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 Abstract: 

Nanotechnology is paving the way for new carrier systems designed to overcome the greatest 

challenges of oncolytic virotherapy (OV); systemic administration and subsequent implications of 

immune responses and specific cell binding and entry. Systemic administration of oncolytic agents is 

vital for disseminated neoplasms, however transition of nanoparticles (NP) to virotherapy has yielded 

modest results.  Their success relies on how they navigate the merry-go-round of often-contradictory 

phases of nanoparticle delivery: circulatory longevity, tissue permeation and cellular interaction, with 

many studies postulating design features optimal for each phase. This review discusses the optimal 

design of nanoparticles for OV transport within these phases, to determine whether improved 

virotherapeutic efficacy lies in the pharmacokinetic/pharmacodynamics characteristics of the NP-OV 

complexes rather than manipulation of the virus and targeting ligands.  

 Lay abstract: optional – N/A

 Graphical abstract: optional – N/A

 Video abstract: optional – N/A

 Keywords: Oncolytic virotherapy, nanomedicine, nanoparticles, nanotargeting, immunotherapy, magnetic 

guidance

 Main body of text: 

1. Introduction

Cancer killing oncolytic viruses (OV) are a promising treatment modality for cancer. However, variable 

clinical response rates [1] have shifted the impetus towards various carrier strategies for their systemic 

delivery including liposomes, polymers, cell carriers and metallic nanoparticles to name a few. Carrier 

systems are not new in the field of oncology with many small molecule inhibitors (SMIs) embracing their 

advantages including biocompatibility, increased endocytosis, solubility and extended circulation time 

compared to free anticancer drugs, whilst simultaneously reducing systemic toxicity [2]. Successful 

examples include liposomal doxorubicin and nanoparticle albumin bound paclitaxel, which have 

progressed to the clinic. Viruses face similar pharmacokinetic and pharmacodynamic (PK/PD) challenges 

to SMI’s which have been mitigated to a certain extent by the transfer of carrier systems to the field of 

virotherapy. To successfully reach target tumour cells by a passive system the ideal therapeutic agent 

must traverse three major phases for nanoparticle drug delivery for oncology; systemic circulation and 

reticuloendothelial system (RES) interaction, extravasation and tumour penetration and interaction with 
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target cells. The physical characteristics (shape and size) and chemical characteristics (composition and 

charge) of nanoparticles are significant determinants of their functionalities within these three phases yet 

they have contradictory requirements leading to a paradoxical merry-go-round (Figure 1) that often 

requires sacrifice of design features optimal for at least one of the other phases. From this perspective it 

is even more striking how similar in both composition and mode of action the current raft of available 

nanoparticles are (Figure 2). We will explore whether this represents a conscious decision by investigators 

to focus on one phase they believe to be the most important or whether other limiting factors such as 

fabrication technologies have driven these decisions. This review will discuss the PK/PD of nanoparticles 

and whether this knowledge can be applied for the generation of virotherapeutic complexes 

endeavouring to reconcile the opposing determinants of their success. 

2. Pharmacokinetics of nanoparticles for oncology

The influence that the characteristics of nanoparticles have on their transport and interaction with cells is 

well known and has been extensively reviewed by Ernsting et al [3] within the context of oncology. The 

key points are represented in Figure 3 and briefly discussed below.

Morphology

Size and shape influences nanoparticle transport behaviour including how they interact with the 

endothelial cells of blood vessels [4] and capillarys wall for extravasation before being removed from the 

blood either by the RES or filtered by the lungs, liver and spleen. Particles larger than 5µm are trapped 

within the capillary beds of the liver and between 1-5µm they are phagocytosed by Kupffer cells [5]. 

Circulating nanoparticles exceeding 100nm in diameter are rapidly phagocytosed by hepatic and splenic 

macrophages, as opsonisation by serum proteins increases with size [3, 6]. However, to enhance 

extravasation into tissues, nanoparticles approaching 100nm are more likely to marginate towards the 

periphery of the blood vessel [7]. Radiolabelled metal organic frameworks (MOFs) of 60nm demonstrated 

longer blood circulation and over 50% higher tumour accumulation than 130 nm MOFs [8]. Formation of 

nanoparticle aggregates is also a concern for nanodrugs due to the risk of embolism and changes in 

biodistribution, with aggregates of polystyrene aggregates demonstrating a higher propensity for the 

reticuloendothelial systems [3, 9]. However, aggregation of aerosolised gold nanoparticles demonstrated 

Page 2 of 31

https://mc04.manuscriptcentral.com/fm-nnm

Nanomedicine

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

Version: 6th December 2017

Article Body Template

significantly faster cellular uptake than single AuNPs at the air-blood barrier interface using a multicellular 

lung system [10] once again forcing investigators onto the merry-go-round of decision-making as to which 

delivery phase is most important to them (Figure 1).

