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Abstract. The physics of the tokamak pedestal is still not fully understood, for example there

is no fully predictive model for the pedestal height and width. However, the pedestal is key

in determining the fusion power for a given scenario. If we can improve our understanding

of reactor relevant pedestals we will improve our confidence in designing potential fusion

power plants. Work has been carried out as part of a collaboration on reactor relevant pedestal

physics. We report some of the results in detail here and review some of the wider work which

will be reported in full elsewhere. First, we attempt to use a gyrokinetic-based calculation

to eliminate the pedestal top density as a model input for Europed/EPED pedestal predictions.

We assume power balance at the top of the pedestal, that is, the heat flux crossing the separatrix

must be equal to the heat source at the top of the pedestal and investigate the consequences

of this assumption. Unfortunately, this method was not successful. Second, we investigate

the effects of non flux surface density on the bootstrap current. Third, type I ELMs will not

be tolerable for a reactor relevant regime due to the damage that they are expected to cause

to plasma facing components. In recent years various methods of running tokamak plasmas

without large ELMs have been developed. These include small and no ELM regimes, the use

of resonant magnetic perturbations and the use of vertical kicks. We discuss the quiescent

H-mode here. Finally we give a summary and directions for future work.
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1. Introduction

1.1. Background

The pedestal, which is associated with a local formation of a transport barrier (in energy

and particles), plays an important role in determining the confinement in tokamak H-mode

plasmas. Indeed the increased confinement associated with the steep pedestal gradients

strongly affect the global plasma performance, and the expected fusion power associated with

a given scenario. However, the steep pressure gradients in this transport barrier also lead

to edge localized modes (ELMs) [1]. There is a reasonable understanding of the pedestal

in type I ELM regimes being limited by ideal MHD peeling-ballooning modes. The EPED

model can predict pedestal height and width of type I ELMing plasmas on current machines

given various assumptions [2], however, type I ELMs are known to damage plasma facing

components and so future large tokamaks must operate with small or no ELMs.

Many of our models of the pedestal are based to some degree on experimental

understanding from current machines. It is well known that reactor class machines will often

operate in different regions of parameter space than current machines. However, reactor class

machines are currently being designed and we need to improve our confidence in potential

plasma scenarios. The fusion power for a given plasma scenario is very sensitive to the

pedestal height which itself is determined by physics processes we are yet to fully understand

in reactor regimes. If we can improve our basic physics understanding of the pedestal we will

be able to improve our confidence in extrapolations to reactor scale machines.

1.2. Overview

Our collaboration aimed to understand various aspects of the physics of reactor relevant

pedestals or at least to understand the gaps in our knowledge. In Section 2 we review recent

work, especially that carried out as part of our collaboration, which was directed towards

understanding pedestal physics relevant to tokamak reactors. In this paper we detail results in

three areas: pedestal prediction, the effect of density not being constant on a flux surface, and

ELM free scenarios. These are all relevant to designing reactor relevant pedestals. In Section

3 we describe the work we have done on improving pedestal prediction models. In particular,

making the EUROPED model [3] more general and building our understanding of the physics

that underlies the model. To improve our confidence in the extraoplation to the reactor scale

we need to base pedestal prediction on fundamental physics.

We need to more fully understand various issues that are important for current machines

but which we have not fully investigated. The variation of density over a flux surface is in this

category. In Section 4 we investigate how a non flux surface density, i.e. density is not constant

on a flux surface, may change the bootstrap current. Finally, it is well known that ELMs will

not be tolerable in reactor scale devices so we must investigate ELM free scenarios such as

QH-mode. In Section 5 we discuss the improvements we have made in our understanding of

the QH mode. There is still much to understand and we will give our thoughts on where future

efforts could be directed in Section 6.
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2. Recent work on Reactor Relevant Pedestals

The pedestal continues to be a rich source of interesting physics. We still do not have a

solid understanding of all of the underlying processes. It is important that we develop our

understanding of the pedestal not just because of the interesting physics but also because to

design and build future tokamak fusion reactors we must be able to predict pedestals to give

confidence that potential designs will operate at the required performanace. The EPED and

EUROPED models have had some success in this area but they have underlying assumptions

that to one degree or another are based on experimental observations. One such assumption

is the pedestal gradient being limited by the
√

βpol. This is an assumption about the transport

and the instabilities that are assumed to produce that transport. We report work in Section 3

that seeks to improve our approach in this area.

A further important part of the physics of the pedestal is the bootstrap current that

is generated by the steep pressure gradient in the pedestal region. This current can drive

instabilities such as the ELM. There are various ways of calculating the bootstrap current that

involve either direct solution of the neoclassical equations [4, 5] or a fitting of the numerical

solution over various parameter ranges [6], [7]. Members of our collaboration have used the

global full f gyrokinetic code ELMFIRE [8] first to benchmark the Hager and Sauter models

[9]. It was found that these two formulae agree with ELMFIRE in the regime where there is no

Shafranov Shift and low collisionality, which is relevant for ELMFIRE. Further, ELMFIRE

has been used to assess the effect of poloidal variation of density on the bootstrap current [9].

Initial results indicate that there is an effect which should be investigated further. Analytic

calculations of the effect of poloidal variation of density have been carried out and this

analysis is presented in Section 4. We have also investigated the effect of poloidal variation

of density on MHD stability using the JOREK code [10]. The initial results showed that

the growth rate of low toroidal mode number instabilities were affected but further work is

required to confirm this.

Integrating all of the pedestal models together and running them could be quite time

consuming if the pedestal prediction is part of a design loop for a reactor design or to design a

shot or indeed to interpret experimental results. Members of our collaboration have therefore

been investigating the use of neural networks. These neural networks can be trained either on

experimental data or on the results of modelling and the resulting neural network can then be

used to produce fast pedestal predictions. This has been completed for JET using PENN [11].

Our collaboration investigated some of the small and no ELM regimes that will have to

be considered for a reactor. The quiescent H-mode (QH-mode) is one such ELM free regime

that has been investigated in DIII-D [12], JET [13] and at AUG [14]. The plasma still has a

pedestal and so has reactor relevant performance but it develops an edge harmonic oscillation

(EHO) which is thought to be a saturated MHD mode. This is thought to produce sufficient

density transport such that the peeling ballooning (PB) mode boundary is not reached and

so the ELM is avoided. Experimental evidence so far suggests that an edge rotation shear is

required for the QH-mode to appear. Our collaboration has investigated the QH-mode both

numerically and analytically. We have used the VMEC code to find saturated nonlinear MHD
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states [15]. These can be found in two regimes. One where the safety factor profile (q profile)

is just below a rational at the plasma edge. This is the classical external kink mode. The

other is a pressure driven mode that requires a flattening of the q profile at the edge. This

flattening is provided by the bootstrap current which is driven by the pressure gradient in the

pedestal. The ballooning stability of these two saturated instabilities is discussed in Section 5.

