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Abstract. Factorisation (also known as “factor separation”)
is widely used in the analysis of numerical simulations. It al-
lows changes in properties of a system to be attributed to
changes in multiple variables associated with that system.
There are many possible factorisation methods; here we dis-
cuss three previously proposed factorisations that have been
applied in the field of climate modelling: the linear factorisa-
tion, the Stein and Alpert (1993) factorisation, and the Lunt
et al. (2012) factorisation. We show that, when more than
two variables are being considered, none of these three meth-
ods possess all four properties of “uniqueness”, “symmetry”,
“completeness”, and “purity”. Here, we extend each of these
factorisations so that they do possess these properties for any
number of variables, resulting in three factorisations – the
“linear-sum” factorisation, the “shared-interaction” factori-
sation, and the “scaled-residual” factorisation. We show that
the linear-sum factorisation and the shared-interaction fac-
torisation reduce to be identical in the case of four or fewer
variables, and we conjecture that this holds for any number
of variables. We present the results of the factorisations in
the context of three past studies that used the previously pro-
posed factorisations.

1 Introduction

Factorisation (also known as “factor separation”) consists of
attributing the total change of some property of a system to
multiple components, each component being associated with
a change to an internal variable of the system. Multiple tests
can be carried out to inform this factorisation, with each test
(or simulation in the case of numerical applications) consist-
ing of different combinations of variables. Factorisation ex-
periments are used in many disciplines, with early applica-
tions being in agricultural field experiments (Fisher, 1926),
and widespread application in industrial and engineering de-
sign (Box et al., 2005) and other fields such as medicine (e.g.
Smucker et al., 2019). The experiments that underpin such
analysis are called “factorial experiments”. In some cases,
in particular when there are a large number of variables, not
all combinations of all variables are tested (usually due to
practical or computational limitations), and some previous
work has focused on optimising the experimental design of
such “fractional factorial” experiments (e.g. Domagni et al.,
2021). Furthermore, each test often has an associated error or
uncertainty and may be carried out multiple times. Analysis
of such experimental designs is typically carried out using
analysis of variance (ANOVA), in which the total change is
represented as a model consisting of a series of “main ef-
fects”, one for each factor, and “interaction effects” between
the factors (Montgomery, 2013).
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In this paper, we focus on factorisation of numerical model
simulations of the climate system; in this case, the factorisa-
tion typically consists of attributing a fundamental property
of the climate system to multiple internal model parameters
and/or boundary conditions. In common with previously pro-
posed factorisation methods in this field (Stein and Alpert,
1993; Lunt et al., 2012), we limit our analysis to the case
where there are two possible values for each variable, and
where all combinations of all variables have been simulated;
such an experimental design is called a 2k (or two-level) full
factorial experiment (Montgomery, 2013). Also in common
with these studies, we assume that there is zero (or neg-
ligible) uncertainty in each simulation, which is consistent
with the deterministic nature of most climate models. Fac-
torisation has been applied extensively in the climate litera-
ture; some examples include Claussen et al. (2001), Hogrefe
et al. (2004), van den Heever et al. (2006), and Schmidt
et al. (2010); see also the collected studies in Alpert and
Sholokhman (2011). The factorisation method proposed by
Stein and Alpert (1993) has currently been cited more than
280 times according to Web of Science.

2 Previous factorisation methods

In order to introduce and discuss previous factorisation meth-
ods, we use an example case study from the field of climate
science. We turn to the Pliocene,∼ 3 million years ago (Hay-
wood et al., 2016, 2020; Dowsett et al., 2016), the most re-
cent time of prolonged natural global warmth relative to pre-
industrial times (Burke et al., 2018). The Pliocene oceans
were on average about 2.5–3.5 ◦C warmer than pre-industrial
oceans (McClymont et al., 2020); for this example, we would
like to know how much of this warmth was due to an increase
in atmospheric CO2 concentration and how much was due
to the reduction in extent and volume of large ice sheets. In
this case we would use a climate model to carry out simula-
tions with combinations of high and low CO2 concentrations,
and with two different configurations of ice sheets. In general
there are interactions between the variables so that the con-
tributions from them do not sum linearly.

