodology of Conversation Analysis has demonstrated 

that the descriptions of epileptic seizures contain more formulation effort than accounts of 

PNES. This research investigates whether features likely to reflect the level of formulation 

effort can be automatically elicited from audio recordings and transcripts of speech and used 

to differentiate between epileptic and nonepileptic seizures.  

Method: Verbatim transcripts of conversations between patients and neurologists were 

manually produced from video and audio recordings of interactions with 45 patients (21 

epilepsy and 24 PNES). The subsection of each transcript containing the patient’s account of 

their first seizure was manually extracted for the analysis. Seven automatically detectable 

features were designed as markers of formulation effort. These features were used to train a 

Random Forest machine learning classifier.  

Result: There were significantly more hesitations and repetitions in descriptions of epileptic 

than nonepileptic seizures. Using a nested leave-one-out cross validation approach, 71% of 

seizures were correctly classified by the Random Forest classifier.   

Discussion: This pilot study provides proof of principle that linguistic features that have been 

automatically extracted from audio recordings and transcripts could be used to distinguish 

between epileptic seizures and PNES and thereby contribute to the differential diagnosis of 

TLOC. Future research should explore whether additional observations can be incorporated 

into a diagnostic stratification tool and compare the performance of these features when they 

are 4 Pevy et al. combined with additional information provided by patients and witnesses 

about seizure manifestations and medical history 
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1. Introduction  

Transient loss of consciousness (TLOC) is defined as a loss of awareness 

characterised by amnesia, abnormal motor control, loss of responsiveness and a short 

duration (Brignole et al., 2018) ⁠ . Over 90% of TLOC presentations are attributable to one of 

three causes: epileptic seizures, psychogenic nonepileptic seizures (PNES) or syncope 

(Kotsopoulos et al., 2003) ⁠ . The differentiation between these three mechanisms can be 

challenging as TLOC manifestations have usually subsided before patients present to health 

services, investigations carried out after TLOC events are often unhelpful or misleading and 

because there are no TLOC manifestations that are pathognomonic for a particular cause. In 

most cases the diagnosis ultimately rests on an expert interpretation of the history from 

patients and witnesses (Plug and Reuber, 2009). Unfortunately, around 20% of patients 

initially receive an incorrect diagnosis (Xu et al., 2016). Misdiagnosing patients can be 

dangerous, for instance, if cardiac syncope or epilepsy are missed, and patients may be 

exposed to the negative consequences associated with a given diagnosis unnecessarily, for 

example the unpleasant side effects of medication or a driving ban (Xu et al., 2016). 

Furthermore, there are considerable costs associated with referring patients for the incorrect 

tests and prescribing unnecessary treatments (Juarez-Garcia et al., 2006). 

Ongoing research is investigating the feasibility of using a clinical decision tool to 

standardise the collection and interpretation of a patient’s seizure history (Stiell and Bennett, 

2007; Wardrope, Newberry and Reuber, 2018). One such tool, the iPEP, a computer-

analysed questionnaire including a series of yes/no questions about TLOC manifestations, 

questions about patients’ medical history and some additional questions to observers 

(Reuber et al., 2016; Chen et al., 2019), has shown considerable diagnostic promise in a 

modeling study (Wardrope et al., 2020). Using a three-class multinomial Random Forest 

classifier, the iPEP correctly predicted the underlying diagnosis with an accuracy of 86%. 

The differentiation between epileptic and nonepileptic seizures was found to be more 

challenging than that of syncope from seizures, as the model correctly identified all patients 
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with syncope and the 14% of patients who were misdiagnosed either had epilepsy or PNES. 

These findings suggest that the model could benefit from further refinement, especially of its 

ability to discriminate between epilepsy and PNES. 