The QH-mode in JET has also been investigated and in particular the effect of collisionality

[16]. A model for Grassy ELMs has been investigated using a gyrofluid model implemented

in the BOUT++ framework. Initial tests of the model have been completed but further work

will be required to test it in the appropriate regime. An analytic model of type III ELMs has

been developed based on a resistive MHD model and this will be discussed elsewhere [17].

3. Pedestal Prediction

In this Section we seek to improve the well known EPED model by making it more first

principles physics based. This model has various assumptions underlying it. In particular, one

input is the density at the pedestal top. We aim here to use a gyrokinetic-based calculation to

eliminate this input. This idea is to assume power balance at the top of the pedestal, that is,

the heat flux crossing the separatrix must be equal to the heat source at the top of the pedestal.

The workflow is as follows: use Europed with a range of ne,ped as input to get a corresponding

range of Te,ped; use a gyrokinetic-based calculation to test each pair of profiles and calculate

the heat flux Qped and; then the pedestal prediction is the ne,Te profile pair with Qped equal to

the experimental heat flux.

A key part is to calculate the heat flux. There are a number of options available

which include: full, multi-scale gyrokinetic simulations including neoclassical terms; a

trio of gyrokinetic simulations: nonlinear global ion-scale, nonlinear local electron-scale,

neoclassical; quasilinear model with linear gyrokinetic simulations; quasilinear model with

eigensolver e.g. QuaLiKiz [18] and finally; fast Neural network-type software trained on any

of the above.

Work is underway to develop a sophisticated quasilinear model in the pedestal. At the

time of writing a comprehensive quasilinear model that can be used reliably and routinely has

not been published. To match the heat flux we must therefore run fully non-linear simulations

that capture the spatial and temporal scales of the turbulence believed to be the primary source

of heat flux through the pedestal. However, the computational expense of such simulations is

prohibitive. We therefore opt for a comparison to linear spectra instead. As we shall see, it is

unlikely that further information would be obtained from nonlinear simulations.

In order to test the heat flux matching concept we examine JET-ILW pulse #84793 which

lies along the peeling-ballooning stability boundary, Fig. 1 [19], and therefore satisfies one

of the key EPED model assumptions. We start by assuming slab-ETG modes are the primary

driver of turbulent heat flux, and neglect neoclassical heat flux, which can easily be added

to the model later. It is noted that other modes may also drive the heat flux but we restrict

ourselves to the slab-ETG in this work as calculating the full microinstability drive heat flux

would be computationally too demanding at the time of writing and the consideration of the
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Figure 1. Linear MHD pedestal stability analysis for the deuterium plasma #84793, Ip =

1.4MA,Bt = 1.7T . The numbers indicate the most unstable mode number at given edge current

and pressure gradient.

pure slab-ETG mode will provide insight to the full problem. We use the GENE gyrokinetic

code [20, 21] in its local model of operation. The resolution requirements for this pulse are

known from previous analysis. Before continuing, it is first necessary to test the validity of

the EPED model and discuss some of the features and extensions of Europed that are required

in order to fulfil our objective.

3.1. Europed results

3.1.1. Details of the EPED model and Europed package The two principle assumptions

of the EPED1 model are: a) an ideal-MHD constraint - the pedestal is limited by Peeling-

Ballooning modes, and b) a transport constraint - the width of the pressure pedestal scales

with the square-root of the pedestal poloidal beta according to: ∆p = Cβ
1/2

p,ped; where C is a

model constant. The two main inputs to the EPED model are the global beta βN or βp, and

the value of density at the pedestal top ne,ped . In addition, the standard EPED1 model has the

following fixed assumptions: ∆p = ∆Te
= ∆ne

; the density and temperature profiles are aligned

to the same pedestal position; the profiles are well described by a mtanh fit; and Ti = Te. Note

these assumptions produce the density profiles and so encapsulate the particle flux.

EPED1 also has three notable variable assumptions which are usually device specific:

the transport constraint model constant C = 0.076; Te,sep = 100eV for JET-ILW [22, 23] and;
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ne,sep = f ×ne,ped where f is a constant - we often use f = 0.25.

The value of the model constant C can be obtained from an empirical fit to experimental

data. The value of Te,sep is device specific but in the case of JET-ILW, this is borne out

well by edge modelling. The relationship ne,sep/ne,ped = 1/4 is less well-founded, but the

pressure profile prediction from EPED1 appears to be relatively insensitive to this. As we

shall see later, the choice of ne,sep may have important consequences for the stability of slab-

like microinstabilities in the pedestal. In practice, the density peaking factor, related to the

core density, must also be specified. However, pedestal predictions are mostly insensitive to

this so we omit it from discussion here. The Europed package consists of the EPED series of

models along with some additional functionality. Chief among these are several models for

the self-consistent heating in the core which allow for an arbitrary core profile shape; and two

models which allow us to specify ne,ped [24]. These models are not the subject of this work

and we will be running Europed in the beta constrained mode of operation with ne,ped specified

according to our model. There are two extensions of the EPED model within Europed that

are critical for the heat flux matching concept discussed in the following. The first is the

ability to specify a relative shift, δn−T , between the density and temperature pedestals, an

important feature of JET-ILW pedestals [23]. The second is the possibility of specifying the

ratio ∆Te
/∆ne

, which was implemented as part of this project.

3.1.2. Europed runs - the effect of ∆Te
6= ∆ne

and δn−T 6= 0 It is well known that an important

parameter related to the linear stability of slab-ETG modes is the ratio of the normalised

density and temperature scale lengths ηe given by:

ηe =
dln(Te)

dln(ne)
=

ne∇Te

Te∇ne
=

1/LTe

1/Lne

=
Lne

LTe

. (1)

Previous work by F. Jenko and others has shown that strong linear slab-ETG drive

requires ηe & 1 [20]. The standard EPED assumptions that the temperature and density

pedestal positions, henceforth referred to as ΨN,Te and ΨN,ne respectively, are aligned, and

the pedestal widths ∆Te
and ∆ne

are equal, mean that ηe ≈ 1 across the pedestal region by

design. We explore the consequences of a finite relative shift δn−T = ΨN,ne −ΨN,Te 6= 0 and

∆Te
6=∆ne

on Europed predictions for JET-ILW pulse #84793. Figure 2 shows the experimental

profiles in dotted black along with the results of four Europed runs. Dashed lines correspond

to δn−T = 0 whereas solid lines correspond to δn−T = 0.8%. Blue lines denote the default

EPED assumption ∆Te
/∆ne

= 1 while red lines show the results in which ∆Te
/∆ne

= 1.76

(chosen to match experiment), made possible by newly implemented functionality. Note that

a corollary of the latter input is that ∆ne
< ∆pe

< ∆Te
[25]

In all four cases, the predicted ∆p varied between ∼ 0.030 and 0.034, i.e. ∆p is

relatively insensitive to these modifications between the relationship between the density and

temperature pedestals. We also note in passing that the Europed predicted ∆p is approximately

equal to the experimental ∆ne
, a feature that will be explored in future work with a larger

experimental dataset. In these four runs we set ne,sep = 0.33ne,ped , which, in the case
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Figure 2. Density (left) and electron temperature (right) as a function of normalised ΨN in the

pedestal region for JET-ILW pulse #84793. An mtanh fit to raw HRTS data is shown in black.