It is worth at this stage introducing some notation. Here,
we restrict ourselves to the case where there are two possible
values for each variable, denoted “0” and “1”; having more
than two values increases the computational cost of a fac-
torisation and can reduce the number of factors that can be
assessed in a fixed computing budget. We name the funda-
mental property of the climate system that we are factorising
as T . If there are N variables, then the results of all possible
simulations can be uniquely identified by T followed by N
subscripts of either 0 or 1, with each subscript representing
the value of a variable, with the variables in some predefined
order. For our Pliocene example with two variables (N = 2),
we have CO2 (variable 1) and ice (variable 2) contributing
to a global mean temperature (T ); in this case there are 4

possible model simulations: a control (pre-industrial) simu-
lation with pre-industrial CO2 and pre-industrial ice (T00),
a second simulation with Pliocene CO2 and pre-industrial
ice (T10), a third simulation with pre-industrial CO2 and
Pliocene ice (T01), and a Pliocene simulation with Pliocene
CO2 and Pliocene ice (T11) (see Fig. 1a).

2.1 The linear factorisation

The simplest factorisation that can be carried out is a linear
one. For the Pliocene example with two factors, three sim-
ulations are carried out in which variables are changed con-
secutively, for example, T00, T10, and T11. The factorisation
of the total change, 1T , between contributions due to CO2
(1T1) and ice (1T2) would then be

1T1 = T10− T00,

1T2 = T11− T10. (1)

This factorisation is illustrated graphically in Fig. 1a.
However, an equally valid linear factorisation would be

1T1 = T11− T01,

1T2 = T01− T00, (2)

and in a non-linear system this would in general give a dif-
ferent answer to Eq. (1). In this sense, the linear factorisa-
tion method is not “unique”. However, it is “complete” in the
sense that the individual factors sum to the total change (1T )
exactly, i.e. 1T1+1T2 = T11− T00. Considering the linear
factorisation as a “path” starting at T00 and ending at T11, it
is also “symmetric”, in that if we instead started from T11 we
would retrieve the same numerical values for the two linear
factorisations (differing just by a minus sign for the numeri-
cal value of each factor). It is also “pure” in that it does not
need additional interaction terms (see Sect. 2.2 and 2.3) in
order to make it complete.

2.2 The Stein and Alpert (1993) factorisation

Stein and Alpert (1993) proposed an alternative factorisation
method, illustrated in Fig. 1b. In this, for the Pliocene case,
all four possible simulations are carried out, and the factori-
sation is performed relative to the pre-industrial case (T00)
for all variables. The non-linear terms are then all grouped
together in an interaction term (sometimes called the “syn-
ergy”), S:

1T1 = T10− T00,

1T2 = T01− T00,

S = T11− T10− T01+ T00. (3)

In contrast to the linear factorisation, the Stein and Alpert
(1993) factorisation is unique. It is also complete because
1T1+1T2+S = T11−T00 (in fact, S is defined such that the
factoristion is complete). As a result of the interaction term,
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Figure 1. Three different factorisation methods of temperature, T , for two variables (CO2 and ice sheets). (a) Linear factorisation, (b) Stein
and Alpert (1993) factorisation, (c) Lunt et al. (2012) factorisation. The temperature, T , can be considered as a surface in a third dimension
sitting above the two-dimensional plane of CO2 and ice sheets. In Eqs. (1), (3), and (4), 1T1 =1TCO2 and 1T2 =1Tice.

S, it is not “pure”. In addition, it is not symmetric; if we in-
stead performed the factorisation relative to T11, we would in
general obtain a different numerical value of the factorisation
(i.e. 1T1 = T01− T11).

2.3 The Lunt et al. (2012) factorisation

Lunt et al. (2012) proposed another factorisation, in which
the factorisation for a particular variable is defined as the
mean of the difference between each pair of simulations that
differ by just that variable. This is illustrated in Fig. 1c; the
factorisation of ice is represented by the mean of the two blue
lines, and the factorisation of CO2 is represented by the mean
of the two red lines:

1T1 =
1
2
{(T10− T00)+ (T11− T01)} ,

1T2 =
1
2
{(T01− T00)+ (T11− T10)} . (4)

The N = 2 factorisation in Eq. (4) is unique, complete,
symmetric, and pure. It is worth noting that Eq. (4) can be
interpreted in multiple ways – either (i) as described above,
the factorisation averages all the possible pairs of simulations
that differ solely by a change in that variable (i.e. for a partic-
ular variable it is the mean of either the horizontal or vertical
edges of the square in Fig. 1c); (ii) it is the average of the two
possible linear factorisations in Eqs. (1) and (2); (iii) it is the
average of the two possible Stein and Alpert (1993) factori-
sations obtained by swapping the Pliocene and pre-industrial
values (in which case the interaction terms cancel); or (iv)
it is the Stein and Alpert (1993) factorisation but with the
interaction term, S, shared equally between the two factors.