One way to improve an automated clinical decision or diagnostic stratification tool (for 

instance for the planning of disorder-appropriate investigations) involves the incorporation of 

automated language analysis. Previous qualitative research using conversation analysis 

(CA) has described differences in how patients with epilepsy (PWE) and patients with 

nonepileptic seizures (PWNES) talk to clinicians about their seizure (Schwabe, Howell and 

Reuber, 2007; Schwabe et al., 2008; Plug, Sharrack and Reuber, 2009a, 2010; Robson et 

al., 2012). The utility of these observations for diagnostic purposes has been demonstrated 

by multiple blinded, multi-rater research studies where linguists or psychologists correctly 

predicted the diagnosis of epilepsy and PNES by studying transcripts of interactions with an 

accuracy ranging between 80-90% (Reuber et al., 2009; Cornaggia et al., 2012; Papagno et 

al., 2017; Yao et al., 2017; Biberon et al., 2020). Although it has been shown that 

diagnostically relevant interactional and linguistic can also be made in real time by clinicians 

while they speak to patients, considerable expertise is required on the part of the clinician to 

make the relevant observations (Jenkins et al., 2015). However, previous research focusing 

on patients with memory problems has demonstrated the feasibility of automating the 

analysis of language for diagnostic purposes (Mirheidari et al., 2017). The automation of 

diagnostic language analysis involves the definition of semantic and acoustic features 

approximating the conversation analytic observations, programming a computer to detect 

these features in transcripts produced using automatic speech recognition and identifying 

the most discriminant features using machine learning models. 

One of the most important differentiating features between the speech of PWE and 

PWNES previously described by the qualitative studies mentioned above is the amount of 

formulation effort typically expended by patients when they describe their seizure 

experiences (Schwabe et al., 2008). In this context, formulation effort refers to the number 
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and extent of hesitations, reformulations, restarts, repairs, and changes in grammatical 

construction (Schwabe, Howell and Reuber, 2007). Whereas speech in which PWE describe 

their seizure experiences is characterised by a high level of formulation effort as they 

struggle to communicate how exactly they experience their seizures, formulation effort is 

largely absent from the seizure accounts of PWNES (Schwabe et al., 2008).  Hesitations are 

a prominent aspect of formulation effort and can be detected using automated language 

analysis (Mirheidari et al., 2017). We hypothesised that it is possible to automate the 

detection of hesitations as a marker of formulation effort in records of clinic conversations 

with seizures and that our findings would replicate those previously achieved using 

qualitative analyses. 

Another potentially automatable method for measuring formulation effort involves the 

identification and analysis of pauses within the interaction. Pauses could be an indicator of 

formulation effort because they may reflect the difficulties the patient is facing with the 

accurate description of their complex seizure experiences (Plug, Sharrack and Reuber, 

2009a). The automatic detection of pauses in speech has previously been used as an 

indicator of dementia (Mirheidari et al., 2017). We hypothesised that the inclusion of one or 

several measures based on pauses would improve the classification performance. 

 In summary, the present study investigates whether features that can be 

automatically extracted from audio recordings and transcripts of speech as measures of 

formulation effort can be used to differentiate between epileptic and nonepileptic seizures. 

We hypothesise that it will be possible to differentiate between seizure accounts provided by 

PWE and PWNES using automatically measurable markers of formulation effort. We will 

explore the classification performance of a combination of these features using the Random 

Forest algorithm. Furthermore, we will explore to what extent independent features 

contribute to the classification performance using independent comparisons between groups 

and exploring the performance of the algorithm using different combinations of features.  
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2. Method 

2.1 Participants 

This study used recordings of doctor-patient interactions collected at the Royal 

Hallamshire Hospital in Sheffield between 2005 and 2013. The recordings have been used 

in previous CA research. Some of the interactions took place while patients were staying on 

a video-electroencephalography (EEG) unit (Schwabe, Howell and Reuber, 2007), whereas 

others were “naturally occurring” consultations conducted in an outpatient setting (Robson et 

al., 2012; Jenkins et al., 2015). Participants who were currently under examination to 

determine the cause of their seizures at the Royal Hallamshire Hospital were eligible for the 

original CA research and volunteered to participate. The final diagnoses for patients were 

determined using clinical assessment and/or a video-EEG recording of a typical seizure. 

Participants had not received a final diagnosis at the time of participating in the CA research. 

Our analysis incorporated the subset of the interview recordings from the three previous 

studies that resulted in a final diagnosis of epilepsy or PNES. We manually extracted a 

subsection of each interview in which the neurologist asked the patient to describe their first 

seizure using an open question. Previous research has observed that the questions that 

neurologists ask in an outpatient setting can be more restrictive due to the time pressures 

associated with these interactions, and that this can reduce the presence of CA observations 

that are important for the differential diagnosis process (Ekberg and Reuber, 2015). We 

chose this question because it gives the patient many appropriate response options. 