Blue traces show Europed predictions with ∆Te/∆ne = 1.0 (the default EPED assumption),

while red traces show Europed predictions with ∆Te/∆ne = 1.76 (the experimental value).

Dashed traces show Europed predictions with δn−T = 0 (the default EPED assumption), while

red traces show Europed predictions with δn−T = 0.8% (the experimental value). In both

panels, the vertical black line denotes ΨN ≈ 0.956, which is the location of the temperature

pedestal top for the widest pedestal prediction. Europed data points with ΨN . 0.956 are

therefore outside the range of accurate Europed predictions.

of a finite relative shift and equal density and temperature pedestal widths, matches the

experiment almost exactly. This is because of the aforementioned, and perhaps coincidental,

correspondence between the Europed predicted ∆ne
and the experimental ∆p. The solid traces

show that, in general, δn−T influences pedestal profile prediction more than having ∆Te
6= ∆ne

.

The solid red line has the most physical effects in that δn−T and ∆Te
/∆ne

have been chosen to

match experiment. This prediction therefore gives the closest match in Te,ped to experiment,

but under-predicts the width of both the density and temperature pedestals. Note that this

prediction required the input of two known quantities from experiment. Figure 3 displays:

ηe, the normalised density gradient, and the normalised temperature gradient corresponding

to the profiles shown in Fig. 2. The colour scheme and line-styles are the same as Fig. 2. The

dashed blue line, corresponding to the standard EPED1 prediction, shows identical density

and temperature gradients in the steep gradient region, along with a flat ηe ∼ 1 trace. Looking

at the solid blue line we see that the finite relative shift has flattened the density profile in
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Figure 3. ηe (left), normalised density gradient (middle), and normalised temperature gradient

(right) as a function of normalised ΨN in the pedestal region for JET-ILW pulse #84793.

Experimental data is shown in black. Blue traces show Europed predictions with ∆Te/∆ne = 1.0

(the default EPED assumption), while red traces show Europed predictions with ∆Te/∆ne =

1.76 (the experimental value). Dashed traces show Europed predictions with δn−T = 0 (the

default EPED assumption), while red traces show Europed predictions with δn−T = 0.8% (the

experimental value). In both panels, the vertical black line denotes ΨN ≈ 0.956, which is the

location of the temperature pedestal top for the widest pedestal prediction. Europed data points

with ΨN . 0.956 are therefore outside the range of accurate Europed predictions.

the pedestal region (ΨN ≤ 1) which results in a larger, and non-constant value of ηe more

in line with experiment. In the dashed red line, with no relative shift but unequal pedestal

widths, the ∆ne
prediction has decreased which has realised in a normalised density gradient

much larger than the experimental value. This has the effect of lowering ηe. However, as

∆Te
/∆ne

> 1 means ∆Te
> ∆p, the normalised temperature gradient is less than that of the

standard EPED1 prediction (dashed blue trace). These two effects, larger density gradient

and smaller temperature gradient, compensate for each other and lead to an ηe profile which

closely resembles the experimental profile. When we add a relative shift to this, shown in the

solid red trace, the flat density profile increases ηe to larger values than experiment. Thus,

despite having less physical effects, the dashed red trace seems to be a better predictor of

ηe than the solid red trace. This is a coincidence, the normalised density gradient profile is

clearly not in line with experiment.

3.2. Proof-of-principle test

We now proceed to test our heat flux matching idea for this pulse using our proxy method of

comparing the linear spectra. Recall that the aim is to eliminate ne,ped as an input variable

in the EPED model. Using the experimental values of δn−T = 0.8% and ∆Te
/∆ne

= 1.76, we

perform a three point scan of ne,ped centred on the experimental value using: 3.0×1019m−3,

3.5× 1019m−3, and 4.0× 1019m−3. We again set ne,sep = 0.33ne,ped. We have modified

Europed so that once the pedestal profile has been predicted, the code runs an instance

of HELENA followed by CHEASE to produce an eqdsk equilibrium file for use in GENE
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Figure 4. Density (left) and electron temperature (right) as a function of normalised ΨN in

the pedestal region for JET-ILW pulse #84793. An mtanh fit to raw HRTS data is shown in

black. Blue, orange, and green traces show Europed pedestal predictions using 3.0×1019m−3,

3.5×1019m−3, and 4.0×1019m−3 respectively. In both panels, the vertical black line denotes

ΨN ≈ 0.956, which is the location of the temperature pedestal top for the widest pedestal

prediction. Europed data points with ΨN . 0.956 are therefore outside the range of accurate

Europed predictions.

simulation for the prediction. The bootstrap current is also calculated in this HELENA run.

The profiles that result from this scan are shown in Fig. 4 and a plot of ηe and the normalised

gradients are shown in Fig. 5. We immediately see from the left panel of Fig. 4 that that

∆ne
turns out to be approximately the same in all three cases. This is because the Europed

∆p prediction is approximately the same, and the two widths are related to each other by

a constant scale factor. A consequence of this is that βp,ped ∝ ∆2
p is approximately constant,

which in turn means that as ne,ped increases, Te,ped decreases in a predictable fashion according

to ∝ 1/ne,ped . As expected, the scan point closest to the experimental value (orange) predicts

pedestals that are closest experiment (black).

Looking at the centre panel of Fig. 5, we see that the normalised density gradients are

very-nearly the same for the three scan-points (they are minutely different due to differences in

ne,sep). This is because the ∆ne
prediction is the same for all three runs and the un-normalised

density gradient scales with the input ne,ped . We also see that the normalised temperature

gradients are of similar value across a wide range of the pedestal. The values of 1/LTe
do

change towards the separatrix, but this is a consequence of fixing Te,sep = 100eV for differing
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Figure 5. ηe (left), normalised density gradient (middle), and normalised temperature gradient

(right) as a function of normalised ΨN in the pedestal region for JET-ILW pulse #84793.

Experimental data is shown in black. Blue, orange, and green traces show Europed predictions

using 3.0× 1019m−3, 3.5× 1019m−3, and 4.0× 1019m−3 respectively. In both panels, the

vertical black line denotes ΨN ≈ 0.956, which is the location of the temperature pedestal top

for the widest pedestal prediction. Europed data points with ΨN . 0.956 are therefore outside

the range of accurate Europed predictions.

values of Te,ped . The combined effect of these two things is that the ηe profiles in the pedestal

region (to the right of the vertical black line) are indistinguishable.