In extending to N = 4 variables, Lunt et al. (2012) as-
sumed that the first of these interpretations would still hold
for any number of variables. However, consider the N = 3
case illustrated in Fig. 2, in which we have added vegetation
as a third variable to contribute to Pliocene warming.

Figure 2. Simulations and linear factorisations in an N = 3 factori-
sation. Edges that represent changes in CO2 are in red, changes in
ice are in blue, and changes in vegetation are in green. The paths as-
sociated with all three possible linear factorisations are shown with
dotted lines.

Averaging the edges (interpretation (i) above) would result
in a factorisation:

1T ′1 =
1
4
{(T100− T000)+ (T110− T010)+ (T101− T001)

+(T111− T011)} ,

1T ′2 =
1
4
{(T010− T000)+ (T110− T100)+ (T011− T001)

+(T111− T101)} ,

1T ′3 =
1
4
{(T001− T000)+ (T101− T100)+ (T011− T010)

+(T111− T110)} . (5)

Although this is unique, symmetric, and pure, it is not
complete, because 1T ′1+1T ′2+1T ′3 6= T111− T000. This is
apparent by considering the T111 terms; the three lines in

https://doi.org/10.5194/gmd-14-4307-2021 Geosci. Model Dev., 14, 4307–4317, 2021



4310 D. J. Lunt et al.: Multi-variate factorisation

Eq. (5) each include a term equal to 1
4T111, which sum to

3
4T111, whereas they are required to sum to T111 for a com-
plete factorisation. As such, an additional interaction term, in
the sense of S in Eq. (3), would be required for the factori-
sation to be complete in N = 3 dimensions (in which case it
would no longer be pure). Note that the Lunt et al. (2012)
factorisation is complete for N = 2 without such an interac-
tion term, but this is a case specific to N = 2 as a result of
cancellation of terms in Eq. (4).

2.4 Summary of previous factorisations

As shown above, neither the linear nor the Stein and Alpert
(1993) nor the Lunt et al. (2012) factorisation methods pos-
sess all four properties of uniqueness, symmetry, purity, and
completeness in N > 2 dimensions. These properties are of-
ten desirable in a factorisation, because any factorisation that
lacks one of these properties is less easy to interpret. For ex-
ample, for the Pliocene example above, uniqueness means
that we can have a single answer to the question “why is
the Pliocene warmer than the pre-industrial period”. Sym-
metry means that we obtain the same answer to the question
“why is the Pliocene warmer than the pre-industrial period”
as to the question “why is the pre-industrial period colder
than the Pliocene”. Completeness means that the answer to
the question “how much warmer is the Pliocene than the pre-
industrial period” is equal to the sum of the individual fac-
tors (plus an interaction term if one exists). “Purity” means
that we can answer the question “why is the Pliocene warmer
than the pre-industrial period” by referring solely to contri-
butions from our fundamental factors CO2, ice, and vegeta-
tion, i.e. without including additional interaction terms that
are not attributed to a single factor. These interaction terms
are important and interesting, but there are cases where it can
be useful or essential to only include attributable terms in the
factorisation.

3 Extensions to the previous factorisations

Here we discuss possible extensions to the three previous fac-
torisations discussed above, that are unique, symmetric, pure,
and complete in N dimensions.

3.1 Extension to the linear factorisation: the
linear-sum factorisation

The linear-sum factorisation arises from a generalisation to
N > 2 dimensions of the second interpretation of Eq. (4);
i.e. it arises from averaging all the possible linear factorisa-
tions. This will result in a complete and pure factorisation
because each individual linear factorisation is itself complete
and pure. For three dimensions, this is illustrated by the dot-
ted lines in Fig. 2.

