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3D Free Reaching Movement Prediction of Upper-limb Based on Deep
Neural Networks

Chao Wang, Manoj Sivan, Tianzhe Bao, Gugiang Li, Shengquan Xie

Abstract— Quantitative assessment of motor disorder is one
of the main challenges in the field of stroke rehabilitation. This
paper proposes a simplified kinematic model for human upper
limb(UL) using seven main joints of both the dominant and
non-dominant side. With this model, a deep neural network
(DNN) is used to predict the 3D free reaching movement of UL
of a healthy participant. The experimental results show that the
prediction trajectories can achieve high similarities with trajec-
tories of real movements, indicating the promising accuracy in
3D movement estimation of UL achieved by the DNN. With the
capability of identifying specific reaching movements in real-
time, the trajectories predicted by this data-driven model can
be utilized to inform the rehabilitation assessment and training
in the future studies as a personalized therapy approach.

Keywords: 3D, upper limb, rehabilitation assessment, data-
driven, movement prediction

I. INTRODUCTION

Stroke is the leading cause of adult-onset disability in the
world [1]. With an increasing number of patients suffering
stroke, a more reliable approach for rehabilitation assessment
and training is required [2]. Motor function assessment plays
a significant role in rehabilitation as it directly illustrates the
effectiveness of rehabilitation therapy [3], [4]. To provide a
reliable assessment of motor function, motor control and the
trajectory planning strategies of the central nervous system
(CNS) need to be understood [5]. Reaching is one of the
simplest movements in daily life. It has been frequently used
in the motor function assessment for patients with motor
disorder [6]-[9]. A better understanding of normal reaching
movement could improve the motor function assessment.
More specifically, accurately modeling of reaching pattern
is the key point to quantitatively measure the difference
between healthy individuals and those with arm impairment.

Previous literature has verified that CNS does not ran-
domly control the limbs and plan the movement during
the reaching [7], [8], [10]. Among the infinite number of
trajectories that can be chosen due to the redundancy of the
UL motor system [7], [8], [10], [11], it is considered that
the CNS tries to minimize the movement-related costs in the
control of UL movement [12]. Therefore, the unconstrained
reaching movement trajectories of with natural speed would
be repetitive in the same reaching task [13], [14]. In other
words, there is an optimal trajectory selected by the CNS
when a person is doing a specific motor task. Although
which strategies exactly employed are still largely unclear,
it is possible to model the reaching process and predict the
movement, which would prove useful in the rehabilitation
assessment and training.

Earlier studies reported kinematic and dynamic models
which aim to discover these control strategies behind the

reaching movement. The vast majority of these models are
developed to generate the prediction trajectory by optimiz-
ing a criterion function. Flash and Hogan proposed their
minimum-jerk model which aimed to optimize the rate of
acceleration changes of hand [15]. Hasan reported a model
minimizing the effort of joints [16]. Todorov presented a
new approach which aimed to minimize the reaching error
and energy cost together [17]. Pham reported a minimum
acceleration model for goal-oriented locomotion which was
adapted from the smoothness maximization models [18].
Dongsung and Terrencer presented a power law [19] and
smoothness maximization model to generate the target tra-
jectory [20]. DeWolf presented a spiking neuron model to
simulate the planar arm movement [21]. Dounskaia proposed
a cost function which represents the neural effort for joint
coordination [22]. Although these models improved the un-
derstanding of the potential laws employed by the CNS, it
is still hard to identify the complex motor system of UL,
leading to the lack of accurate prediction results from these
kinematic and dynamic models to inform the rehabilitation
assessment. Additionally, 3D movement prediction of upper-
limb multi-joint still needs to be studied.

Deep learning (DL) techniques have been widely applied
to various fields due to their incredible capability in complex
system identification. Many recent studies have employed the
DL approaches to develop the models that predict the trajec-
tory of UL reaching movement. Bernabucci presented a bio-
inspired artificial neural networks (ANN) model to predict
upper human arm planar motion [23]. Genc reported a new
convolutional neural network (CNN) structure to overcome
the scalability and robustness difficulties in complex system
identification [24]. Gilra proposed a non-linear dynamics
prediction model by using recurrent spiking neural networks
[25]. Tieck trained the liquid state machine (LSM) with
reinforcement learning (RL) to learn the continuous muscle
control of target reaching task [26]. Lang stated a multi-layer
Gaussian process (GP) model [27]. However, these models
still focus on planar or 3D single-joint movement prediction,
while the customized motor function assessment of stroke
requires the model to predict 3D movements of the multiple
joints of UL.