Given the similarity of the ηe, a/Lne
, and a/LTe

profiles, we expect no substantial difference

in the linear spectra and nonlinear flux for the three scanpoints. There may be some difference

in the GENE spectra for simulations at ΨN ∼ 0.98 if the excited modes are driven primarily

by changes in a/LTe
. As discussed, the changes in the a/LTe

profiles ΨN ∼ 0.98 are a

consequence of fixing Te,sep = 100eV. For the moment, we assume this change in the a/LTe

profile has physical meaning and proceed to run a trio of linear local GENE simulations at

ρt = 0.98 (in the vicinity of ΨN ∼ 0.98). The resolution requirements for these simulations is

known from previous work, and we restrict our attention to modes at the outboard mid-plane,

that is θ0 = 0. Figure 6 shows the linear normalised growth rate γ as a function of the binormal

wavenumber ky. The red trace shows the equivalent calculation using the experimental profiles

for this pulse. The modes present in the experimental profiles have a smaller peak γ than

the spectra produced using the Europed predicted profiles predictions. More importantly,

the growth rate spectra for the three Europed profile predictions are extremely similar. We

emphasise that even these small variations in the spectra are almost entirely a consequence

of fixing Te,sep = 100eV. Past experience suggests that the nonlinear counterparts of linear

simulations with extremely similar spectra will also predict extremely similar heat fluxes. We

conclude that for this pulse, and this range of scanpoints, it is not possible to use gyrokinetic

simulations as a means of eliminating ne,ped as an input variable.
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Figure 6. Growth rates as a function of binormal wavenumber ky of slab-ETG modes

from linear local GENE simulations at ρt = 0.98 for JET-ILW pulse #84793. The red

trace corresponds to the experimental profiles at the same flux surface. Blue, orange, and

green traces show Europed pedestal predictions using 3.0× 1019m−3, 3.5× 1019m−3, and

4.0× 1019m−3 respectively.

3.3. Discussion

In this work we have tested the feasibility of using a gyrokinetic-based calculation as a means

of eliminating the pedestal top density ne,ped as an input into the EPED/Europed model. Us-

ing a JET-ILW pulse lying along the Peeling-Ballooning boundary as our test case, we found

that in order for the Europed predictions to approach experiment the effects of relative shift

δn−T = ΨN,ne −ΨN,Te and non-equal temperature and density pedestal widths had to be in-

cluded. We found that this was necessary in order to predict Te and ne profiles that have ηe > 1

and are hence susceptible to slab-ETG instabilities, which have been found to be important

[26, 27]. In addition, we upgraded Europed to allow for ∆Te
/∆ne

6= 1 and to produce equi-

librium files for use in gyrokinetic simulations. Note that these features allow us to predict

profiles susceptible to slab-ITG instabilities as the EPED assumption Ti = Te results in ηi =ηe.

These additional physical effects aside, we found that for a range of ne,ped around the

experimental value, the Europed predicted profiles were too similar for a linear gyrokinetic

calculation to accurately distinguish between input profiles. We fully expect this result to

carry over to a nonlinear calculation of heat flux, meaning it is currently not possible to use

gyrokinetic simulations as a means of eliminating ne,ped as an input variable. The source of

this limitation may lie within the EPED transport constraint ∆p =Cβ
1/2

p,ped
. This relationship

means that for a given shot, the predicted ∆p and βp,ped will always be similar over a wide

range of inputs. In evidence, a scan of δn−T from 0.4% to 1.1% (not shown here) resulted in a

variation in the predicted ∆p changes by only ∼ 9%. In the results discussed in previous sec-

tions, changing ∆Te
/∆ne

changed ∆p by ∼ 4% for δn−T = 0 and by ∼ 13% for δn−T = 0.8%.

Most importantly, for the cursory ne,ped scan discussed above, ∆p changed by only ∼ 5%.

These small variations in ∆2
p ∝ βp,ped ∝ Te,ped mean that for an ne,ped scan, the normalised

density and temperature gradients will always be similar, which in turn means the value of
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ηe = ηi will always be similar.

In conclusion, using a gyrokinetic based calculation to eliminate ne,ped as an

EPED/Europed input is not feasible until the transport assumption ∆ = Cβ
1/2

p,ped
is improved

[28]. Such an improvement must be the primary focus of future work. This conclusion is very

likely to hold even if other microinstabilities are considered. Finally, we note that if ne,ped

were known in advance, a gyrokinetic-based heat flux matching calculation may prove useful

for eliminating the ratio ∆Te
/∆ne

and/or δn−T as model inputs, as Fig. 3 shows the driving

parameters are much more sensitive to this.

4. Effect of a Poloidal Variation of the Plasma Density on the Bootstrap Current

The use of gas puffing and the result of recycling might be expected to introduce a poloidal

variation of the plasma density on a flux surface [29] and it is of interest to investigate the

impact this has on the bootstrap current [30] in a plasma H-mode edge pedestal, as it could

affect the peeling-ballooning mode stability [31] believed to play a role in the triggering of

ELMs in tokamak H-mode. Furthermore, toroidal rotation can also generate a variation in

density, with it peaking on the outboard side [32].

We first describe the kinetic equation for a large aspect ratio tokamak geometry with a

zero order (in a Larmor radius expansion) plasma distribution function that is a Maxwellian

having a poloidally varying density, a model that we use to illustrate the calculation. Then we

calculate the increment in the bootstrap current, relative to the standard result, that the poloidal

variation in the density produces. However, it may well be that in reality the distribution

differs from a simple Maxwellian and additional corrections to our simple model for the

bootstrap current might emerge, but these would involve a much more complex calculation.

A related paper [33] avoided this difficulty by introducing a source (as a δ -function in

poloidal angle) in the first order equation, rather than in lowest order as our Maxwellian

ansatz implies. We compare the effect of sinusoidal variations in two situations: one up-down

symmetric (case (a)), the other symmetric in the inboard-outboard direction (case (b)). In

practice, however, edge modelling codes show the variation due to neutral sources crossing

the separatrix may be better represented by a more poloidally localised function [34, 35]. We

therefore also consider case (c) where we represent this situation by a δ -function (although

assuming the localisation exceeds the electron Larmor radius in order to justify the use of

the electron drift kinetic equation in calculating the bootstrap current). We show this solution

also serves as a Green’s function for an arbitrary poloidal variation in density. Furthermore,

it allows one to extend the calculation to describe a general, axisymmetric toroidal geometry

although we limit this to toroidal equilibria with a small number of trapped particles to justify

the use of the pitch-angle scattering collision operator - and also to up-down symmetric ones,

for simplicity. The electron and ion temperatures will also respond to a density variation

on a flux surface through rapid electron thermal transport along field lines and pressure

equalisation on a flux surface on the sound time scale to produce temperature perturbations

that equalises the plasma pressure on the surface. We consider the impact of this, as well as
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that of the density variation, on the incremental bootstrap current. A numerical investigation

of this problem has been carried out using ELMFIRE [9]. Previous work on understanding

the effect of a poloidal density variation on transport was carried out by Solano and Hazeltine

[36]. This work is in the plateau regime rather than the banana regime and the structure of the

source is different.