Each possible linear factorisation can be represented as
a non-returning “path” from the vertex T000 to the opposite

vertex T111, traversing edges along the way (dotted lines in
Fig. 2). When considering the sum of all possible paths, some
edges are traversed more than others. In general, those edges
near the initial or final vertices are traversed more times than
edges that are further away from these vertices. As such,
when we average the possible linear factorisations, different
edges (corresponding to different terms in the factorisation)
will have different weightings. This is in contrast to Eq. (5)
where each term (i.e. edge of the cube) has the same weight-
ing. For three dimensions, Fig. 2 shows that the six edges
adjacent to the initial and final vertex are traversed twice,
whereas the six other edges are traversed only once. There-
fore, the factorisation is

1T1 =
1
6
{2(T100− T000)+ (T110− T010)+ (T101− T001)

+2(T111− T011)} ,

1T2 =
1
6
{2(T010− T000)+ (T110− T100)+ (T011− T001)

+2(T111− T101)} ,

1T3 =
1
6
{2(T001− T000)+ (T101− T100)+ (T011− T010)

+2(T111− T110)} . (6)

This factorisation is complete (1T1+1T2+1T3 = T111−

T000), unique, symmetric, and pure.
To generalise to N dimensions, consider an N -

dimensional cube, which has a total of 2N vertices and
N × 2N−1 edges. There are 2N−1 edges in each dimension.
There are N ! paths from the initial vertex of the cube to the fi-
nal opposite vertex, each of which consists of a traverse along
N edges. Therefore, in each dimension there are a total of N !

edges traversed for all paths combined.
As for the three-dimensional case above, let us label each

vertex, V , of this N -dimensional cube as Va1···aN
, where each

ai is either 0 or 1. A value ai = 0 represents the first value for
variable i, and ai = 1 represents the second value for variable
i. Each vertex is also associated with a system value, denoted
Ta1···aN

(see Fig. 2 for the case N = 3).
All factorisations consist of partitioning the total change,

1T = T1···1− T0···0 between N factors. Each factor is asso-
ciated with a dimension, i, in the N -dimensional cube. The
factorisation for dimension i is 1Ti .

For the linear-sum factorisation, all paths that we consider
start at the origin vertex, 0· · ·0, and end at the opposite ver-
tex 1· · ·1, and they are made up of a series of edges. For all
edges on the N -dimensional cube, let us define X as the set
of all possible starting vertices, for a given N . For exam-
ple, for N = 3, X = {000,001,010,011,100,101,110}. Let
us define Xi as the set of all possible starting vertices for an
edge that is oriented in the ith dimension, i.e. all those ver-
tices that have a 0 in the ith subscript. For example, for N = 3
and i = 2, X2 = {000,001,100,101}. Let us define Yi as the
set of all possible ending vertices for an edge that is oriented
in the ith dimension, so that Yi is related to Xi by chang-
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ing the ith subscript of each element from 0 to 1. For exam-
ple, for N = 3 and i = 2, Y2 = {010,011,110,111}. Order
Xi and Yi so that their elements correspond. Then we write
X

j
i to indicate the j th element of Xi , and Y

j
i as indicating

the j th element of Yi . For example, for the X2 defined above,
X3

2 = 100.
The Lunt et al. (2012) factorisation averages along each

edge oriented in dimension i:

1T ′i =
1

2N−1

2N−1∑
j=1

(
T

Y
j
i

− T
X

j
i

)
. (7)

For the linear-sum factorisation, we instead carry out a
weighted average, with the weight for each edge in dimen-
sion i given by how many times it is traversed in all N ! paths.
Consider all the paths that traverse an edge which starts at a
vertex defined by k subscripts of “1” and N − k subscripts
of “0”. There are k! possible paths to the start of this edge,
and (N − k− 1)! paths from the end of this edge to the final
corner (defined by N subscripts of “1”). Therefore, there are
k! × (N − k− 1)! paths that use this edge. As such, we can
write the linear-sum factorisation as

1Ti =
1
N !

2N−1∑
j=1

{
k
j
i !
(
N − 1− k

j
i

)
!
(
T

Y
j
i

− T
X

j
i

)}
, (8)

where k
j
i is the number of subscripts of “1” in X

j
i .

