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A multi-task deep learning neural network for predicting 

flammability-related properties from molecular structures†

Ao Yang ‡,a,b, Yang Su ‡,c,a, Zihao Wang a, Saimeng Jin a, Jingzheng Ren b, Xiangping Zhang d, 

Weifeng Shen *,a and James H. Clark e

It is significant that hazardous properties of chemicals including replacements for banned or restricted products are 

assessed at an early stage of product and process design. This work proposes a new strategy of modeling quantitate 

structure-property relationships based on multi-task deep learning for simultaneously predicting four flammability-

related properties including lower and upper flammable limits, auto-ignition point temperature and flash point 

temperature. A multi-task deep neural network (MDNN) has been developed to extract molecular features 

automatically and correlate multiple properties integrating a Tree-LSTM neural network with multiple feedforward 

neural networks. Molecular features are encoded in molecular tree graphs, calculated and extracted without manual 

actions of the user or preliminary molecular descriptor calculation. Two methods, joint training and alternative 

training, were both employed to train the proposed MDNN, which could capture the relevant information and 

commonality among multiple target properties. The outlier detection and determination of applicability domain were 

also introduced into the evaluation of deep learning models. Since the proposed MDNN utilized data more efficiently, 

the finally obtained model performs better than the multi-task partial least squares model on predicting the 

flammability-related properties. The proposed framework of multi-task deep learning provides a promising tool to 

predict multiple properties without calculating descriptors.

1. Introduction

In the last decades, with the growth of chemical production, the potential 

risks associated with handling hazardous substances have always been of 

great concern to industry, government and the public. While the 

production and treatment of (hazardous) chemical substances are now 

strictly controlled in most regions, legislation affecting the chemicals 

themselves is only now becoming critical. The advent of Registration, 

Evaluation, Authorisation and Restriction of Chemicals (REACH) in 

Europe and similar chemical-focused legislation in other regions 

including China, Japan and Korea is forcing industry to assess the 

hazards of all industrial chemicals. Chemicals that are not proven to be 

sufficiently safe are to be banned or strictly controlled in use. Many 

widely used chemicals including some of the most important process 

solvents have been classified in this way, and the list of unacceptable 

chemicals is increasing rapidly. It is important that the hazardous 

properties of chemicals involving replacements for banned or restricted 

products are assessed at an early stage of product and process design.

In Globally Harmonized System (GHS) of classification and 

labelling of chemicals, four properties including flash point temperature 

(FPT), auto-ignition temperature (AIT), upper and lower flammability 

limits (UFL/LFL) are employed to classify chemicals using similar 

categories.1 The property, FPT, is often used to evaluate the flammable 

risk of organic liquid in REACH legislation. AIT is important for the 

assignment of temperature classes in explosion protection (i.e., ATEX in 

Europe) of plants and equipment, which can be used to assess situations 

in which a substance can spontaneously catch fire. UFL and LFL are 

usually seen as the ease with which a substance can burn or be ignited. 

The four properties are often used to estimate possibilities of catching 

fire on substances in many standards and codes.

It is however, very time-consuming to screen safer candidates of 

hazardous chemicals from many possible compounds through 

experimental assessments of all the key risk parameters in authorized 

laboratories. This is considered by many people to be a major 

disincentive to companies developing new safer chemicals to replace 

those hazardous compounds judged badly by REACH and related 

assessments. The GHS rule also states that if experimental values of any 

properties are unavailable to assess the hazardous level of a chemical, 

these properties of an individual molecule can be predicted by 

mathematical models such as quantitative structure-activity/property 

relationships (QSAR/QSPR). These predictive models could accelerate 

the process development at least during initial assessments and thus 

enable early go/no-go decisions in screening of alternatives with lower 

costs. Among these, the previous QSPR models can estimate properties 

by using some information of molecular structures, e.g., the occurrences 

of certain molecular groups2-4, molecular descriptors and properties5-7. 

Most existing studies of physicochemical properties involving AIT, FPT, 

UFL and LFL were reviewed by Nieto-Draghi et al.8 and Jiao et al.9. 