4.1. The model

The distribution function for species j , f j , satisfies a kinetic equation

∂ f j

∂ t
+

Iv‖

BR2q

∂ f j

∂θ
− vd j ·∇ f j +C j( f j)+S(r,θ ,v) = 0 (2)

where spatial derivatives are at constant energy. In first order we introduce a source

S(r,θ ,v) to ensure a steady state if the drift terms lead to a net flux across a flux surface

Here we use velocity space co-ordinates: v, λ = v2
⊥/Bv2, σ = v‖/|v‖|, v‖ =

σv
√

(1−λB) so that
∫

d3v = πΣσ
∫

Bdλ
∫

v2dv/|
√

(1−λB), vd j = (v‖/B)× ∇(v‖/ωc j).

Specialising to a large aspect ratio tokamak geometry and a steady state situation for simplicity

(we indicate how to generalise our results to an arbitrary axisymmetric toroidal geometry

later), this can be written [37]

v‖

Rq

∂ f j

∂θ
−

m j

e j
v‖

(

∂

∂ r

(v‖

B

) ∂ f j

r∂θ
−

∂

r∂θ

(v‖

B

) ∂ f j

∂ r

)

+C j( f j)+S(r,θ ,v)= 0,(3)

with B = B0(1 − r
R

cosθ), so that ∂
∂ r
(v‖/B) = −cosθ

R
and ∂

∂θ
(v‖/B) = sinθ

R
. We expand

f j = FM j + f j1, where FM j(v,r,θ) is the Maxwellian and consider the incremental changes

to f j due to the effects of the perturbations, δn j(r,θ) and δTj(r,θ) in FM j.

To illustrate the calculational formalism, we just consider the effect of a density

perturbation: δn j(r,θ) = n0 j(r)γ j(r)h j(θ), and assume a Lorentz collision model for the

electrons [38]:

Ce( fe) = vei

v‖

v2
the

∂

∂λ

(

v‖λ

B

∂

∂λ
fe

)

+ vei

v‖u‖i

v2
the

FMe, (4)

with u‖i the mean ion parallel flow. Since we ignore temperature gradients for the moment,

the ion distribution is merely a displaced Maxwellian. To capture the effect of the δTj(r,θ), it

will be necessary to include an ion flow, like-particle collisions and the effects of the energy

dependence of the collision frequencies [38]; including the former is discussed below and the

others later. For the electron density variation, we take

ne(r,θ) = n0(r)(1+ γ(r)h(θ)). (5)

Since we consider the pedestal region, we can also take ∂ne

∂ r
≫ 1

r
∂ne

∂θ
. With these assumptions

the effect of the ion flow in the collision operator is merely to combine with the radial

derivative of the electron density, which is taken at constant energy in eqn. (3), replacing it by

the combination ∂ne

∂ r
+ Ti

Te

∂ni

∂ r
, (where we take the ion charge as Z = 1, so that quasi-neutrality

requires ne = ni . The radial derivatives are of the actual densities as the electrostatic potential
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terms cancel between the ion and electron contributions (as in standard neoclassical theory).

Thus, we have

v‖

Rq

∂ fe

∂θ
−

me

e
v‖FMe

∂

∂ r
(δn(r,θ))

∂

r∂θ

(v‖

B

)

+Ce( fe)+S(r,θ ,v) = 0 (6)

with δn = (1+Ti/Te)δne. We take the source to be poloidally symmetric, in which case

S(r,v) =−
me

e
FMe〈

∂

∂ r
(δn(r,θ))

∂

r∂θ

(v‖

B

)

〉/〈
1

v‖
〉. (7)

4.2. The Incremental Bootstrap Current, δ jbs.

The lowest order solution f 0 is:

f 0 =
meRq

e
FMe





∫ θ

θ0

dθ
∂

∂ r
(δn(r,θ))

∂

r∂θ

(v‖

B

)

−
∫ θ

θ0

dθ

v‖
〈

∂

∂ r
(δn(r,θ))

∂

r∂θ

(v‖

B

)

〉
1

〈 1
v‖
〉



+g(8)

where ∂
∂θ g = 0 and the end-point contribution from θ0 to the integral (θ0 is to be chosen

judiciously to simplify calculations) can be absorbed into g. The function g is then determined

from a solubility condition arising in first order in the collisional expansion:

〈
∂

∂λ

(

v‖λ

B

∂

∂λ
f 0

)

〉= 0, (9)

where the operator 〈Aσ〉 =
∮

dθAσ/2π for passing particles and 〈A〉 = 1
2
Σσ
∫ θ2

θ1
dθAσ/2π ,

with v‖(θ1) = v‖(θ2) = 0, for trapped particles. This determines
∂g
∂λ

and hence
∂ f 0

∂λ
. Now the

incremental bootstrap current is given by

δ jbs =−e

∮

dθ

2π

∫

d3vv‖ f 0 = eπ〈Σσ

∫

Bdλ

∫

v‖v3dvλ∂ f 0/∂λ/|v‖|〉. (10)

We then obtain

δ jbs =−
3

8

(Te +Ti)

Bθ

d

dr
(n0(r)γ(r))I, (11)

where I = (I1 + I2) with

I1 = 2v〈
∫

BdλBλ

[

∫ θ

θ0

dθh(θ)
∂

∂θ

(

1

v‖

)

−
1

〈|v‖|〉
〈|v‖|

∫ θ

θ0

dθh(θ)
∂

∂θ

(

1

|v‖|

)

〉

]

〉,(12)

I2 =−2v〈

∫

BdλB
1

〈1/|v‖|〉

[

∫ θ

θ0

dθ
1

|v‖|
−

1

〈|v‖|〉
〈|v‖|

∫ θ

θ0

dθ
1

|v‖|
〉

]

〈h(θ)
∂

∂θ

(

1

|v‖|

)

〉〉,(13)

for passing particles, defined to be independent of v. For trapped particles, I = I3 with

I3 = 2v〈

∫

BdλB



〈

∫ θ

θ0

dθh(θ)
∂

∂θ

(

1

|v‖|

)

−

∫ θ

θ0

dθ
1

|v‖|

1

〈 1
|v‖|

〉
〉〈h(θ)

∂

∂θ

(

1

|v‖|

)

〉



〉.(14)

We can show that I2 vanishes automatically, independently of h(θ). To evaluate the integral I

over λ , we introduce

k2 = 2
r

R

λB0

1−λB0(1−
r
R
)
; v‖ = vu(θ); u =

√

1− k2 sin2(θ/2) (15)
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Although h(θ) can be quite a general periodic function of θ , we first consider the two explicit

cases: case (a), h(θ) = cosθ which is up-down symmetric; and case (b), h(θ) = sinθ , which

is in-out symmetric.