For example, for N = 4 and i = 1, we have N ! = 24
edges traversed in this dimension, and 2N−1

= 8 edges.
X1 = {0000,0001,0010,0100,0011,0101,0110,0111}, and
Y1 = {1000,1001,1010,1100,1011,1101,1110,1111}. For
those edges with a starting subscript with k = 0 subscripts
of “1” (i.e. 0000), the weighting k! (N − 1− k)! = 0! (4−
1− 0)! = 6. For those edges with a starting subscript with
k = 1 subscripts of “1” (i.e. 0001,0010,0100), the weight-
ing k! (N − 1− k)! = 1! (4− 1− 1)! = 2. For those edges
with a starting subscript with k = 2 subscripts of “1” (i.e.
0011,0101,0110), the weighting k! (N−1−k)! = 2! (4−1−
2)! = 2. For those edges with a starting subscript with k = 3
subscripts of “1” (i.e. 0111), the weighting k! (N −1− k)! =

3! (4− 1− 3)! = 6. Therefore, for N = 4 and i = 1, we have

1T1 =
1

24
{6(T1000− T0000)+ 2(T1001− T0001)

+2(T1010− T0010)+ 2(T1100− T0100)+

2(T1011− T0011)+ 2(T1101− T0101)

+2(T1110− T0110)+ 6(T1111− T0111)} . (9)

3.2 Extension to the Stein and Alpert (1993)
factorisation: the shared-interactions factorisation

As stated in Sect. 2.3, the Lunt et al. (2012) factorisation
for N = 2 can be interpreted as being identical to the Stein
and Alpert (1993) factorisation but with the interaction term

shared between the two factors (thereby removing the inter-
action term, resulting in a pure factorisation). Here we ex-
plore what happens when this interpretation is generalised to
N > 2 dimensions. For consistency, we use the same notation
as Stein and Alpert (1993). In their notation, f̂1 represents
the difference between a simulation in which only factor i is
modified with a simulation in which no factors are modified,
and f̂ijk··· represents interaction terms between the different
factors. For example, for our original N = 2 example illus-
trated in Fig. 1 and given in Eq. (3), 1T1 ≡ f̂1, 1T2 ≡ f̂2,
and S ≡ f̂12.

For our Pliocene example for N = 3, f̂12 is the interaction
between factors 1 and 2 (CO2 and ice), f̂13 is the interaction
between factors 1 and 3 (CO2 and vegetation), f̂23 is the in-
teraction between factors 2 and 3 (ice and vegetation), and
f̂123 is the interaction between all three factors. In this case,
Stein and Alpert (1993) give that

1T = f̂1+ f̂2+ f̂3+ f̂12+ f̂13+ f̂23+ f̂123,

f̂1 = T100− T000,

f̂2 = T010− T000,

f̂3 = T001− T000,

f̂12 = T110− (T100+ T010)+ T000,

f̂13 = T101− (T100+ T001)+ T000,

f̂23 = T011− (T010+ T001)+ T000,

f̂123 = T111− (T110+ T101+ T011)

+ (T100+ T010+ T001)− T000. (10)

As discussed in Sect. 2.2, this factorisation is not sym-
metric or unique (e.g. we could define f̂1 = T011− T111) or
pure, but it is complete if we include all the interaction terms,
which are not attributed to any particular factor. By extend-
ing the interpretation of the shared interaction term in two di-
mensions discussed in Sect. 2.3, we can choose to share the
interaction terms equally between their contributing factors,
an approach applied by Schmidt et al. (2010) (although they
carried out a fractional factorisation in which not all com-
binations of all variables were included). This results in a
factorisation that is complete and pure (because we are just
re-partitioning the interaction terms). It turns out that it is
also symmetric. For example for CO2,

1T1 = f̂1+
1
2
f̂12+

1
2
f̂13+

1
3
f̂123. (11)

This factorisation for N = 3 is represented visually in
Fig. 3a. Equations (10) and (11) give that, for CO2,

1T1 =
1
6
{2(T100− T000)+ (T110− T010)

+(T101− T001)+ 2(T111− T011)} . (12)

This is identical to the equivalent term in Eq. (6), indi-
cating that the shared-interaction and linear-sum interpreta-
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Figure 3. (a) Visual representation of the shared-interaction factorisation for N = 3, as given by Eq. (10). The straight dotted lines represent
the sharing of the interactions according to Eq. (11). (b) Visual representation of the shared-interaction factorisation for N = 4. The straight
dotted lines represent the sharing of the interactions according to Eq. (13).

tions are identical for N = 3, and that therefore for N = 3 the
shared-interaction factorisation is unique, symmetric, pure,
and complete.