Herein, Table 1 exemplifies some existing models for predicting the four 

properties with various features of molecular structures.

Many studies applied group contribution methods and multiple linear 

regression (MLR) in predicting flammability-related properties, and other 

models were formulated with various numerical descriptors of molecular 
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structures. Except for linear models, non-linear regression (NLR) was 

employed to correlate more flexible models. The stochastic optimization was 

also used to build prediction models, for the globally optimized correlations 

e.g., Gharagheizi et al.10, 11, Pan et al.12 and Lazzús13. The existing studies based 

on both MLR and NLR suggested that outlier detection, applicability domain 

(AD) and uncertainty analysis should be used to evaluate the models14-17. Even 

though this provided a good accuracy for the flammability-related properties, 

all the studies as listed in Table 1 focused on correlating one property with 

molecular descriptors in a single task of model regression.

On the other hand, most of previous QSPR studies employed manually-

defined methods based on chemistry or graph theory to depict molecular 

features as numerical descriptors. For example, group contribution methods 

count occurrences of molecular fragments, but connectivity is frequently 

ignored among groups. When only one topological index of connectivity is 

used in a QSPR model, differences among atoms are frequently not recorded. 

If a new compound has an undefined group or other ambiguous features which 

cannot be depicted in these manually-defined methods, these models based on 

only a type of molecular descriptors could not provide a satisfactory 

estimation. Hence, a variety of descriptors have been developed to enhance the 

resolution and coverage of diverse molecular structures.18 As an example, the 

group contribution plus (GC+) proposed by Hukkerikar2 combined the multi-

level group contribution and atom connectivity indices for wider correlation of 

more properties. However, it might be time-consuming to select the best 

descriptors for a task of QSPR modeling.19, 20

Table 1. The typical available QSPR-based models for predicting flammability-related properties. 

Property Molecular features Models Reference

FPT The occurrences of molecular groups MLR Hukkerikar et al.2

The occurrences of molecular groups MLR Frutiger et al.3

Atom connectivity indices, the occurrences of molecular 

groups
MLR Suzuki21

Topological indices MLR, ANN Patel et al.5 

The occurrences of molecular groups MLR Alibakhshi22

Molecular descriptors, boiling point MLR Katritzky6

The occurrences of molecular groups GA-MLR Gharagheizi et al.10 

The occurrences of molecular groups ANN Gharagheizi et al.3

The occurrences of molecular groups SVM Pan et al.4 

AIT The occurrences of molecular groups MLR Hukkerikar et al.2 

The occurrences of molecular groups MLR Frutiger et al.3 

The occurrences of molecular groups ANN Albahri23

Atom connectivity indices MLR Suzuki24

LFL/UFL The number of carbon atoms NLR Shimy25

The occurrences of molecular groups MLR Frutiger et al.3 

The occurrences of molecular groups NLR Albahri26

The occurrences of molecular groups ANN Gharagheizi27, 28

Molecular descriptors GA-MLR Gharagheizi11

Topological, charge and geometric descriptors GA-MLR Pan et al.12 

The occurrences of molecular groups ANN-PSO Lazzús13

Molecular descriptors ANFIS Bagheri et al.29 

The occurrences of molecular groups NLR High and Danner30

The occurrences of molecular groups MLR Rowley et al.31 

Abbreviations: genetic algorithm (GA), artificial neural networks (ANN), particle swarm optimization (PSO), adaptive neuro fuzzy inference system 

(ANFIS), support vector machine (SVM)

A data-driven technique, deep learning, has been recently employed to 

build QSPR/QSAR models.32-35 One important reason is that deep learning 

techniques can extract valuable features automatically and discover potential 

relationships among various big data. For example, in the Tox21 Data 

Challenge launched by NIH, EPA and FDA36, various deep learning neural 

networks (DNNs) were employed to automatically extract the relevant 

molecular features from a huge number of descriptors and detect toxicophores. 