Once within the tissue, size also affects permeation and cell internalisation. Small nanoparticles show high 

permeation rate but also are rapidly cleared from the tumour by RES leading to poor accumulation (Figure 

3) [11].  Never is size more important than when considering transport across the blood-brain barrier for 

treatment of brain neoplasms. A recent study in a mouse model of orthotopic glioblastoma multiforme 

(GBM) demonstrated higher distribution of gold nanoparticles (AuNPs) within tumorous tissue compared 

to normal tissue when perfused via the carotid artery. Pertinently, nanoparticle size affected the 

permeation of nanoparticles with 10nm AuNPs widely distributed throughout the brain tumour, whereas 

50 and 100 nm AuNPs were located near the blood vessels [12]. By using carotid infusion, the investigators 

were able to bypass renal filtration, however, clinically this would be considered a highly invasive 

procedure with usual standard of care recommending intravenous administration therefore exposing 

these particles to rapid elimination from the circulation.  

NP size may affect the uptake efficiency and kinetics, the internalisation mechanism (eg. clathrin or 

caveolin mediated endocytosis and phagocytosis) [13] and also the subcellular distribution. A size-

dependent uptake in different cell lines has been observed as well as size dependent cytotoxicity which is 

extensively reviewed by Shang et al [14]. They concluded that the optimal size for active cellular uptake 

required a NP core size of 30-50nm. However this is within the range that NP’s are rapidly cleared by the 

RES following systemic administration. Recently it has also been postulated that tumour volume can 

selectively change tumour uptake of nanoparticles of varying size and that this depends on the frequency 

of interaction of particles with the perivascular extracellular matrix for smaller nanoparticles, whereas 

transport of larger nanomaterials is dominated by Brownian motion [15], adding a further layer of 

complexity to nanocarrier design.

There is also evidence that the size of NPs can influence the therapeutic effect. Naked AuNPs can inhibit 

the function of pro-angiogenic heparin-binding growth factors (HB-GFs) and subsequent intracellular 

signalling events. Using AuNPs of 10, 20 and 30nm, investigators demonstrated that the specific inhibitory 

effects of AuNPs towards HB-GFs are size dependent, bigger nanoparticles being more efficacious at 

inhibiting proliferation of HUVEC and NIH3T3 cells in vitro (100% inhibition at 5nM/L) [16].
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The shape effect is also known to influence fluid dynamics including lateral drift of particles towards the 

blood vessel wall, how particles interact with tumour capillaries during transport and their role in 

intracellular uptake [17]. However, it is only in recent years that this characteristic has begun to draw 

interest, most likely previously hindered by the lack of fabrication technology. In terms of circulation time, 

investigations have demonstrated, using Tobacco Mosaic Virus (TMV) in mice, that spherical NPs are 

cleared more rapidly from tissues in comparison to nano-rods of the same chemical composition [18]. 

Moreover, TMV has been used to generate a computational simulation to model nanoparticle diffusion 

within a small segment of solid tumour between capillaries [19]. They concluded that smaller aspect ratios 

(AR) (rod-shaped) NPs have higher diffusion and accumulate more easily in the tumour tissue, however 

higher aspect ratio NPs possess enhanced margination (the ability of particles to migrate towards blood 

vessel walls in blood flow), increased transport across tissue membranes and reduced clearance by 

phagocytosis. Likewise, Lee et al (2009) observed that whilst elongated particles (small AR) had a greater 

propensity to marginate in linear laminar flow, this could only be achieved through the application of 

external forces (gravitational, magnetic) within blood microcirculation [20]. Internalisation of particles 

was dependent on both the shape and absolute size and/or volume of the particle with larger rod-shaped 

particles internalised by HeLa cells 4 times faster than symmetrical particles and smaller rod-shaped 

particles [21], possibly due to the larger surface areas in contact with the cell membrane. Spherical 

metallic nanoparticles displayed greater cytotoxicity compared to rod-shaped [22] and star-shaped [23] 

nanoparticles in human skin fibroblasts although results from these studies could also be attributed to 

size and surface chemistry.

Surface characteristics

To overcome the general lack of specificity of nanoparticles and poor biodistribution a myriad of coatings 

exist purporting enhanced functionalisation capabilities, biocompatibility and aggregation reduction. The 

most successful strategy in this endeavor has been the wide-spread use of polyethylene glycol (PEG), a 

water-soluble synthetic polymer that creates a stable hydration layer resistant to protein adsorptions to 

underlying surfaces. However an increase in PEGylated proteins and PEG-modified NPs including 

liposomes and micelles has seen a correlation of anti-PEG antibodies with loss of therapeutic efficacy both 

in the clinic [24, 25] and in animal models [26, 27]. What once was used as a shield against opsonisation 

and immunosurveillance is now a recognised determinant for their clearance [28] resulting in loss of 
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therapeutic efficacy and increase in adverse effects. Biomimetic coatings may represent the future, where 

nanoparticles are recognised as “self” using membrane materials such as red blood cell membrane-coated 

nanoparticles which may enhance glioma therapy efficacy [29] and has demonstrated 29% overall 

retention after 24 hours within the circulation of mice compared to bare NPs that showed negligible signal 

at the first 2 minute timepoint [30].  Surface coatings can also change the charge of the NPs and exert a 

major effect on their properties including drug loading and release rates, systemic circulation and 

absorption [31]. As shown in Figure 3, charged NPs are more prone to serum protein opsonisation and 

interactions with negatively charged plasma membranes compared to neutral NPs yet cationic NPs display 

enhanced cellular uptake, once again forcing the investigator to choose between enhanced circulatory 

time or target cell interactions (Figure 1). 