Stein and Alpert (1993) give the generalisation of their fac-
torisation to N factors (their Eqs. 11–16). For N = 4, the in-
teraction terms are shared so that, for example for CO2,

1T1 = f̂1+
1
2
(f̂12+ f̂13+ f̂14)

+
1
3
(f̂123+ f̂124+ f̂134)+

1
4
f̂1234. (13)

This factorisation for N = 4 is represented visually in
Fig. 3b. Again, for N = 4 this is identical to the linear-sum
interpretation (Eq. 9). We conjecture that for any N these two
interpretations will give identical results.

3.3 Extension to the Lunt et al. (2012) factorisation:
the scaled-residual factorisation

In the scaled-residual factorisation, the Lunt et al. (2012)
factorisation is modified so that it is complete (and remains
pure). This is achieved by taking the total residual term re-
quired for completeness and sharing this between the factors
in proportion to the magnitude of their Lunt et al. (2012) fac-
torisation. For the N = 3 example of the Pliocene, we have
that the residual term, R, is defined such that

1T ′1+1T ′2+1T ′3+R = T111− T000, (14)

where the 1T ′i values are defined in Eq. (5). We then share
this residual proportionally across the three factors, such that

1T1 =1T ′1+
R|1T ′1|

|1T ′1| + |1T ′2| + |1T ′3|
,

1T2 =1T ′2+
R|1T ′2|

|1T ′1| + |1T ′2| + |1T ′3|
,

1T3 =1T ′3+
R|1T ′3|

|1T ′1| + |1T ′2| + |1T ′3|
. (15)

In N dimensions, this is

1Ti =1T ′i +
R|1T ′i |∑N
i=1|1T ′i |

, (16)

where 1T ′i is defined in Eq. (7), and

R = T1···1− T0···0−

N∑
i=1

1T ′i . (17)

For example, for N = 4 and i = 1 we have

1T ′1 =
1
8
{(T1000− T0000)+ (T1001− T0001)

+(T1010− T0010)+ (T1100− T0100)+

(T1011− T0011)+ (T1101− T0101)

+(T1110− T0110)+ (T1111− T0111)} ,

R = T1111− T0000− (1T ′1+1T ′2+1T ′3+1T ′4),

1T1 =1T ′1+
R|1T ′1|

|1T ′1| + |1T ′2| + |1T ′3| + |1T ′4|
, (18)

and the same applies to 1T ′2, 1T ′3, and 1T ′4.
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4 Implications for previous published work

Here we discuss three examples of papers in which the Lunt
et al. (2012) factorisation has been used. For each, we show
how using our factorisations would affect the results in that
paper.

4.1 Implications for Lunt et al. (2012)

Lunt et al. (2012) presented a factorisation of global mean
temperature change in the Pliocene into four variables: CO2,
orography, ice, and vegetation. As described in Sect. 2.3, in
extending to N = 4 variables, the Lunt et al. (2012) factori-
sation is unique, symmetric, and pure, but not complete. Us-
ing their notation, their factorisation for the CO2 variable is
(equivalent to Eq. 9 in their paper)

dT ′CO2
=

1
8

{
(Tc− T )+ (Toc− To)+ (Tic− Ti)+ (Tvc− Tv)

+ (Tocv − Tov)+ (Toci − Toi)+ (Tciv − Tiv)

+ (Tociv − Toiv)
}
. (19)

The equivalent linear-sum/shared-interaction factorisation
is given by Eq. (9), which in the notation of Lunt et al. (2012)
is

dTCO2 =
1

24

{
6(Tc− T )+ 2(Toc− To)+ 2(Tic− Ti)

+ 2(Tvc− Tv)+ 2(Tocv − Tov)+ 2(Toci − Toi)

+ 2(Tciv − Tiv)+ 6(Tociv − Toiv)
}
, (20)

and similarly for the other three variables.
The equivalent scaled-residual factorisation is given by