This paper proposes a data-driven method for the predic-
tion of 3D movements of multiple joints of UL during reach-
ing. Firstly, we established a simplified kinematic model and
extracted seven main joints of both the dominant and non-
dominant side of UL. Based on this model, a deep neural
network was developed and trained with the movement data
from one healthy participant. Finally, the performance of the



DNN model was analyzed for both sides.

II. METHODOLOGY
A. Simplified Skeletons Structure

Based on UL framework proposed by the International
Society of Biomechanics (ISB) [28], a simplified kinematic
model of human UL is defined. It contains seven segments
which are the trunk, right/left upper arm, right/left forearm,
right/left shoulder. These segments are connected by seven
main joints of UL. Only the connection at the elbow and 8"
thoracic vertebra are one degree of freedom joints, the others
are three degrees of freedom joints. Fig. 1(a) shows one side
of the kinematic model used in this study. It contains the
main joints on this side of UL. With this kinematic model,
an upper-limb marker model (a set of marker placements)
is presented in Fig.1(b). There are 19 reflective markers to
identify the kinematics required by the movement prediction
model.

Fig. 1. (a) UL skeleton model which is composed of 5 main joints on
one side (1. sacroiliac, 2. 8t" thoracic vertebra, 3. 7t cervical vertebra,
4. shoulder and 5. elbow). (b) The marker model of optical tracking: 0.
sacrum, 1. C7 (7th cervical vertebra), 2/3. right/left Shoulder, 4/5. right/left
upper arm, 6/7. right/left elbow, 8/9. right/left forearm, 10/11. right/left wrist
marker B, 12/13. right/left wrist marker A, 14/15. right/left anterior superior
iliac. 16/17. right/left posterior superior iliac, 18. 8t" thoracic vertebra.

B. Experiment Setup

This study was approved by the University of Leeds Ethics
Committee (Reference MEEC 18-005). The data collection
experiment involved one 25-year-old right hand dominant
male healthy participant after providing informed consent.
The participant was asked to complete 6 blocks tests for both
the dominant and non-dominant side; each block contains
20 free reaching tasks with a natural speed, making a total
of 120 times repetitions for each side movement. The 19
reflective markers were placed on the skin to identify the
segments and joints mentioned in the kinematic model. A
Universal Robot (UR) was employed to provide the targets
during the reaching tasks.

As shown in Fig. 2, the participant sat on the chair with
a seat-belt fastened to remain in his initial position and
restrain the compensatory movement. Firstly, the participant
was asked to freely move his arm in the 3-D space freely
but without trunk movement and shoulder displacement to
measure the range of motion of his arms. Then, a set of target
positions were determined based on the range of motion.

Some of the targets’ positions were set in the range of
motion, and some were not.
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Fig. 2. Basic experimental setup of the reaching test and data collection.

At the beginning of each task, a new target position was
given by UR, and an audio guider was employed to remind
the participant when to start the task. After completing each
task, the participant was given a short period to relax. During
every task, the Vicon Motion Capture system (Vicon Motion
Systems, Ltd., Oxford, England) with 8 Vero-cameras were
used to record all the markers’ trajectories, velocities, and
also acceleration along three-axes (x, y, z) with 250 Hz
sampling rate. After each block, there was a longer period
for participants to rest in case the muscle fatigue may impact
the participant’s performance.

C. Data Pre-processing

The entire reaching procedure has two stages, the forward
reaching stage and the recovery stage. Due to the scope of
this study, only the first stage data was extracted and used
to train our data-driven model. Thus, firstly, the velocity
profile of marker 10 (for dominant side) or marker 11
(for non-dominant side) during the reaching movement was
calculated. Based on this profile, the movement onset and
offset instances, ¢,, and ¢,y , of this stage were determined
both by 5% maximum velocity [29], [30].