Focussing on this question allowed us to create the largest possible corpus of interviews 

(N=45, PNES n=24, PWE n=21), while ensuring that patients have been provided the 

opportunity to describe one particular seizure experience freely. We defined the end of the 

target subsection as the point when the neurologist either changed or accepted a change in 

topic agenda (Fehlenberg, 1986) away from the first seizure by asking questions unrelated 

to this topic. Changes in topic agenda introduced by patients could be an example of 
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resistance to the question being asked which is a feature identified by previous CA research 

as indicative of a PNES description (Schwabe, Howell and Reuber, 2007). 

2.2 Preprocessing  

Audio-recordings were extracted from video recordings of the encounters, 

transcribed manually and further processed into Extensible Markup Format (XML). XML is a 

machine and human readable text format that is used to structure information. The 

transcripts were manually demarcated into individual turns within the conversation and each 

turn labelled with a speaker identifier, the start time and end time. The start and end time of 

the target subsection were noted and a new audio file consisting only of the target 

subsection was created using the AudioSegment function from Pydub (Hu and Wang, 2007). 

The raw text was converted to lowercase, punctuation and numerical digits were removed, 

contractions were expanded, and all words were converted to the corresponding lemma 

through lemmatization using the natural language toolkit (NLTK) in Python (Loper and Bird, 

2002).  

2.3 Feature Extraction  

Seven features were designed as markers of formulation effort. Three of the features 

involved searching for a given word or word pair within the transcript. These features were 

the total number of hesitations (e.g. “hmm” or “erm”), the total number of repetitions (e.g. “I I 

don’t know”) and the presence or absence of words that suggest uncertainty (e.g. “sort of” or 

“might”). Four features involved measuring pauses within the interaction. Pauses were 

detected using the WebRTC Voice Activity Detector (VAD) from Google which checked 

whether each 10ms window contained speech or not. Only pauses greater than 30 

milliseconds were included. Pauses in the speech of patients (patient pauses) were 

identified using a manually created function that aligned each pause with the turn labels on 

the XML transcript. Between speaker pauses were defined as pauses that crossed the turn 

allocation boundary. The four pause features were the ‘frequency of patient pauses’, 
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‘average length of patient pauses’, ‘total length of patient pauses’, and ‘average length of 

between speaker pauses’. 

 

2.4. Statistical Analysis   

Group differences for each feature were compared using an independent t-test, 

Mann Whitney U test, or chi squared test as appropriate. The alpha level was set at 0.05. A 

Bonferroni correction was performed to reduce the risk of a type 1 error and resulted in an 

adjusted alpha level of 0.007 (0.05/7).   

2.5. Classification  

The Random Forest (Breiman, 2001) machine learning algorithm was used to 

investigate whether the features designed as markers of formulation effort were capable of 

differentiating between descriptions of epileptic or nonepileptic seizures. Random Forest is 

an algorithm that involves training many uncorrelated decision trees and subsequently 

making predictions based on the majority vote of all decision trees within the forest. The 

correlation between each decision tree is reduced by using a random sample of training data 

points to create each decision tree and selecting from a random subsample of features at 

each node within the decision tree. Reducing the correlation between trees improves the 

performance of the Random Forest algorithm (Breiman, 2001). The Random Forest 

algorithm was trained by applying the nested “leave-one-out” cross validation method 

(Vabalas et al., 2019) and using the Scikit-learn toolkit in Python (Cournapeau et al., 2011).  

3. Result 

3.1 Participants and seizure descriptions 

A chi squared test of independence was performed to examine the relationship 

between gender and diagnosis. The relationship between these variables was significant, X2 

(1, N = 45) = 13, p <0.01. The PNES group included a higher proportion of women than the 
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epilepsy group (women = 82.6% vs 23.8%). A Mann Whitney U test showed that there was 

no significant difference between the epilepsy and PNES groups in terms of vocabulary size 

(PWE median=101 vs. PWNES median = 100, U=212.5, p=0.187) and word count (PWE 

median=257 vs. PWNES median=210, U=187, p=0.071). A Chi squared test showed that 

there was no significant difference in word length distribution, X2 (14, N = 45) = 15.2, p = 

0.365. 