Eq. (18), which in the notation of Lunt et al. (2012) is

R = Tociv − T − (dT ′CO2
+ dT ′orog + dT ′ice+ dT ′veg),

dTCO2 = dT ′CO2
+

R|dT ′CO2
|

|dT ′CO2
| + |dT ′orog| + |dT ′ice| + |dT ′veg

, (21)

where dT ′CO2
is given in Eq. (19), and the same applies to the

other three variables.
In Lunt et al. (2012), although Eq. (19) (Eq. 9 in their

paper) was presented, the four variables were actually fac-
torised by two N = 2 factorisations for all the analysis in
that paper (Eq. 13 in their paper). Because for N = 2 dimen-
sions the Lunt et al. (2012), linear-sum/shared-interaction,
and scaled-residual factorisations are identical, the actual re-
sults related to Pliocene temperature change presented in
Lunt et al. (2012) would not be affected by using our pro-
posed new factorisations.

4.2 Implications for Haywood et al. (2016)

Haywood et al. (2016), in the context of the experimental
design for model simulations of the Pliocene in the PlioMIP

project, presented a three-variable factorisation of Pliocene
warming into components due to CO2, topography, and ice,
based on the Lunt et al. (2012) factorisation (presented in
their Sect. 3.2).

An alternative, using the linear-sum/shared-interaction
factorisation that is complete, is obtained from Eq. (6), which
in their notation is, for CO2 (and analogously for the other
two components),

dTCO2 =
1
6

{
2(E400

−E280)+ (Eo400
−Eo280)

+(Ei400
−Ei280)+ 2(Eoi400

−Eoi280)
}
. (22)

Another alternative, using the scaled-residual factorisation
that is complete, is obtained from Eqs. (14) and (15), which
in their notation is, for CO2 (and analogously for the other
two components),

dT ′CO2
=

1
4

{
(E400

−E280)+ (Eo400
−Eo280)

+(Ei400
−Ei280)+ (Eoi400

−Eoi280)
}
,

R = Eoi400
−E280

− (dT ′CO2
+ dT ′orog + dT ′ice),

dTCO2 = dT ′CO2
+

R|dT ′CO2
|

|dT ′CO2
| + |dT ′orog| + |dT ′ice|

. (23)

4.3 Implications for Chandan and Peltier (2018)

Chandan and Peltier (2018) applied the N = 3 factorisation
of Lunt et al. (2012) (Eq. 5), as also given by Haywood et al.
(2016) (first line of Eq. 23), to their suite of Pliocene simula-
tions. The factorisation was applied to each grid cell in the
model, resulting in 192× 288= 55 296 factorisations over
the globe. The two-dimensional mid-Pliocene minus pre-
industrial temperature anomaly, reproduced here in Fig. 4a,
was factorised into contributions originating from a change
in CO2, orography and ice sheets. Figure 4b–d show the re-
sults of the original factorisation and are identical to those
presented in Fig. 7 of Chandan and Peltier (2018). Fig-
ure 4f–h show the factorisation of the same anomaly us-
ing the linear-sum/shared-interaction method (Eq. 22), while
Fig. 4j–m show the results of employing the scaled-residual
method (Eq. 23). The first thing to note is that the three fac-
torisations all have very similar results; visually it is difficult
to tell them apart on a regional scale, and they result in global
means for each factor that differ by less than 10 %. This is be-
cause, in this example, the non-linearities (i.e. the interaction
terms) are relatively small. As such, the main conclusions of
the Chandan and Peltier (2018) study are robust to a change
in factorisation methodology.

The bottom row in Fig. 4 shows, for the case of each
method, the residual difference between the sum of all the
factors and the total change (i.e. the interaction/synergy
terms in the sense of Stein and Alpert, 1993). The Lunt
et al. (2012) method yields spatially coherent structures in the
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Figure 4. Comparison of various factorisation methods. (a) The mid-Pliocene minus pre-industrial anomaly (T111− T000) modelled by
Chandan and Peltier (2017). (b–m) The top three rows present factorisations of the total anomaly into contributions arising from changes
to CO2 (upper, b, f, j), orography (middle, c, g, k), and ice sheets (lower, d, h, l), while the bottom row shows the residual required for
completeness (e, i, m). Note that the residual term, R, for panel (e) is given by Eq. (14) and is equal to T111−T000−(1T ′CO2

+1T ′orog+1T ′ice).
The first column (b, c, d, e) shows results using the methodology of Lunt et al. (2012) and is identical to results reported in Fig. 7 of Chandan
and Peltier (2018). The second column (f, g, h, i) shows results from the linear-sum/shared-interaction factorisation (Eq. 6), and the third
column (j, k, l, m) shows results of the scaled-residual factorisation (Eq. 15). The values at the top-right of each panel give the global mean,
in units of ◦C.
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Table 1. Properties of the factorisations discussed in this paper.