4.3. Case (a) h(θ) = cosθ

We obtain

I =
4

π

√

2r

R

∫ 1

0

k2

(

2r
R
+ k2

(

1− r
R

))5/2

[(

1−
2

k2

)

K(k)−
2

k2
E(k)−

π2

2E(k)

(

1−
2

k2

)]

+
4

π

√

2r

R

∫ ∞

0

k2

(

2r
R
+ k2

(

1− r
R

))5/2

1

k

[(

3−
4

k2

)

K(
1

k
)−2E

(

1

k

)]

(16)

where K and E are the complete elliptic integrals of the first and second kind, respectively

[39]. One can take the limit r/R → 0 and still obtain a convergent integral. While the

first term requires numerical integration, yielding −0.086
√

(2r/R), the second can again be

calculated analytically using properties of the complete elliptic integrals [40], which yields

−20/9π
√

(2r/R) =−0.707
√

(2r/R). Consequently

δ jbs = 0.42

√

r

R
qR

(Te+Ti)

B0

d

dr
(n0(r)γ(r)) . (17)

4.4. Case (b): h(θ) = sinθ

Here Î1 vanishes exactly. The trapped region contribution also vanishes. Consequently, jbs = 0

for case (b). Because Î1 vanishes for h(θ) = sinθ , a corollary is that for a sinusoidal variation

of h(θ) centred on an arbitrary angle, θ = β ,

δ jbs = 2.54

√

r

R
qR

(Te+Ti)

B0

d

dr
(n0(r)γ(r))cosβ . (18)

4.5. Case (c): h(θ) = δ (θ −α).

In this case we set h(θ) = δ (θ −α), where α is the poloidal angle of the neutral influx, to

calculate the incremental bootstrap current. We can calculate the integral I1 in eqn. (12) for

passing particles without difficulty. (The term arising from the azimuthal drift gives rise to

derivatives of the δ -function, but these lie under double integrals and do not pose a problem,

yielding a contribution which is in fact smaller than the one arising from the radial drift in

the steep pedestal gradient.) However, employing the previous method is problematic for

the trapped particle contribution. This is because the deeply trapped particles only respond

to a limited range of pitch angles, depending on the angle α . The end-point contribution

in the integration by parts in λ that arises from the maximum value of λ , λMax, which

is no longer at λ = 1
BMin

, does not vanish – it is, in fact, singular, and is cancelled by a

corresponding contribution from the integral term. It is therefore more convenient to calculate

the contribution to the bootstrap current from trapped particles directly, as a straightforward

integration over λ , rather than employing the integration by parts. This approach requires the
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distribution function g in the trapped region, which is a constant, and was not needed for the

integration by parts method. In fact, g = 0 in the trapped region, to satisfy continuity at λMax.

Of course, this needs to be accompanied by a boundary contribution evaluated at the trapped-

passing boundary, to compensate for the integration by parts over passing particles which it is

still convenient to retain. This boundary term dominates the integral one by a factor 1/2ε , as

can be readily understood physically: while the trapped particle pitch angle integration over

k introduces a factor (2ε)1/2, another from the trapped particle current, which involves the

‘banana’ width, ∼ (2ε)1/2a , and the typical trapped particle velocity v‖ ∼ (2ε)1/2vthe as a

third. Thus, this contribution can be neglected, leaving to a simpler calculation of just the

trapped passing boundary term, Ib(α) . We define

G(α,k) =
[

E −E
(α

2
,k
)

/2
]

, 0 < α < π , (19)

G(α,k) = E
(

π −
α

2
,k
)

/2, π < α < 2, (20)

with E(α/2,k) the incomplete elliptic integral of the second kind [39]. Thus

I1(α) =

√

2r

R

∫ 1

0
dk

sinα
(

1− k2 sin2
(

α
2

))3/2

[

1−
α

2π
−

G(α,k)

E(k)

]

(21)

I1(α) is invariant under the substitution α → 2π −α , so is symmetric about α = π (i.e., it is

up-down symmetric, as is to be expected). There is also a contribution from the trapped region

and, as discussed above, this is dominated by the contribution from the flux-surface-averaged,

trapped particle current density evaluated at the trapped - passing boundary. Calculating this

from f 0 as given by eqn. (8) with g = 0, requires the evaluation of

Ib(α)= 4

√

2r

R
〈

∫ θ

θ0

dθδ (θ −α)
∂

∂θ
(u1/2)−

1

〈u−1/2〉

∫ θ

θ0

dθu−1/2〈δ (θ −α)
∂

∂θ
(u1/2)〉〉|k=1(22)

on the range −π < α < π . this can be evaluated to yield

Îb(α) =−
1

2π

√

2r

R

[

θ2 −α −
(θ2 +θ1)

2

]

=
1

π

√

2r

R
sin(α/2)α, (23)

since θ2 = −θ1; this contribution is also symmetric about α = π , in the range 0 < α < 2π .

Therefore, combining the result of a numerical evaluation of eqn. (21) and the analytic

expression (23):

I(α) =

√

2r

R





∫ 1

0
dk

(1− α
2π − G(α,k)

E(k) )sinα

(1− k2 sin2(α/2))3/2
+F(α)



 , (24)

F(α)=
1

π
α sin(

α

2
), 0<α < π , F(α)=

1

π
(2π−α)sin(

α

2
), π <α < 2π .(25)

We notice that this remains finite at α = π , the bounce point for just trapped particles, although

the distribution function f 0 vanishes there; this is because the magnetic drift is singular there

and the integration over θ with h(θ) = δ (θ −α) remains finite in the limit α → π . (This can

be seen more clearly by taking this limit after the integration the integration.)
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(radians) 

Figure 7. The variation with localisation angle, α , of the integral I(α) = I(α)/
√

2r/R for the

δ -function, case (c). The dashed line is the dominant trapped particle contribution

A plot of I(α) = I(α)/
√

(2r/R) against α is shown in Fig. 7. I(α) vanishes at α = 0

and 2π , peaking at α = π; in between it spans the range 0 < I(α) <
√

(2r/R). Finally, we

have

δ jbs =
3

8

(Te +Ti)

Bθ

d

dr
(n0(r)γ(r))I(α). (26)

Although this result is itself significant, the bootstrap current response to the δ -function

source also provides a Green’s function for a general poloidal density perturbation specified

by γ(r)h(θ).

4.6. Green’s Function

A consequence of modifying the approach to calculating the bootstrap current that we adopted

in the case of the δ -function source was that calculating the trapped particle contribution could

be achieved more simply for a general h(θ) by just considering the trapped particle current

density at the trapped-passing boundary, rather than requiring an integration over trapped

values of k. Thus, both passing and trapped contributions involve integrations over the full

range of θ : 0 < θ < 2π , rather than the limited range sampled by the trapped particles.

This facilitates the demonstration of a Green’s function approach based on our solution for

the δ -function case, since, as we shall see, the integrations over α and δ that are involved,

commute, so one can readily change the orders of these integrations. Thus, we see that the

δ -function source provides a Green’s function for a poloidal density perturbation specified by

h(θ) = δ (θ −α), where we utilise the replacement

h(θ)→
∮

dαh(α) (27)

in eqns. (12), (13) and (14).