This could help chemists to identify valuable candidates at early stage and with 

less manual work. As the powerful capabilities of DNNs on extracting features, 

deep learning techniques can formulate QSPRs/QSARs from visual 

representations of molecular structures, e.g., images learned by convolutional 

neural network (CNN)37, texts learned by recurrent neural network (RNN)38 

and graphs learned by graph neural networks (GAN)35, 39, 40. Even though deep 

learning provides a way to reduce the dependency of QSPRs/QSARs on 

molecular descriptors41, the powerful ability could easily make DNNs over-

fitted on small data sets. The reason is that DNNs are often formed in the 

sophisticated architectures involving a very large number of parameters.

Generally, the best way is to train a QSPR/QSAR model based on deep 

learning using a larger number of samples. Although the prediction models10, 

27, 28 of flammability-related properties performed well, they were trained on    

more data points including estimated values. In fact, the experimental data  sets 

of four flammability-related properties are available with small sizes in 

DIPPR801 database according to  previous studies3. We noticed that multi-task 

learning (MTL) is a type of transfer learning that can gain relevant knowledge 

among multiple tasks for modelling on a small data set, even though the 

relevant knowledge among these tasks may be tenuous and unnoticeable to 

humans42. Caruana43 studied many technical details in this field and 

summarized the improvements over single task learning (STL) obtained by 

MTL: a) amplification of used data; b) attention focusing; c) representation 

bias and feature selection; and d) regularization against overfitting. Hence, 

MTL was used to tackle data deficiencies or improve prediction performance 

for modelling QSARs/QSPRs based on molecular descriptors, e.g., ANN with 

a multiple output layer44 and multi-task partial least squares (PLS)45. It should 

be mentioned that the multi-task PLS requires that every molecule in the 

training set have a complete set of properties. If a particular row of employed 

data sets has a null value of a feature or a target property, the row 

corresponding to a compound cannot be utilized in the training of multi-task 

PLS models.

In this research, an architecture of multi-task deep learning neural 

networks (MDNN) is proposed to establish the predictive model for  

flammability-related properties. Molecular structures are transformed into 

directed acyclic graphs (DAGs) by a program developed in this work, and the 

DAGs are vectorized by two techniques,  word embedding and a tree structured 

long short-term memory46 (Tree-LSTM) network. Importantly, unlike previous 

models, there is no need to extract corresponding features of molecular 

structures through pre-defined descriptors. The proposed MDNN can extract 
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molecular features related to a unique property and may capture some possible 

interactions among multiple properties using two training strategies, i.e., joint 

training and alternative training. The procedures involving outlier detection 

and AD analysis are also proposed to assess the predictive model based on 

multi-task deep learning. All of these are aimed at  developing an automatic 

tool of multi-task QSPR modelling that can simultaneously correlate diverse 

target properties in one deep learning model without descriptor selections, and 

fully utilize limited experimental datasets. Another technique of multi-task 

learning, PLS regression, is taken as a baseline of comparison to highlight 

better performance and scalable data-handling capacity of the proposed 

MDNN.

2. Methodology

The entire architecture of MDNN is first introduced  which involves two types 

of modules (see Fig. 1): (1) An encoder based on the Tree-LSTM network46 

that can vectorize the molecular structures depicted in DAG, as well as capture 

all relevant features and commonality for all tasks; (2) Multiple feedforward 

neural networks (FNNs) are assigned for extracting task-specific features 

(learning personality of each task) and outputting each property respectively. 

Afterwards, the implementation and modelling of MDNN are detailed. In the 

data preparation, SMILES expressions were converted to DAGs using our 

program based on Faulon’s algorithm47 in advance. Each vertex of a DAG was 

labelled in a string involving symbols of atoms and chemical bonds, and the 

strings were mapped to vectors with the algorithm of word embedding48. The 

procedure had been proposed to transform molecular structures in the previous 

work40. Herein, joint training and alternative training were both employed 

especially for the multi-task deep learning. The obtained model was finally 

tested on an external test set to validate the extrapolating ability. Empirical 

cumulative distribution functions (ECDF) of prediction residuals were 

employed to detect outliers. The ECDF is a step function that increases by 1/n 

in every data point. An approach based on principal component analysis (PCA) 

was proposed to explore applicability domains of the obtained model.