In order to train the DNN to predict the movement trajec-
tory, the raw reaching data of each side was reconstructed
as a specific form. From the extracted data samples, the
target position and participant’s initial pose, including C7,
T8, and the test-side shoulder, elbow, and hand positions
of all reaching movement were also identified as the input
of the DNN model. For each data sample, the input is an
18 x 1 feature matrix (FM). Thus, the input FMs of all
data samples can be clustered into one batch and reshaped
as an 18 x 1 x N matrix as the input (X) of our model,
where N is the total number of data samples. Moreover, 100
frames of data were re-sampled from every forward reaching
stage. Each of these frames contains the 3D coordinates of
C7, T8, shoulder, elbow, and hand. Thus, the coordinates
of each frame can be described as a 5 x 3 matrix. For the
total 100 frames, a 5 x 300 coordinate matrix can be found.
The coordinates matrix of each data sample was reshaped to
be a 1500 x 1 matrix. As a result, we got a 1500 x 1 x IV
matrix as the expected outputs (Y) of our model by clustering



the coordinates matrices of all data samples, where N is
the number of the sample collected from each side reaching
movement. Finally, for each side movement, the input matrix
X and output matrix Y of this DNN model were determined.

D. DNN Architecture

The DNN model contains 1 input layer, 1 output layer, 3
fully-connected (FC) layers, and 1 dropout layer. The input
layer has 18 units to read the initial FM. The first hidden
layer is fully-connected with the input layer with 256 units
and ReLU activation function. After this, a dropout layer is
applied to avoid the over-fitting problem. The third layer is
also an FC layer but with 750 units activated by the Sigmoid
activation function. Then, the last FC layer has 750 units with
ReLU. Finally, an output layer is FC with the last FC layer
with 1500 output units. Fig. 3 shows the architecture of this
model. The DNN architecture and the hyper-parameters are
determined experimentally.
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Fig. 3.  The training process of the movement prediction deep neural

networks.

E. Model Training

The entire dataset was split into five folds, where four
of them were used for model training and one was retained
for testing. To avoid over-fitting, the four folds of samples
were further split as the training set (60%) and the validation
set (40%). The Mean Squared Error(MSE) was employed to
tune the DNN’s hyper-parameters during the training process.
The full batch learning strategy was applied to calculate the
gradient more accurately. Then, based on such a strategy,
the DNN was trained in 1000 epochs with the RMSprop
optimizer whose learning rate was set as 0.001, and the
dropout rate of the dropout layers was set as 0.2.

F. Model Evaluation

Due to the specific objective of this model, we evaluated
the performance of the model by calculating the similarity
between the prediction trajectory and the real trajectory of
all joints. The similarity is measured by the Discrete Frechet
distance (coupling distance) [31] which is defined as follow:

op(PQ) = min {n[flx] d(P(a(t)), Q(ﬁ(t)))}

where ¢, aﬁ[&“ffé_)%os'Mt]he start and end time instance,
respectively, N, M are the end position of trajectory P
and @, P(«(t)) and Q(B(t)) are two different trajectories,
a(t) and B(t) are the position description function of P, Q
respectively. Additionally, a(ts) = 0,a(te) = N,B(ts) =
0,8(t.) = M. For every joint, a smaller coupling distance
between the prediction and expectation means a higher
similarity.

III. RESULT AND DISCUSSION

The two columns of Fig.4 show the prediction and
expected trajectories of the dominant(left) and non-
dominant(right) sides, respectively. The prediction results
and the real trajectories show a high correlation. For the
dominant side, the prediction trajectories of hand and elbow
coincide the real trajectories, see Fig.4(a) and Fig.4(b). The
generated trajectories of shoulder, C7 and T8 were not that
well coinciding with the expected trajectories. Nevertheless,
the shapes of these prediction trajectories show high simi-
larity with the expected movement trajectories, see Fig.4(c),
Fig.4(d) and Fig.4(e). This indicates that the DNN predicts
the dominant side movement with promising high accuracy
with the hand’s coupling distance ranged from about 37 to
62 mm. For the non-dominant side movement, the prediction
results are well coincident with the real trajectories, see
Fig.4(f) and Fig.4(g). In contrast, the generation results of
shoulder, C7 and T8 are not very close to the expected
trajectories. The reason might be that the dominant side
is well-trained in daily life while the non-dominant side is
less used. It, however, still shows similar shapes between
prediction and real trajectories for non-dominant side, see
Fig.4(h), Fig.4(i) and Fig.4(j). Thus, the prediction results
of the non-dominant side are still highly similar to the real
movements. These results are consistent with Fig.5(a) and
Fig.5(b).

The coupling distances between the prediction movements
and real movements were calculated for the testing samples,
see Fig.5(a) and Fig.5(b). The blue bars show the average
coupling distance between the prediction and real trajectories
in the testing dataset. The error bars show the standard
deviation of these coupling distances. It is clear that the
predictions on the dominant side are stable than the non-
dominant side. The error rates of predictions of hand and
elbow are lower than that of shoulder, C7 and T8 for both
sides.