3. Virotherapy

Dysfunctional cellular processes that are the markers of neoplasms provide the ideal environment for viral 

infection including sustained proliferation, resistance to cell death, the evasion of growth suppressors and 

immune destruction, genome instability and DNA damage stress [32].  The attraction to virotherapy in 

comparison to conventional treatments is the unique ability of OV to only kill cancer cells. For example, 

inherently selective RNA viruses such as the measles virus vaccine strain MV_SPUD, reovirus and 

Newcastle disease virus take advantage of tumour cell resistance to interferon [33], whilst vaccinia virus, 

adenovirus, Herpes simplex virus (HSV) and polioviruses exploit the deletion of viral genes [34-37],  that 

are necessary for replication in normal cells but expendable in cancer cells. Further advantages, 

summarized in Table 1, include the OV ability to target multiple oncogenic pathways and use multiple 

means for cytotoxicity thereby avoiding cross-resistance encountered in standard anticancer therapies 

with minimal side effects due to tumour specific replication. Whilst they are not without their risks 

(including virus replication, insertional mutagenesis, loss of specificity, immunogenicity and adverse 

effects) [38, 39] a predicted compound annual growth rate of 24.9% between 2018-2025 [40] and 

multitude of companies and academic sectors either emerging or investing in this field [1] is testament to 

the exciting success of T-Vec as a treatment for melanoma [41-43] and more recently the clinical trial 

involving safety assessments of Parvovirus as a treatment for glioblastoma [44]. A number of studies have 

provided evidence for the natural oncolytic activity of viruses and have been extensively reviewed for 
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intratumoral administration elsewhere [45-48], but crucially, it is well understood that to be clinically 

relevant systemic delivery is optimum. Not only is it a relatively simple procedure but could also 

potentially facilitate treatment of disseminated disease and hard to reach tumours including those beyond 

the blood brain barrier. Whilst systemic administration of viruses has achieved efficacious results 

preclinically, including vesicular stomatitis virus [49-52], Newcastle disease virus [53, 54], reovirus [55], 

lentivirus [56] and herpes simplex virus [57, 58], they have translated poorly into humans [59, 60]. 

Despite the many advantages coupled with a spectrum of virus types, tropism and targeting pathways 

there are a number of obstacles to overcome to ensure clinical translation against both solid and 

disseminated tumours. These include the role of innate and adaptive immunity; the effect of viral tropism 

towards the liver resulting in liver toxicity and clearance and the physical barriers including tumour 

extracellular matrix and limited extravasation of OV’s due to high interstitial fluid pressure within the 

tumour. The heterogeneity in the clinical response to OV therapies also suggests that a one-pronged 

approach to treatment may facilitate relapse and metastasis in heterogenous tumours, through the 

incomplete eradication of neoplastic cells [61]. Combination therapies have demonstrated synergistic 

antitumour effects [62] for example the facilitation of virion assembly and upregulation of CAR expression 

by paclitaxel (PTX) for Ad internalisation elicited by PTX-conjugated micelle-coated oncolytic adenovirus 

[63] whilst Tong et al., demonstrated that both intratumoral heterogeneity as well as extensive 

interpatient heterogeneity impacts the potential of Maraba virus as an oncolytic agent for ovarian cancer 

[64]. Oncolytic virotherapy therefore exists in a paradoxical situation whereby many of their attractive 

features also serve in their destruction e.g. immune responses designed to remove unrecognisable 

microorganisms yet also augment immune cell death (ICD) and cancer cell destruction. 

Whilst genetic engineering of viruses has sought to overcome the problems associated with cell targeting 

and entry, this technique requires extensive modification of the capsid to incorporate new moieties, which 

is a laborious process and risks generating non-infectious or dysfunctional virus. In comparison, chemical 

engineering is simple and straightforward, since nanomaterials can be complexed with viruses through 

chemical conjugation or electrostatic interactions. It is this versatility that has attracted many 

investigators to utilise the advantages that NPs such as liposomes, polymers and cell carriers convey, yet 

despite the wealth of data described earlier regarding PK/PD of these NPs, there is a distinct pattern of 

strategies that have emerged.
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4. Strategies employed by nanoparticles to enhance virotherapy delivery

As mentioned, there are three predominant stages for systemic NP delivery in oncology which has led to 

the three most important modifiable strategies for increasing concentrations of therapeutics at tumour 

targets; 1) shielding within the circulation; 2) tumour targeting; and 3) cell entry (Figure 4). 