Factorisation Dimension Complete Unique Pure Symmetric

Linear

2 X X X
3 X X X
4 X X X
N X X X

Stein and Alpert (1993)

2 X X
3 X X
4 X X
N X X

Lunt et al. (2012)

2 X X X X
3 X X X
4 X X X
N X X X

Linear-sum/shared-interaction

2 X X X X
3 X X X X
4 X X X X
N X X X X∗

Scaled-residual

2 X X X X
3 X X X X
4 X X X X
N X X X X

∗ For these properties, we show that the properties hold for the linear-sum factorisation for N factors and conjecture that
the linear-sum and shared-interaction factorisations are identical.

residual whose magnitude can be comparable to those of the
factorised components, whereas the residuals for the other
two methods are zero by definition, because they are pure (in
the figures they are very close to zero – essentially numerical
noise due to round-off error). The non-linearity (indicated by
the magnitude of the residual term associated with the Lunt
et al. (2012) factorisation) is greatest in the North Atlantic
(Fig. 4d) and is likely associated with changes in the sea-ice
margin that are non-linearly influenced by all three boundary
conditions (CO2, orography, and ice sheets).

We also explored using a version of the scaled-residual
factorisation in which the residual terms were shared, not by
the absolute magnitude of the individual factors, but by their
relative values, so that Eq. (15) became

1T1 =1T ′1+
R1T ′1

1T ′1+1T ′2+1T ′3
, (24)

and similarly for the other variables. However, at a small
number of grid cells this produced highly divergent results,
when the denominator in Eq. (24) became very close to zero
(see Supplement Fig. S1).

5 Conclusions

In this paper, we have reviewed three previously proposed
factorisations and extended them to produce factorisations

that are unique, symmetric, pure, and complete. We have
presented them for three dimensions (i.e. three factors) and
generalised to N dimensions. The first factorisation, “linear-
sum” (Eq. 8), averages all the possible linear factorisa-
tions on the N -dimensional cube. The second factorisa-
tion, “shared-interaction”, shares the interaction terms be-
tween each corresponding factor equally. The linear-sum and
shared-interaction factorisations are shown to reduce to be
identical for N ≤ 4, and we conjecture that this holds for any
N . The third factorisation, “scaled-residual” (Eq. 16), takes
the residual term required for completeness in the Lunt et al.
(2012) factorisation and shares it between the factors, in pro-
portion to their magnitude. We have presented results of these
extended factorisations in the context of previous work car-
ried out by Lunt et al. (2012), Haywood et al. (2016), and
Chandan and Peltier (2018) in the context of Pliocene climate
change. We recommend the use of the linear-sum/shared-
interaction factorisation or the scaled-residual factorisation
for cases where the properties of uniqueness, symmetry, pu-
rity, and completeness are desirable. In some cases, the inter-
action terms may, of course, be of great interest, and in such
cases a non-pure factorisation (e.g. Stein and Alpert, 1993)
can be very informative. Also, it is worth noting that if the
interaction terms are zero, i.e. we have a completely linear
system, then all the factorisation methods reduce to be iden-
tical. The properties of all the factorisations discussed in this
paper are shown in Table 1 for 2,3,4, and N dimensions.
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The methods that we present here will be of particular use
in the analysis of systems with multiple variables and are
applicable beyond solely climate science.

Code and data availability. The model fields underlying Fig. 4
are available from the University of Toronto Dataverse in NetCDF
format: https://doi.org/10.5683/SP2/QGK5B0 (Chandan, 2020).
The code used to calculate the factorisations illustrated in Fig. 4
is available in the Supplement, in both Python and NCL. They
are also available on GitHub at https://github.com/danlunt1976/
factor_separation/blob/master/factor_separation.ncl (last access:
2 July 2021) and at https://github.com/danlunt1976/factor_
separation/blob/master/factorize_gmd.py (last access: 2 July 2021).
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