Towards reactor relevant tokamak pedestals 18

4.7. General axisymmetric, toroidal geometry.

We introduce an axisymmetric toroidal co-ordinate system, ψ,θ ,φ , where ψ is the poloidal

flux, θ is a poloidal angle such that the magnetic field lines are straight, and φ is the toroidal

angle. The magnetic field is given by

B = I(ψ)∇φ +∇φ ×∇ψ, (28)

We now define the operator 〈〉 by 〈A〉 =
∮

R2dθA/
∮

R2dθ . Because of these relations, the

solution for f 0, given in eqn. (8), still pertains, provided we use the new definition for 〈〉,

as does the solution for g. From the current continuity equation ∇. j = 0, it follows that

the appropriate object to consider in general geometry is the flux-surface average quantity

〈δ jbs/B〉 and we obtain

〈
δ jbs

B
〉=−

3

8

I(Te+Ti)

qBMax

d

dψ
(n0(ψ)γ(ψ,θ))I, (29)

We follow a parallel set of steps to those used for the large aspect case to obtain a passing

contribution

I(α) = 2vBMax
∂

∂α

(

1

|v‖|

[

∫ 2π
α dθR2

∮

dθR2
−

∫ 2π
α dθR2|v‖|
∮

dθR2|v‖|

])

. (30)

For the trapped contribution we find

I(α) = F(α) = 4
BMax

v

∂

∂α
(
v‖

B
)|λ=BMax

[

∫ 2π
α dθR2

∮

dθR2

]

,0 < α < π , (31)

I(α) = F(2π −α), π < α < 2π . (32)

In the following section we need to extend the collision model to include electron-electron

collisions, but this is only completely justified in the limit of a small number of trapped

particles, so the general equilibria discussed above are then constrained to satisfy this

condition.

4.8. The effect of a poloidal variation in the temperature

If the perturbed pressure is to vanish on a flux surface as required by MHD equilibrium, then

δ p = (Te +Ti)δn+n0(δTe +δTi) = 0 (33)

assuming quasi-neutrality. We also assume equipartition between ion and electron

temperatures,

Ti = Te, δTe = δTi ≡ δT, so δT =−
δn

n0
Te. (34)

Alternatively, rapid parallel electron thermal transport removes the electron temperature

perturbation requiring the ion temperature perturbation to facilitate pressure balance, when

δTe = 0; δTi =−(Te +Ti)
δn

n0
(35)
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If the plasma density source is sufficient to prevent equalisation of pressure a more complex

equilibrium must be considered. The analogous results to those for the large aspect ratio

case will be equivalent to those for the usual calculation of the bootstrap current driven by

equilibrium gradients across constant density flux surfaces with a Lorentz collision operator,

apart from the effect of the geometrical factor I. The same situation will be true if we consider

the effects of δT with like-particle collisions and energy-dependent collision frequencies,

when we can exploit the corresponding results given in Ref. [38]. These calculations give

jbs =−1.46(
r

R
)1/2 n0Te

Bθ

[(

1+
Ti

Te

)

1

n0

dne

dr
+

1

Te

dTe

dr
−

0.17

Te

dTi

dr

]

(36)

for the Lorentz model and

jbs =−1.46(
r

R
)1/2 n0Te

Bθ

[

1.66

(

1+
Ti

Te

)

1

n0

dne

dr
+

0.47

Te

dTe

dr
−

0.29

Te

dTi

dr

]

(37)

when electron-electron collisions and the energy dependence of the collisions are included.

Now the effective ‘density gradient’ term in the case of the Lorentz collision model must be

multiplied by a factor 1.66 and expressions (33) and (34) or (35) used for the temperature

gradient contributions. Thus, in the first case for example, we obtain

δ jbs = 2.16
n0Te

Bθ

(

1+1.22
Ti

Te

)

1

n0

dn0γ

dr
I (38)

where we note I = −
√

(2r/R)c , with the constant c depending on the function h(θ)

describing the poloidal variation of the plasma density.

4.9. Conclusions

We have investigated the effect of poloidal variations of the plasma density, δn = γh(θ)n0,

on the bootstrap current in a large aspect ratio tokamak equilibrium, such as might arise

in gas-puffing experiments, recycling neutral influxes or as a result of toroidal rotation.

The calculation has assumed that the lowest order distribution function is Maxwellian for

simplicity, although it may be distorted from a simple Maxwellian in reality. A more realistic

distribution function might produce additional effects on the bootstrap current, but it would be

much more difficult to obtain this function and calculate the consequences. The effect of the

poloidal temperature variations resulting from this density variation has also been addressed,

as has the generalisation to an arbitrary axisymmetric toroidal geometry. Three explicit cases

for the density variation have been considered: case (a) which is sinusoidal and up-down

symmetric and is also relevant to the effect of toroidal rotation; case (b) which is sinusoidal

and symmetric in the inboard-outboard direction (the effect of sinusoidal symmetry about any

other poloidal angle could be deduced simply from decomposing it into a combination of the

cases (a) and (b)), and case (c) which is a very localised poloidal variation, approximated by

a δ -function in poloidal angle. In case (b) we find the incremental current vanishes exactly,

while for case (c) the results naturally depend on the poloidal angle α , describing the location

of the neutral influx. We find that the largest effect in this case does occur for localisations

near the inboard side of the plasma column. Whether and by how much the bootstrap current
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increases or decreases depends on both the magnitude and sign of an integral, I, specific to

each poloidal density variation, h(θ), and the amplitude and sign γ , of this variation.

The result for case (c) also serves as a Green’s function for calculating the bootstrap

current response to an arbitrary poloidal distribution for the density perturbation numerically

by a simple quadrature; it also clearly demonstrates why the current vanishes in case (b), or

indeed in any up-down symmetric case. Furthermore, it facilitates the treatment of a general,

axisymmetric toroidal geometry, albeit requiring there to be only a small number of trapped

particles to justify the use of the simple pitch-angle collision operator. We also limit ourselves

to up-down symmetric equilibria to simplify the calculation. Although we employed a Lorentz

collision operator, appropriate to electron-ion collisions, we demonstrate that our results can

be readily adapted to allow for the effects of electron-electron collisions, energy-dependent

collisions and the poloidally varying electron and ion temperature perturbations, δTe,i(θ), that

would ensure pressure remains constant on a flux surface (and restores the usual poloidally

varying Pfirsch-Schluter current as a consequence).

One can expect this poloidal density variation to be linked to the location of any neutral

influx or, perhaps, gas-puffing. Thus, an up-down symmetric case may be related to case (a),

while symmetric vertical locations near upper and lower X-points may relate to case (b). Case

(c) appears to provide a good representation of the results of gas-puffing experiments

The differences in the magnitude and sign of the incremental bootstrap current caused by

the nature of the poloidal density variations may have implications for Type 1 ELM’s and their

control, since their onset is believed to be triggered when peeling-ballooning modes, whose

stability is affected by edge plasma currents, become unstable.

The impact of this contribution to the bootstrap current can be significant if the gradient

d(γn0)/dr can compete with the equilibriumgradient, dn0/dr. Data on pedestal widths from

MAST CDN discharges with inboard gas-puffing suggests that there might be up to 50% effect

[?]. The effect of, say, a 50% modulation in the poloidal variation of the bootstrap current on

the stability of low-n modes could be investigated with JOREK.