Shielding

Evading the humoral immune response is one of the biggest challenges facing systemic administration of 

OV’s such that failure to do so will result in virus neutralisation before they have reached the target. The 

liver and spleen rapidly clear systemically administered viruses from the circulation by opsonisation with 

antibodies, complement and coagulation factors resulting in sequestration by the mononuclear 

phagocytic system (MPS).  Yet viral replication, the release of pro-inflammatory cytokines and the 

accumulation of inflammatory cells to the tumour microenvironment (TME) are critical to tumour cell 

death [65, 66].  Consequently, an interplay between OV activity and an inflammatory response is believed 

to aid in the therapeutic efficacy of OVs in an in vivo environment. Some viruses have managed to 

overcome these challenges by disguising themselves within host cells for delivery to their target cell 

population including the human immune deficient virus (HIV) which utilises dendritic cells and 

macrophages that naturally migrate to the lymph nodes for delivery to CD4+ T cells [67]. Cell to cell spread 

of viruses also enables evasion of antibody neutralisation [68, 69]. Investigators are again taking 

inspiration from these evolved survival mechanisms to optimise cell carrier systems in a number of tumour 

models as a way of disguising OV from host defences prior to deposition at its target cell population (Figure 

3). Avoiding virus sequestration by the MPS is achievable by shielding virus particles with chemically 

modified coat proteins. Probably one of the most studied uses of nanoparticles for virotherapy is the 

decoration of viruses with various polymers/micelles [63, 70-74], dendrimers [75, 76], liposomes [77-80], 

and cells [81, 82]. Alternatively, pre-administration of compounds designed to deplete serum factors 

(Cobra venom factor [83], cyclophosphamide [84, 85]), saturate scavenger receptors (polyinosinic acid) 

[86, 87] and diminish splenic macrophages using clodronate-loaded liposomes [88, 89] have been used to 

enhance therapeutic outcome by downregulating specific compartments of the immune system. 

Ultimately these strategies require extensive optimisation and understanding of the concomitant effects.
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Shielding of the viruses via masking their surfaces with NPs requires some method of complexation of the 

two components. The zeta potential/surface charge is therefore probably one of the most important 

factors for carrier systems that do not involve encapsulation of viruses. To the best of our knowledge, 

complexation of viruses with NPs has been predominantly via spontaneous electrostatic interactions for 

the formation of safe complexes at a charge neutralised ratio [90-92].  However, in these examples, very 

little is known regarding their final shape, uniformity and stability with binding success often only assessed 

by changes in the net surface charge and particle size. There are very few examples where the coexistence 

of the various components have been verified by investigating chemical characteristics on surface 

composition and the bond types participating in the complexation [93-95].  One also needs to consider 

how strong these interactions are and whether they are displaced following injection into a turbulent 

fluidics system and displacement by the presence of other proteins such as serum albumin. 

It is interesting that electrostatic interaction is the only method that has been utilised by investigators 

with examples for exploiting these interactions further by the addition of cationic coatings (eg TAT 

peptide), especially when covalent binding may provide a more stable bond and offers flexibility in terms 

of available residues and reversible linkers that can be activated under certain conditions and thereby act 

as triggers for more targeted delivery. One such reason may be evidence that bioconjugation in 

nanoparticle-based drug delivery systems alters their properties with glutaraldehyde protein cross-linking 

influencing the induced antibody responses at several levels in vivo [96] which would be an important 

consideration due to the inter-dependence of the immune response in the efficacy of virotherapy.  

Tumour targeting/recognition 

If OV’s manage to avoid detection in the systemic circulation their next challenge is to accumulate at their 

tumour target (Figure 4). This passive transport and non-specific accumulation of drugs in solid tumours 

has long been attributed to the enhanced permeability and retention (EPR) effect whereby a combination 

of their so called “leaky” vasculature for tissue entry together with a lack of well-defined lymphatic 

systems results in increased retention times [97]. Strategies for a more specific method of targeting 

tumour cells (often called active targeting), is to either recognise a determinant expressed directly on/by 

the tumour cell, by recognising the microenvironment created by the tumour (homing macrophages to 
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hypoxic areas [82], trafficking mesenchymal stem cells to areas of tumour-associated cytokine production 

[98, 99] or endothelial cells to tumour-associated angiogenesis [100]), or by exploiting intrinsic trafficking 

to specific tissues or organs (e.g. nonspecific T cells which naturally home to lymphoid organs) (Figure 3). 

One mechanistic explanation for intrinsic tumour tropism of viruses is linked to the inability of many 

cancer cells to respond properly to pro-inflammatory or antiviral cytokines [101]. For example, defects in 

the interferon (IFN) responses of cancer cells allows VSV to replicate, even in the presence of IFN where 

in normal primary mouse cells, the replication of VSV is strongly inhibited by lFN. One common method 

of genetically modifying an oncolytic virus candidate to increase tumour tropism is to delete or modify 

the viral genes responsible for countering cytokine-mediated immune responses such as members of the 

interleukin (IL) family, erythropoietin and interferons to name a few [102]. 