3.2 Feature Comparison 

There were significantly more hesitations and repetitions in the speech of PWE than that of 

PWNES (Table 1). There was no significant difference in terms of average pause length, 

pause frequency, total pause time, average length of between speaker pause and the 

presence or absence of key words associated with uncertainty (Table 1).  

Table 1: The mean (parametric tests) or median (non-parametric tests) for each variable 

Feature PWNES PWE T value P value 

Hesitations † 2 (7) 9 (10) U = 117.5 0.001 

Repetitions † 2 (2.25) 3 (7) U = 133.0 0.003 

Pause frequency 45.4 (22.1) 46.4 (26.9) 0.135  0.893 

Pause average † 0.996 (0.188) 0.786 (0.385) 159.000 0.018 

Pause total 45.1 (24.5) 43.1 (31.6) -0.238 0.813 

Between speaker pause average † 1.15 (0.544) 0.922 (0.543) 198.000 0.112 

Uncertainty keyword § 13/21 (61.9%) 10/24 (41.7%) X2 = 1.115 0.291 

Note: results indicate mean (SDs) unless otherwise indicated. Adjusted alpha set at p<0.007.  

t value given unless otherwise specified 

† Mann Whitney U, median, and Interquartile range are reported because the variable is not normally distributed 

§ 
Chi squared test, count and percentage because the variable is categoric 
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3.3 Random Forest performance 

We compared the performance of the Random Forest algorithm using different 

combinations of the features (Table 2). The best performance was achieved when all 

formulation effort features were used (accuracy = 71%)(Figure 1), followed by hesitations 

and repetitions alone (accuracy = 68.9%), hesitations, repetitions, and the presence of 

uncertainty related words (accuracy = 64.5%) and all pause features (accuracy = 48.9%).  

 

Table 2: The accuracy, sensitivity, and specificity of the Random Forest algorithm trained 

using Leave-One-Out Cross Validation and different combinations of features 

Features Accuracy Sensitivity  Specificity  F1 Score 

All features (7) 71% 61.9% 79.2% 67% 

Hesitations & 

Repetitions (2) 

68.9% 66.7% 70.8% 69% 

Hesitations, 

Repetitions & 

Uncertainty (3) 

64.5% 52.4% 75% 62% 

Pause features 

(4) 

48.9% 42.9% 54.2% 49% 
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Figure 1 - A confusion matrix for differentiating between PWE and PWNES using the 

Random Forest model trained using all seven formulation effort features. 

 

4. Discussion 

Our analysis supports the hypothesis that indicators of formulation effort that are 

automatically extracted from audio recordings and transcripts of seizure descriptions and 

inspired by observations made by CA can contribute to the differential diagnosis of epilepsy 

and PNES. PWE demonstrate significantly more formulation effort as indicated by 

hesitations and repetitions while describing their first seizure compared to PWNES. 

Furthermore, the seven features that were designed based on manual annotations of 

formulation effort were able to differentiate between PWE and PWNES with an accuracy of 

71% using the Random Forest algorithm.  

Previous qualitative research reported no difference in pause frequency and pause 

duration between PWE and PWNES (Walker et al., 2020). Our findings that there was no 

significant difference in ‘patient pause frequency’, ‘total pause time’, ‘average pause length’, 

and ‘average length of between speaker pauses’ supports this finding. However, we 

observed an improvement in the performance of the Random Forest algorithm when the 

patient pause features were incorporated into the model. These findings illustrate the 



Pevy et al.  Seizure: European Journal of Epilepsy 

complex interaction between different linguistic and interactional features and demonstrate 

how a particular feature may make a diagnostic contribution in a particular context.  