5. QH mode

5.1. VMEC equilibrium modelling

Candidate modes which may explain the QH-mode are investigated using the VMEC [41]

non-axisymmetric equilibrium code and the linear ballooning stability code COBRAVMEC

[42, 43]. Previous work has investigated how such a saturated MHD mode may appear at the

plasma edge [15]. It has been shown that such a mode can appear due to the q profile being

just below a rational value at the plasma edge. This is the external kink mode, see Fig. 8(a)

showing the q profile. VMEC models the plasma as a current carrying plasma column with

a vacuum region outside. This allows the q value at the plasma edge to be well defined. In

reality these are diverted plasmas and so formally the q will go to infinity at the plasma edge.

This would mean that external kink modes are unlikely to form. However, error fields and

other non-axisymmetric fields may well create a stochatic layer at the plasma edge so that
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(b) Pressure profile for the current driven mode.
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(d) Pressure profile for the pressure driven mode.

Figure 8. Pressure and safety factor profiles for the pressure and current driven modes.

there is a maximum edge q. An improved understanding of the physics of the separatrix and

external kink modes is required.

A saturated MHD mode can also appear as a result of a pressure driven mode and a

flattening of the q profile which is caused by the bootstrap current, see figure 8(c) showing the

q profile for this mode. Note that the q profile is above four at the edge which removes drive for

the current driven mode. We call this second type of mode the exfernal mode (after Brunetti

[44]). We expect this pressure driven mode to appear at low collisionality as it requires a

significant bootstrap current to flatten the q profile at the edge.

We investigate the differences between the external kink mode and the exfernal mode to

help to understand which of these modes we see experimentally. It has been noted by Solano

et al [13] that in JET a current ribbon appears at the plasma edge. We have processed the

external kink mode and exfernal mode equilibria to see if a current ribbon is in evidence.

Figure 9 shows the parallel current for the external kink mode and the exfernal mode. We

see that the external kink mode has a current ribbon in the pedestal region while the exfernal

mode only has a current perturbation at the very edge of the plasma.
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(b) Parallel current density for current drive mode

Figure 9. Parallel current density (in Am−2) for the current and pressure driven modes. A

much broader current ribbon appears for the current driven mode than for the pressure driven

mode.

5.2. Linear ballooning stability

We now investigate the local linear ballooning stability using the COBRAVMEC code. This

calculates the growth rate of the local ballooning mode on a given fieldline. It can also be

thought of as the infinite-n ballooning mode. This is of interest because it captures some of the

instability drive of the kinetic ballooning mode (KBM). The KBM is thought to drive particle

transport, rather than heat transport, which is an important element of the QH-mode [45].

We first calculated ballooning stability for axisymmetric sister equilibria for the cases that are

unstable to external kink mode and exfernal mode. Ballooning modes are found to be stable in

these axisymmetric equilibria. In contrast, for the 3D equilibria corresponding to the external

kink saturated state, strong ballooning instability is found over a large fraction of the edge

region, see Fig. 10. The 3D equilibrium corresponding to the exfernal mode saturated state is

only weakly unstable to ballooning modes, and only very near the edge. Ideal MHD infinite

n ballooning instability in the external kinked 3D equilibria could imply ballooning related,

or KBM related, density transport. It has been suggested that 3D neoclassical transport may

play an important role in the increased density transport when RMPs are applied to a tokamak

plasma. However, preliminary studies using a VMEC equilibrium and the X code indicated

that neoclassical transport was not significantly enhanced [A]. Further work is required to

confirm this result.

This result may have been expected since it is well known from the physics of resonant

magnetic perturbation (RMP) ELM suppression and mitigation that density pump out is only

seen when the plasma response is external kink like (i.e. largest around the X-point) rather

than ballooning-like [46](where ballooning-like in this context means pressure driven exfernal

like). In RMP cases we would expect not to see the current ribbon at the plasma edge as this

effectively comes from the coils around the plasma.
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Figure 10. Linear ballooning mode growth rates for the external kink and pressure driven

modes.

5.3. Conclusions

We examined two types of MHD mode which can produce saturated free boundary states: an

external kink mode and a pressure driven, exfernal, mode. We have shown that the external

kink mode produces a perturbed current ribbon at the plasma edge in line with experimental

observations. We have also calculated the linear local ballooning stability of these saturated

modes. The external kink mode significantly destabilizes the ballooning modes while the

pressure driven mode does not. This result matches expectations from the results of RMP

ELM control experiments which show that density pump out only occurs for plasmas with

an external kink mode response. The hypothesis is that the KBM produces sufficient partical

transport such that the pedestal never reaches the peeling ballooning boundary and so no

ELMs occur.

6. Summary and Directions for future work

We have completed various strands of work to improve our understanding of potential

tokamak reactor pedestals. While we have some understanding of what sets the pedestal

height and width there is still much to understand. We have investigated an method to

improve the EPED model by trying to remove assumptions about the density. We have tried to

determine if a gyrokinetic calculation of the heat flux could help us to determine the density

profile. Unfortunately, the linear gyrokinetic results (and probably the nonlinear results too)

are not able to discriminate between differing pairs of density and temperature profiles.

We believe that this comes from the pedestal transport criterion assumed in EPED. This

transport assumption, ∆ = Cβ
1/2

p,ped , should be a target for future work from the community.

It has been observed that density is not a flux surface function in many plasmas due to, for

example, plasma rotation or plasma fuelling. We have calculated the effect of non flux surface

density on the bootstrap current analytically in this paper and numerical investigations using
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ELMFIRE have also been completed [9]. This changed bootstrap current will also change the

stability of the peeling ballooning modes and so the ELM stability. We have calculated the

effect of non flux surface density using JOREK within the project. This indicated that the low

n modes became more unstable and the high n modes were unaffected. This was preliminary

work and further confidence in the equilibrium is needed before this can be regarded as a final

result. Indeed improving our understanding and measurements of the bootstrap current is still

an important topic of research. The effect of plasma turbulence on the bootstrap current is yet

to be determined and will require a code such as ELMFIRE to be resolved.

Type I ELMs will not be allowable in reactors due to the damage they will cause to

plasma facing components. We will therefore need to develop our confidence in small and

no ELM regimes. We investigated the QH-mode using the non-axisymmetric equilibrium

code VMEC. In this paper we built on work looking at current and pressure driven modes.

Linear ballooning stability analysis indicates that the QH-mode is a saturated external kink

mode rather than a pressure driven mode. A gyrokinetic analysis of these equilibria would

allow us to understand the effect on transport of non-axisymmetric saturated instabilities.

This would also be an important step in understanding RMP ELM control experiments. Work

was carried out on other small ELM regimes within this collaboration which will be reported

elsewhere. There are lots of avenue for further work including use of the gyro-landau-fluid

model implemented in BOUT++ to model I-mode.

A final aspect of this collaboration is the use of neural networks to produce fast surrogate

models. This will be important if we hope to use these models to design reactors and to scan

large regions of parameter space for favourable reactor relevant conditions.

These various strands of work allows us to improve our physics understanding of the

pedestal which will give confidence as we extrapolate towards a reactor pilot plant. They will

also provide tools and methods to integrate these complex models into design optimization

loops.
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