Functionalising the surfaces of NPs rather than modifying the viruses is also a common approach for re-

targeting these drug delivery systems including the addition of ligands such as luteinizing hormone 

releasing hormone receptors [103] in breast cancer and anti-CD47 in pancreatic cancer cell targeting 

[104]. Redirection of virion-liposome complexes containing Moloney leukaemia virus (MMLV) to vascular 

endothelium by incorporation of antibodies for the endocytic receptors CD71 and CD62E/P [105] has been 

achieved and ovarian cancer growth has been cessated by systemic administration of a liposome-

encapsulated adenovirus-encoding endostatin which decreased angiogenesis and increased tumour 

apoptosis [79]. Similarly, oncolytic adenovirus complexed with EGFR targeted dendrimer can be efficiently 

internalised by EGFR positive tumours [75], further validating the benefits of this strategy.  Ultimately 

even these ligand-bearing NP-OV complexes rely on passive transport and whilst the EPR effect is widely 

held to increase nanotherapeutic delivery to tumours over normal organs owing to their defective tumour 

vasculature, the heterogeneity of the EPR effect in cancer [106] often offers less than a 2-fold increase in 

nanodrug delivery compared with critical normal organs, resulting in drug concentrations that are not 

sufficient for curing most cancers [107].

Nano entry into cell targets

The final hurdle for OV’s once they have reached their tumour target is the mechanisms for cell entry 

(Figure 4). Whilst the natural tropism towards tumour cells by certain viruses is selected by their 
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phenotype (immortality, DNA instability etc), cell entry relies on specific signalling pathways i.e.  CAR 

expression is required for internalisation of adenoviruses [108] whilst glycoprotein D is an essential 

component of HSV-1 entry apparatus [109]. These signalling pathways can be enhanced for either 

increased recognition or enhanced viral replication. For example a genetically modified version of the 

measles virus (MV) vaccine strain which already demonstrated tropism towards many different types of 

cancer cells through the highly expressed CD46 receptors induces greater oncolytic activity against renal 

cancer cells [71]. Conversely, liposomal mediated entry of viruses are independent of viral receptors as 

they attach and reform with the cell membrane. This entry method has proven to enhance infectivity of 

liposomal HSV-1 even in the presence of neutralising antibodies following systemic administration for liver 

metastases [78]. Magnetofection is a membrane-receptor independent mechanism for hard-to-transfect 

biological models that uses a magnetic field to transfect cells [110], this technique has also demonstrated 

enhanced adenovirus uptake and increased time to full oncolytic effect in vitro and in vivo with 

consequential significant inhibition of tumour growth in a murine xenograft of human pancreatic 

carcinoma following intratumoural administration [90].

Whilst cell carriers may provide OV’s with the ideal disguise for avoiding immunosurveillance, their 

successful delivery is complicated by a number of considerations including the kinetics of viral replication 

and release and kinetics of trafficking of the cell carrier from the site of injection to the tumour location. 

Cell carriers that support viral replication provide the added advantage of amplification overcoming issues 

including limits of clinical grade virus production and increase the therapeutic index and the likeliness of 

overcoming neutralising antibodies [82, 111]. Timing of replication and release is important as 

accumulation of viral proteins at the surface of the infected cell (e.g. VSV G protein) or creation of IHC 

complexes can alert the immune system resulting in premature clearance. Mitigation of this risk could 

involve either co-ordination of the lag time following initial viral infection of a cell and release of progeny 

virions with transport to target tissue or initiation of viral replication and release only at the targeted 

tumour. Shielding viruses within immune cells such as T cells avoids eliciting an immune response but they 

do not support all viruses and can be refractory to viral infection in vivo [112]. Mesenchymal stem cells 

can also support therapeutic adenoviral replication [113] yet more recently neural stem cells have 

demonstrated enhanced viral loading with significant increases in survival rates administered 

intracranially in an orthotopic glioma model [114] as well as significant reduction in omental tumour 

burden in an orthotopic model of ovarian cancer [115]. Whilst promising, both these examples utilised 
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direct administration of the treatment to the tumour site, not to mention the extraction of neural cells 

requiring invasive stereotactical surgery.

The toxic environments associated with tumours also influence cell entry and therapeutic effects for 

example hypoxia, which is associated with resistance to radiotherapy and chemotherapy despite 

enhanced delivery of these drugs via carriers. Liposomal formulations of SMI’s doxorubicin [116], 

daunorubicin [117] and paclitaxel [118] have demonstrated success in the clinic although augmentation 

of efficacy above drug alone is debatable [119, 120].  This could be attributed to the characteristics of the 

carrier including their size (too large and they are captured by the reticuloendothelial system or too small 

and they are excreted in urine). In addition,  reduced cellular uptake and cellular adaptations can also  

compromise the effectiveness of the chemotherapy [121] due to exposure to toxic conditions. 

Investigators have sought to adapt these situations to their advantage by using them as molecular 

switches for the release or activation of therapies e.g. Hypoxia activated pro-drugs (HAPs) such as TH-302 

and PR-104, reviewed by Baran and Konopleva [122]. Fortunately, hypoxia seems to exert little or no effect 

on the replication of some oncolytic viruses [123]. Replication of adenoviruses from both groups B and C 

is inhibited, yet replication of the herpes simplex virus G207 strain was enhanced in brain and breast 

cancer cell lines by a 74% increase in cytotoxicity of hypoxic MCF 7 cells [124] and a 3.6-fold increase in 

G207 viral titres by hypoxic U87 glioblastoma cells [125].  This idea of activating switches has also been 

applied to MNP’s for controlled drug release. Thermodegradation of polymer caps by application of an 

oscillating magnetic field to mesoporous silica nanoparticles has unblocked nanochannels containing 

drugs [126, 127], thereby releasing therapeutic cargo on demand in the desired location. Applying this 

strategy to OV could provide protection against immunosurveillance and allow targeted release thereby 

potentially increasing biocompatibility and efficacy. 