The average coupling distance between these predicted
trajectories and expected trajectories of testing samples are
calculated and compared with the average coupling distance
between each pair of the trajectories on the training dataset,
see Table.I and Table.Il. For the dominant side, the average
coupling distance of hand and elbow trajectories on the test
dataset is about 60 mm and 50 mm, respectively, which is
much lower than that on the training dataset. By contrast, the
coupling distance of shoulder, C7 and T8 are much closer
to the average coupling distance on the training dataset. It
indicates that the prediction of hand and elbow is actually
better than the prediction of shoulder, C7 and T8, even if
the average coupling distance of the latter is slightly lower
than the former. However, the average coupling distances
of shoulder, C7 and T8 are still much lower than those on
the training dataset. It illustrates that the prediction results
of dominant side movements have high similarity with the
real movement trajectories. For the non-dominant side, the
significant differences between the average coupling distance
on the testing and training dataset can be found for hand and
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Fig. 5. (a)The average coupling distance between prediction and real
trajectory of the test samples(dominant side) (b) The average coupling
distance between prediction and real trajectory of the test samples(non-
dominant side).

elbow. Thus, the prediction trajectories of hand and elbow
are very close to the real trajectories. The average coupling
distance of shoulder is much closer to the average coupling
distance on the training dataset but still lower. For C7 and
T8, these values are slightly higher than the average coupling
distance on the training dataset. Thus, the prediction of these
two joints still needs to be improved. For the non-dominant

TABLE I
The average coupling distance (Dominant side)
Joint name Hand Elbow  Shoulder C7 T8
Training (mm)  299.47  248.33 178.87 139.84  88.94
Testing (mm) 62.44 49.01 33.24 28.75 19.74

side, the coupling distances between the predicted movement
and expected movement are much higher than the dominant
side. It means that the precision of the DNN model for the
dominant side is higher than the non-dominant side. The
reason might be that the target settings of the dominant side
experiment are much more reasonable. As a result, the data
samples collected for the dominant side could indicate the
whole range of motion of the participant’s UL. As shown
in Table. I and Table. II, the average coupling distances for
the C7, T8 of the dominant side are much higher than the

non-dominant side, indicating the diversity of the dominant

movement dataset is higher than the non-dominant side. In a

word, the DNN shows a better performance on the dominant

side movement prediction compared to the non-dominant

side, while the non-dominant side prediction results still

could be improved by increasing the diversity of the dataset.
TABLE 1I

The average coupling distance (Non-dominant side)

Joint name Hand Elbow  Shoulder C7 T8
Training (mm) 282.42  229.93 116.71 28.12  15.18
Testing (mm) 49.49 41.85 35.02 33.47  25.17

The presented model provides a good solution for the
3D free reaching movement prediction of upper-limb joints
with promising accuracy. As far as we are aware, such a
model of trajectory prediction for upper-limb multiple joints’
3D reaching movements has not been described before. It
inspires a novel approach of motor function assessment based
on which the customized assessment technique for the stroke
patients could be developed. To achieve this, we plan to
do further testing in a larger sample of healthy subjects to
improve the generalization ability of this model.

IV. CONCLUSIONS AND FUTURE WORK

The DNN model shows potential in identifying goal-
oriented reaching test’s trajectory with hand’s coupling dis-
tance from about 37 to 62 mm for the dominant side and
36 to 91 mm for the non-dominant side. The generated
trajectories are relatively close to the real trajectories. For the
dominant side, the trajectories generated by the DNN coin-
cided well with the corresponding real trajectories, especially
for the hand and elbow, where the prediction trajectories and
expected trajectories were almost the same with the coupling
distance shown in Table. I. The prediction results of shoulder,
neck and trunk also showed high correlation (see Table. I)
with the real movements. For the non-dominant side, the
movement of hand and elbow generated by the DNN were



also highly representative of the participant’s movement.
This includes the movement of shoulder, neck, and trunk. In
summary, the presented DNN model gives a good prediction
(with short coupling distance, see Table. I and Table. II)
of 3D reaching movements for multiple joints of human
UL. In the future research, more healthy participants will
be involved to validate this model further. This prediction
model will also be applied to stroke survivors to estimate
the deviation from the normal expected movement pattern
and inform the rehabilitation assessment and training.
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