Our findings provide the basis of a more detailed exploration into possible 

contributions a fully automated analysis of language could make to the differentiation of 

epilepsy and PNES. We note that the discrimination we achieved by automated analysis of 

manually produced transcripts and audio clips was less accurate than the fully manual, 

qualitative approach based on the analysis of complete interactions and taking account of a 

wider range of potentially diagnostic features (Reuber et al., 2009; Cornaggia et al., 2012; 

Papagno et al., 2017; Yao et al., 2017; Biberon et al., 2020). However, our study provides 

proof of principle that qualitatively described features can be translated into observations 

which can be made by a computer. The findings of this study provide encouragement for 

efforts to develop equivalent methods for other discriminating qualitative observations such 

as differences in the metaphoric conceptualisations of seizure experiences preferentially 

used by PWE and PWNES, or the extent to which subjective seizure experiences are 

volunteered, and how periods of unconsciousness are described (Schwabe, Howell and 

Reuber, 2007; Schwabe et al., 2008; Plug, Sharrack and Reuber, 2009b).  

In clinical practice, a TLOC stratification tool would be unlikely to be based on the 

predictive performance of language features alone as in this paper. In a clinical system, 

these features could be used alongside symptom checklists to train a classifier (which may 

also be more diagnostic if used with a Random Forest Classifier than regression based 

approaches)(Wardrope et al., 2020). Future research should therefore explore the 

performance of a classifier trained using these features in tandem. Another reason for such 

a combined approach is that a clinical TLOC classification tool should not only be capable of 

predicting likely diagnoses of epilepsy and PNES but also of syncope. While little is known 

about the typical linguistic and interactional profile of patient descriptions of syncope, as 

stated above, this cause of TLOC can be differentiated very well from the two types of 

seizure based on symptom checklists.  
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The inclusion of language features into a fully automated clinical decision or 

stratification tool will require the use of an automatic speech recognition module.  Although 

such systems will generate transcripts that are far less accurate than the manually produced 

transcripts used in this study, experience with a fully automatic “digital doctor” system, 

programmed to ask patients questions about memory problems and analyse their answers, 

suggests that remarkably high correct classification levels can be achieved with somewhat 

“faulty” transcripts (Mirheidari et al., 2019; O’Malley et al., 2021).  While the switch from a 

conversation between clinician and patient to one between a talking head on a computer 

screen and the patient is likely to have significant consequences on how patients speak 

about their seizures, there are many similarities between the speech of patients between 

these two contexts (Walker et al., 2020), so this aspect of automation may actually improve 

the diagnostic accuracy of a fully automatic classification system.  

There are several limitations to this study. Firstly, the features used to approximate 

formulation effort may not capture all instances of formulation effort within the data. The 

features used in our analysis may suggest that patients are having difficulty describing their 

seizures by hesitating more, but another way that people can express formulation effort is by 

using meta-talk (Schiffrin, 1980) to describe their difficulties explaining their seizures 

(Schwabe, Howell and Reuber, 2007). Secondly, the sample size was small and the context 

in which the spoken seizure descriptions were recorded were heterogeneous. Although we 

used cross validation to demonstrate the machine learning algorithm’s ability to generalise to 

unseen data and to accommodate for the small dataset available for this analysis, it is 

difficult to evaluate the variance of a machine learning model using the “leave-one-out” cross 

validation method. Therefore, a larger sample size is required before we can be confident 

that this level of performance will be exhibited across other datasets. Finally, the analysis 

does not consider the type or severity of the seizures and future research should explore 

whether this influences the level of formulation effort that patients exhibit.  
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4. Conclusion 

Our results provide evidence that PWE demonstrate increased formulation effort 

compared to PWNES when they describe their seizure experiences to a clinician and that 

features reflecting formulation effort, which can be extracted automatically from transcripts 

and audio recordings, can be used to differentiate between epilepsy and PNES. While in 

isolation, the accuracy of the method described in this study is lower than the analysis of full 

transcripts and recordings by trained experts. However, the described features can be 

incorporated into fully automated clinical decision tools also taking account of other data and 

may improve the diagnostic performance of these tools, especially in terms of the particularly 

challenging differentiation between epilepsy and PNES. Moreover, this analysis is faster to 

compute and cost effective to deliver at scale. Therefore, future research should explore the 

performance of these features alongside information about symptoms, patient history, and 

witness observations and whether these results can be maintained when data is collected 

using a fully automated methodology.  
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