Despite these strategies for enhanced virus protection and target recognition, perhaps the biggest 

limitation for any systemically administered therapy is its reliance on passive delivery with evidence 

demonstrating that nanoparticles (NPs) displaying decreased blood circulation time usually display 

concomitant reduced tumour uptake and efficacy [3]. It is therefore feasible that the similarities displayed 

by the current raft of available NPs (spherical, 80-120nm diameter, membranous) is a reflection of this 

(Figure 2). Thus would an active guidance/steering system allow for more radical designs of NP-OV 
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complexes by incorporating a more holistic approach encompassing the optimum features from all three 

strategies (Figure 4).    

Designer OV-nanocomplexes

Utilisation of viruses as a treatment modality in cancer have so far focused on viral tropism to specific 

tumour types for intratumoural administration or the addition of specific receptors for target recognition 

following systemic administration. Despite the multitude of drug delivery systems available they are all 

based on this principle of additional recognition moieties to overcome the limitations of their passive 

transport and discriminate between healthy and neoplastic cells. The literature therefore suggests that 

there is a requirement that the virus be “matched” to its target in order to achieve efficacy. However, 

these solutions lack a propelling force to a specific area as well as to penetrate tumours beyond diffusion 

limits. Systemic administration of naked virus as well as functionalised nanoparticles are inefficient as they 

still rely on the EPR bias (whereby the tumour vasculature is considered more “leaky” than that of normal 

organs) to navigate the vasculature. Perhaps it is therefore unsurprising that despite the wealth of 

knowledge regarding the pharmacokinetics of NPs within each phase of NP drug delivery there is a trend 

towards spherical particles of 80-130 nm diameter with lipid-based outer coatings (Figure 2). Would 

application of an external driving force allow radical divergence away from these parameters and translate 

to improved efficacy?

Application of external magnets have sought to overcome this problem of passive targeting. Magnetic 

chemotherapy has improved drug delivery for monotherapies such as doxorubicin [128], photothermal 

ablation with cetuximab [129] and melanin [130], dual targeting combining ligands with therapeutics 

[131], as well as utilising their function to overcome the toxic effects of hypoxia in HCT116 colorectal 

xenografts [132].  A similar methodology has been employed by investigators for regional delivery of cells 

including macrophages preloaded with magnetic iron particles [111], mesenchymal stem cells [133] and 

stem cells for the treatment of lesions [134]. Cisplatin loaded magnetic liposomes were able to overcome 

the drawback of low drug encapsulation efficiency by embedding magnetite nanoparticles in the 

liposomal membrane and the pharmacokinetics study in rats was able to sustain bioavailability in the body 

circulation compared to free drug [135]. Drug-containing liposomes covalently attached to magnetotactic 

bacteria were magnetically guided to HCT116 colorectal xenografts, with 55% of the bacteria localised to 

hypoxic regions [132]. Not to mention biocompatible magnetic nanoparticles (MNPs) to improve cancer 
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diagnostics have been demonstrable in magnetic resonance imaging [136], radionuclide therapy [137] and 

hyperthermia [138-140]. 

The ability of MNP’s to be guided externally to the target tissue could therefore circumvent the reliance 

on specific viral tropism or specific ligands for efficacious virotherapy, evidence for which comes from a 

study using ectoenzyme ALPP decorated MNPs for selectively binding cancer cells without involving 

specific receptor interactions or antibodies [141]. A few examples of magnetically enhancing viruses are 

demonstrating this potential whereby adenovirus complexed with iron oxide increased transduction 

efficiency in CAR-negative MCF tumours, culminating in increased cancer cell killing and intracellular 

replication of Ad [90, 91]. Whilst demonstrating enhanced cellular interaction with adenoviruses, these 

studies were performed in nude mice with intratumoural administration of virotherapy at an acute 

timepoints. 

One of the few studies to utilise magnetic guidance of systemically administered OV’s boosted HSV 

oncolytic activity in xenograft model of prostate cancer [142]. By disguising the OV, Sephrivir, in 

macrophages loaded with iron oxide NPs, investigators were able to direct them to primary and metastatic 

tumours using pulsed field magnetic gradients resulting in increased tumour macrophage infiltration and 

reduction in tumour burden. One consideration when applying magnetic gradients is their effect on cells. 

A large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have 

a significant impact on not only the properties and biological functionality of cells but also cell fate [143].