2.1 Network architecture

As mentioned above, the Tree-LSTM network is used as an auto-encoder to 

extract the holistic features of a molecular structure for all properties. In 

contrast, several FNNs work similarly to filters which only capture the relevant 

features for each property. Herein, four FNNs were used to correlate/output the 

four flammability-related properties and shared one Tree-LSTM network as 

the encoder of molecular structures.

2.1.1 The extraction block of molecular features. Since Tree-LSTM 

networks can traverse all vertexes in a DAG and mimic the topological graph 

of the DAG, the starting point is that molecular structures should be 

transformed to DAG forms. Although DAGs can be canonized in a certain 

rule47, the resulting canonical orientation is still likely to be quite arbitrary 

among all possible orientations39. Hence, in this study, every DAG was 

generated from each orientation (i.e., traversed from all possible root atoms) 

and was then vectorized by the Tree-LSTM network respectively. The whole 

workflow is presented and exemplified by the chemical 2,4,6-Trichlorotoluene 

(Fig. 2).

Fig. 1. The schematic diagram of MDNN for modelling QSPRs of 

multiple target properties.

Fig. 2. The molecular structure is transformed to a DAG and then simulated by a Tree-LSTM network.
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In the original format of DAGs, each edge does not correspond to a 

chemical bond of molecules and each vertex is only associated with each atom 

symbol. For example, a double bond between two atoms cannot be recorded in 

an original DAG, which is also contrary to the definition of DAGs. To record 

all bonds of a molecule, a modification was implemented on the original style 

of DAG, i.e., bond types are attached on adjacent atom symbols (see the third 

step in Fig. 2) in the children vertexes of a DAG. As the Tree-LSTM network 

only accepts vectors as inputs of each unit mapping to each vertex of a DAG. 

As such, the strings (i.e., “[c]”, “:[c]”, “-[Cl]”, “-[C]” and “-[c0]” shown in the 

third step of Fig. 2) representing the vertexes should be converted to vectors 

(i.e., v1~v5 shown in the fourth step of Fig. 2). A word embedding model, skip-

gram48, was employed to encode such strings as vectors.

Of note is that the Tree-LSTM network can be considered as a dynamic 

computational graph which has a self-adaptive capability of various molecular 

structures. For each DAG corresponding to a computation graph of the Tree-

LSTM network (see the fourth step in Fig. 2, there are five computation 

graphs), a recurrent algorithm traverses from the root vertex to leaf vertexes of 

each DAG and calculate corresponding units of the Tree-LSTM network 

according to the inputting vectors and neighbourhood outputs. Afterwards, all 

the vectors representing the DAGs of all orientation are summed into a vector 

which can represent a molecule (see the fifth and sixth steps in Fig. 2). As 

space is limited, more details related to the transformation of molecular 

structures, word embedding and Tree-LSTM are disclosed in the Sections S1 

to S3 of Supporting Information.†

2.1.2 The extraction block of task-specific features. Each task-specific 

block was used to extract relevant features of a specific property and output 

prediction values. Hence, the number of target properties will determine the 

number of task-specific blocks, i.e., the number of tasks. Theoretically, each 

task-specific block can be designed as a different FNN with the independent 

structure and parameters, and it is also workable to train each block with 

different optimizers respectively. In the task-specific block, an activation 

function, rectified linear (ReLU)49, was applied to perform non-linear 

transformations and generate activation values, since ReLU has lower 

computation consumptions and lower risks of gradient vanishing. Although the 

scalable architecture can provide flexible configurations for multiple tasks of 

modelling QSPRs, it becomes more challenging to optimize more hyper-

parameters. Herein, four FNNs corresponding to the four flammability-related 

properties (i.e., FPT, AIT, UFL, LFL) were configured with same structural 

parameters for lower complexity of optimization.