In terms of nanoparticle design, the use of magnetic field gradients could allow a departure from the 

traditional spherical, 100nm particles which are optimal for passive circulatory interactions and 

margination. For example, the increased circulation times demonstrated by rod-shaped particles [18] are 

controversial as nanocarriers due to their poor margination but application of external forces including 

magnets are expected to increase margination of rod-shaped magnetic particles [20] thereby enhancing 

their potential to reach tumour targets via increased circulation time, increased extravasation and 

magnetic steering. By overcoming some of the issues concerning circulatory transport, it may allow 

investigators to focus nanocarrier design on the characteristics for augmentation of the latter stages, 

namely tissue permeation and cell entry.  
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One of the limitations to investigate the interdependence of shape and size on the pharmacokinetics of 

magnetic nanoparticles (MNPs) has been their fabrication and production. The chemical synthesis of 

MNPs offers little control over uniform shape and size distribution and require coatings for 

biocompatibility and functionalisation. Conversely, biologically derived MNPs called magnetosomes, 

extracted from magnetotactic bacteria, display highly uniformed size and shape. Medical applications in 

oncology have so far exploited the magnetic properties of magnetosomes for magnetic resonance imaging 

(MRI) contrast agents [144] and magnetic hyperthermia [138]. More recently, magnetosomes have 

established themselves as contenders for delivery of chemotherapies. Magnetosomes loaded with DOX 

demonstrated comparable tumour inhibition versus DOX alone against hepatocellular carcinoma (HCC) 

but significantly enhanced mortality rates by reducing cardiac toxicity to DOX alone [145]. By cross-linking 

chemotherapies to the surface of magnetosomes Deng et al and Liu et al have generated slow releasing 

formulations of cytosine arabinoside (Ara-C) for acute leukemia treatment [146, 147] and co-

administration of DOX with siRNA using magnetosomes protected siRNA from degradation in serum 

resulting in synergistic cytotoxicity in vitro [148]. The ability to manipulate magnetosome transport via 

non-invasive, external application of magnetic fields has been confirmed by Tang et al whereby human 

papillomavirus type E7  and Ig-Fc fragment (pSLC-E7-Fc) combined with magnetosomes generated 

antigen-specific cytotoxic T lymphocyte activity with resultant tumour inhibition in a murine metastatic 

lung model (average pulmonary metastatic tumour weight of 343.6 mg vs 58.9mg) [149]. 

Magnetosomes have proven themselves equally successful as existing nanocarriers which may not be 

surprising when we compare their structures – cubooctohedral, 30-50nm diameter surrounded by 

phospholipid membranes extracted from MSR-1, MC-1 and AMB-1 strains. However, a multitude of other 

strains have been identified that synthesise rod, bullet and cuboidal magnetosomes that could provide 

further opportunities to investigate the effect of shape on targeted delivery of therapies. In fact, could 

magnetosomes provide the ideal opportunity to optimise a carrier system that is a) not reliant on passive 

delivery and the EPR effect but magnetic steering for targeting and margination; b) therefore shifts the 

focus to particle design for permeation and cell entry; c) removes the confounding influences of 

composition (chemical characteristics, charge) allowing direct comparison of shape alone. 
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Conclusions

Systemically delivered oncolytic viruses exist in a paradoxical scenario whereby immunosurveillance can 

both enhance and destroy the therapeutic potential and whereby tumour angiogenesis both facilitates 

viral entry but is dependent on tumour type and status. Whilst nanoparticles have demonstrated 

improved efficacy their design primarily focuses on optimal conditions for circulatory survival due to a 

reliance on the EPR effect for passive delivery. The use of active guidance systems such as MRI together 

with magnetic nanoparticles may allow investigators to step off the merry-go-round and select NP-OV 

complex designs for cell entry alone. This could mediate a complete departure from traditional 

nanoparticle sizes and shapes and open the door for a pan-nanocarrier for oncology.  

Future prospects

The opposing design requirements within each of the three phases required for successful NP delivery 

indicates that there will eventually be a trade-off whereby investigators will be forced into decisions 

biasing one phase over another. To date this has involved intratumoural administration of OV’s only; high 

titres for systemic administration to account for immunosurveillance; and the addition of specific 

targeting moieties. Unfortunately this has resulted in ineffective OV therapy for disseminated tumours; 

adverse effects; and precision virotherapy for single tumour types respectively. More ambitious OV-NP 

complexes are required (such as the design postulated in Figure 4) that encompass multiple strategies to 

overcome this challenge of systemic administration. Equally, the methodology required to both generate 

and assess NP-OV complex stability (including 3D morphology, bond strength and hydrodynamics) must 

be compatible within both biological and material sciences. 

 Future Perspective: N/A

 Executive Summary: (bulleted summary points that illustrate the main conclusions made throughout the 

article. Less than 400 words).
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Introduction

 Oncolytic viruses (OV) are an attractive prospect due to their two-pronged attack mechanism: direct 

cell lysis and amplification of an anti-tumour immune response. Paradoxically this also results in 

their removal by the reticuloendothelial system when delivered systemically.

 There are three phases that OV’s must navigate for successful nanoparticle delivery; circulatory 

longevity, tissue permeation and cellular interaction. Nanoparticles including liposomes, polymers 

and metallic particles are mitigating the circulatory interactions using shielding techniques and 

chemical modifications of their surfaces have incorporated moieties for the detection of specific 

tumour ligands for increased cell recognition. Despite these advances, the variable response rates 

evident in both primary and disseminated neoplasms suggests that efficacy relies on a multi-faceted 

approach.

Pharmacokinetics of nanoparticles for oncology

 It is well known that nanoparticle shape, size and composition determines their fate during each of 

these phases and particular characteristics have been postulated for their success. Unfortunately 

these characteristics are not always conducive for each phase.

 The reliance on passive delivery to the tumour target via the EPR effect has biased  the current raft 

of nanocarriers to be optimal for navigating circulatory complications such as avoiding immune/ 

serum protein interactions and extravasation (spherical, ~100nm diameter, neutral charge). 

Therefore their limited success could be attributed to suboptimal characteristics required for the 

latter stages of nanoparticle delivery.  

Strategies employed by nanoparticles to enhance virotherapy delivery

 The ability to actively target tumours by external guidance systems (eg. magnetic gradients) may 

shift the focus to characteristics required for tissue permeation and retention by circumventing the 

need to rely on the EPR effect. Similarly the use of environmental stimuli (eg.hypoxia) as triggers for 

the unveiling of specific characteristics via polymeric switches allows nanoparticles to straddle the 

needs of the various phases.   

 The effects of shape, size, charge etc pose another problem when trying to draw comparisons due 

to fabrication limitations and inherent compositional differences in the various nanocarriers 

available. 

 Ultimately, successful systemic delivery of OV’s relies on how we reconcile the different needs of 

each phase on the merry-go-round that is nanoparticle delivery. 

OR

Summary Points (Research articles & Company profiles only): 8–10 bullet point sentences highlighting the 

key points of the article.
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 Figure legends

Figure 1. The nanocarrier design merry-go-round. Optimal nanocarrier characteristics for each phase of 

systemic delivery of cancer therapies. AR = aspect ratio.

Figure 2. Currently used nanocarriers demonstrating significant similarities; spherical morphology, 

synthetic or biological phospholipid coating and overlapping diameters.

Figure 3. Factors controlling pharmacokinetics and biodistribution of nanoparticles (NP). Size: Large NPs 

(1) will not be able to enter the tumour through leaky vasculature and demonstrate increased blood 

protein deposition as a result of increased surface area resulting in rapid clearance. Small NPs show high 

permeation rate (2) but also are rapidly cleared from the tumour by RES (3) leading to poor accumulation. 

Shape of NPs (4) affects tumour cell internalisation and determines interaction with RES, PK and tumour 

retention as a result of surface curvature and altered hydrodynamic behaviour. Aggregates can cause 

different organ distribution. Surface characteristics: Polymer coated NPs may shield NPs from neutralising 

Abs and RES but repeated administration can induce anti-PEG antibodies (5). Negatively charged NPs 

exhibit strong RES uptake whilst cationic NPs induce serum protein aggregation exhibit increased uptake 

by cells (6). Neutral NPs can travel up to three times more distance than charged analogues (7), distribute 

more evenly and exhibit least RES interaction for the longest circulation. PEGylation can shield charge 

effects (8) preventing opsonisation and can be shed after tumour extravasation to expose cationic 

particles that can interact with target cells (9). Regime: Multiple treatments could either increase 

generation of neutralising antibodies (10) to NPs resulting in reduced efficacy or suppress RES activity 

during the first dose but reduce clearance and increase toxicity of subsequent doses (11). Distribution of 

NPs is dependent also on exposure route (12). 

Figure 4. Current methods for virotherapeutic targeting of tumours and how to manipulate these further 

to create the ideal NP-OV complex.

 Table Legends

Table 1: Multiple oncolytic pathways of oncolytic viruses

Table 1: Multiple oncolytic pathways of oncolytic viruses

Advantage Description Virus Ref
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Consequence of viral replication and virion release. HSV, 

VV, VSV

[150]Direct Oncolysis

Cytotoxic proteins synthesised by the virus e.g. induction 

of apoptosis by adenovirus E4-ORF3 protein expression.

Ad [151]

Release of DAMPs and TAAs into bloodstream thereby 

switching an immunogenically “cold” tumour (low 

abundance of tumour antigens, tumour infiltrating 

lymphocytes and an immunosuppressive tumour 

environment) to a ‘hot’ immunogenic tumour.

HSV [152, 

153]

Activation of innate and adaptive anti-cancer immune 

responses, thereby inducing immunogenic cell death (ICD) 

in cancer cells.

Ad, MV [154-

158]

Reprogramming 

the tumour 

microenvironment

Mediate the killing of uninfected cancer cells by 

destruction of tumour blood vessels.

VSV, VV [159-

161]

Enhance anti-

tumour effects

Amplification of therapy overtime due to virion release 

and immune interaction in comparison to classical drug 

pharmacokinetics which decrease with time.

Ad [162]

Inhibit relapse and 

metastasis

Incorporation of transgenes (eg. GM-CSF, IFNα/β, IL-12, 

CCL5).

HSV, 

Ad, 

VSV, VV

[163]

DAMPs = damage-associated molecular patterns, TAAs = tumour associated antigens, VSV = vesicular stomatitis 

virus, VV = vaccinia virus, Ad = adenovirus, MV = measles virus
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