2.2 MDNN implementation and training

As the proposed MDNN includes a dynamic neural network (i.e. Tree-LSTM 

network),  it was implemented on an open-source software platform supporting 

dynamic networks, PyTorch50. All tasks of training, validation and testing were 

finished on the hardware platform with NVidia GTX1060 and Intel i5 8400. A 

parser based on RDKit51 was developed and Faulon’s algorithm40 was 

implemented in Python, to translate SMILES expressions into DAGs. 

Meanwhile, a simple implementation of word embedding algorithm52 was 

utilized to train the embedding vectors in TensorFlow53. After all programs 

were prepared, a multi-task prediction model of the four flammability-related 

properties was obtained using the procedure illustrated in Fig. 3.

In the workflow of Fig. 3, a regression algorithm named Adam54 was 

employed as optimizers to train the proposed MDNN. Eight optimizers were 

configured with different hyper-parameters for each task in alternate training. 

Meanwhile, another optimizer was employed to carry out the joint training on 

the entire MDNN. Additionally, early stopping was used to avoid overfitting, 

i.e., once there was no improvement on loss values of validation sets for a 

specified time (e.g., twenty epochs), the training process would be terminated.

Fig. 3. The overview of the methodology for formulating a multi-task QSPR model based on deep learning.

2.2.1 Data analysis and preparation. The experimental data involving 

FPT, AIT, LFL and UFL were used to train the MDNN, which were extracted 

from an authoritative database named DIPPR80155. The database, DIPPR801, 

provides the uncertainty and acceptance for each experimental data point in 

which all data had been checked and reviewed by database maintainers. Hence, 

it was employed in many QSPR studies as a reliable data source. A list of 

molecular structures was gathered from PubChem56 representing isomeric 

SMILES, including all the available compounds in DIPPR801 and other 

compounds. Some compounds involving inorganic gas, salts, metal-organics 

and metallic elements were excluded from the employed data set, as molecular 

structures of these unemployed compounds are significantly different from 

most conventional organics and their flammability property data are often 

unavailable. The employed datasets only including accepted and experimental 

values were stored in (Comma-Separated Values) CSV format. The lists of 

employed compounds are provided in the Section S4 of Supporting 

Information. †

As for different units and numerical levels among the four flammability-

related properties, it is necessary to standardize the raw data sets for easier 

training models. The reason is that the different numerical metrics could result 

in big gaps of gradient among each task. Note that the raw experimental 

datasets should be standardized in a linear transformation to guarantee that 

distribution shapes are not changed. The Z-score transformation as shown in 

Experimental 
values

Molecular 

structures

(SMILES)

Training 

Training set

Validation 

set

Test set

Divide 

data sets

Step 2:

Step 3: Define the deep learning model

Initial guess of hyperparameters:

Structural hyperparameters of network

Hyperparameters of optimizer 

Step 4: Train model and optimize hyperparamters

Only use the training and validation sets 

Observe the changes of loss of the training and  validation set

Manually tune hyperparameters after grid or random search 

Step 5: Outlier detection and formulation of the final model

Merge the training and validation sets  into one set

Calculate the ECDF of residuals of the merged set

Consider the data points as outliers below a probability of 

0.025 and above 0.975

Exclude outliers for data set

Re-divide data set to training and validation sets

Re-train the deep learning model 

Step 6: Evaluate the performance of the final model 

Use the test set to evaluate the final model

Analyze the applicability domain of the final model 

DAGs

Data preparationStep 1:

standardized
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Eq. (1) was employed that can always produce a distribution with a mean of 0 

and a standard deviation of 1.

     (1)
exp exp

expˆ i
i

x x
x






where  represents the transformed property values and  refers to the 𝑥exp𝑖 𝑥exp𝑖
original values,   and σ are the average value and standard deviation of a 𝑥exp
data set, respectively. It should be noticed that the  and σ must be calculated 𝑥exp
on training sets, then two parameters are used to transform the validation and 

test sets.

All available data were employed in the initial correlation, in which 

outliers were not excluded. The final correlation based on the proposed MDNN 

was implemented without outliers. Tables 2 and 3 list the used data points for 

the flammability-related properties in the initial and final correlation, 

respectively. Table 4 shows information related to the ranges of raw data 

collected from DIPPR801 database. For training and optimizing the multi-task 

model, the data set was split into three sets including a training set, a validation 

set and a test set. The transformation should be only implemented on the 

training set of each property. The term “validation set” refers to the dataset 

utilized to determine the hyper-parameters and observe trends of loss for early 

stopping in training models. The test set was employed to test model 

performance finally after a deep learning model was well trained with 

determined hyper-parameters. All compounds both in the validation and test 

sets were sampled randomly. 

Before proceeding with the training, all molecular structures were 

converted into DAGs attached embedding vectors as mentioned above. Since 

the generation of embedding vectors does not need property data, many more 

compounds can be employed by the word embedding algorithm. In this work, 

23709 compounds depicted in SMILES expressions were employed to train 

the embedding vectors for each vertex of DAGs. At this stage, 170 symbols 

were extracted from all vertexes of the DAGs and each one was represented 

by a 48-dimensional vector. The symbols are listed in the Section S2 of 

Supporting Information. †

Table 2. Data points of the flammability-related properties used in the initial 

correlation.

Property Whole dataset Training set Validation set Test set

FPT 1176 822 177 177

AIT 501 349 76 76

LFL 449 315 67 67

UFL 350 243 53 54

Table 3. Data points of the flammability-related properties used in the final 

correlation.

Property Whole dataset Training set Validation set Test set

FPT 1176 822 177 177

AIT 480 334 70 76

LFL 443 309 67 67

UFL 329 226 49 54

Table 4. Ranges of used datasets on the flammability-related properties.

Property minimum maximum average
standard 

deviation

FPT 87.1 570 330 63.4

AIT 363 1283 651 120

LFL 0.0454 16.9 2.24 2.41

UFL 2.40 100 12.7 9.31

2.2.2 Training and evaluating a deep learning based QSPR model. 

Unlike single-task DNNs, there are two strategies to train multi-task DNNs as 

usual, i.e., alternate training and joint training.57 With joint training for 

property prediction, a distribution of vectors representing molecules in the 

chemical latent space is simultaneously organized by the four properties and 

commonalities among the four tasks which could be learned. There is a 

requirement on the training data for joint training, i.e., the experimental values 

of four properties must be available simultaneously in one data row. Therefore, 

all parameters of the MDNN can be trained in each epoch of the joint training. 

After the joint training had been conducted, alternate trainings were employed 

to train each FNN as well as the Tree-LSTM network in one epoch. It is not 

necessary to fill all training data matrices in the alternate training which could 

transfer some information from rich data sets to sparse ones. In the alternate 

training, only the corresponding FNN is updated for the current task during 

each iteration, while all parameters of other task-specific FNNs are frozen. 

Two types of loss function were employed in the two types of training 

methods. For the joint training, all parameters of the whole network were 

updated to minimize a combined loss function Eq. (2).58

                                     (2)1 2 2

1
( , , ,..., ) ( ) log

2
i i i

i i

   


 
  

 
W WL L

                                             (3)2

1
( , ) ( ) log

2
i i

i

 


 
i

W WL L

where W is used to represent model parameters and σi is the observation noise 

parameter (i.e., standard deviation) of each task. This loss function weighs the 

losses of all tasks using the homoscedastic uncertainty of each task, which 

allows each task corresponding to each property to be learned simultaneously. 

Li(W) representing the loss function for each task was calculated by mean 

square error (MSE) between the estimated values and the experimental values. 

It should be noted that the loss function Li(W) was employed for each FNN 

and the weighted loss function Li (W, σi) was used to train the Tree-LSTM 

encoder in the alternate training. The details related to model training are 

presented in the Section S5 of Supporting Information.†

2.2.3 Determination of hyper-parameters. It is significant to determine 

the optimal configuration of hyper-parameters for a deep learning model. In 

general, two parts of hyper-parameters should be determined: the structural 

parameters of deep neural network (e.g., number of hidden layers, number of 

neurons, types and parameters of activation functions) and parameters of 

training optimizers. Unfortunately, there is no such a universal configuration 

that can work well for all models and data sets. It is necessary to optimize the 

hyper-parameters for different models separately.

In most cases, two approaches, grid search and random search, can 

provide an acceptable configuration of hyper-parameters for a certain data set. 

Since there exist 19 hyper-parameters in the proposed MDNN, it is extremely 

time-consuming to assess all possible combinations of hyper-parameters. In 

the training process of the proposed MDNN, an initial guess of structural 

parameters is chosen to fix the network architecture referred to the successful 

practices in previous studies35, 58, 59. To reduce the complexity of 

hyperparameter optimization, the numbers of neurons in the hidden layers were 

scanned while the layer number of each task-specific FNN was fixed at four 

(three hidden layers and one output layer), since there were no significant 

improvements for more layers. Afterwards, a grid search was applied to find 

the optimal ranges of other hyper-parameters initially. The hyper-parameters 

were also fine-tuned into the optimal range manually. Herein, one or two 

hyper-parameters were tuned at a time manually, it should be observed whether 

the MDNN performance was improved on the validation sets after manual 

tuning. The finally adopted configuration of hyper-parameters are listed in 

Tables 5 and 6. After all the hyper-parameters were determined and validated, 

the model was tested on an external test set eventually.

Table 5. The finally adopted structural hyper-parameters of the MDNN.

Hyper-parameters Values

The dimension of embedding vectors 48

The memory dimension of the Tree-LSTM 32

The output dimension of the Tree-LSTM 32

The hidden layers of each task-specific FNN 3

The neuron number of each hidden layers in the FNNs 32

2.2.4 Statistical evaluation. The following statistical indicators were 

employed as the performance metrics to evaluate the learned MDNN model.

Mean absolute error (MAE) is the measure of deviation between the 

predicted values and the experimental values, and it is obtained via Eq. (4).
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Mean percentage error (MPE) provides an average of percentage error 

by which the predicted values differ from the experimental values, and it is 

expressed as Eq. (5).

Table 6. The finally adopted hyper-parameters of the training optimizers.

Hyper-parameters Values Tasks

The learning rate ηt 0.02000 Jointly, training the whole MDNN according to all properties

The learning rate η1 0.00120 Alternatively, training the Tree-LSTM network according to FPT 

The learning rate η2 0.00120 Alternatively, training the Tree-LSTM network according to AIT

The learning rate η3 0.0006 Alternatively, training the Tree-LSTM network according to LFL

The learning rate η4 0.00023 Alternatively, training the Tree-LSTM network according to UFL

The learning rate η1 0.00120 Alternatively, training the task-specific FNN according to FPT 

The learning rate η2 0.00180 Alternatively, training the task-specific FNN according to AIT

The learning rate η3 0.00009 Alternatively, training the task-specific FNN according to LFL

The learning rate η4 0.00020 Alternatively, training the task-specific FNN according to UFL

The batch size bt 32 Jointly, training the whole MDNN according to all properties

The batch size b1 32 Alternatively, for the Tree-LSTM and FNN corresponding to FPT 

The batch size b2 32 Alternatively, for the Tree-LSTM and FNN corresponding to AIT

The batch size b3 32 Alternatively, for the Tree-LSTM and FNN corresponding to LFL

The batch size b4 32 Alternatively, for the Tree-LSTM and FNN corresponding to UFL

                     (5)
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Since the correlation analysis reported in the published literatures21, 22, 24, 

32, 33, 60, 61 usually chose the correlation coefficients of r or R2 as the performance 

indicator, both of them were employed to assess the proposed MDNN in this 

research.

The Pearson correlation coefficient, 

                   (6)
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2.3 The outlier detection and AD determination

The outlier detection was also studied for deep learning based QSPRs in this 

work. The outliers of four tasks were detected with the empirical cumulative 

distribution function (ECDF) of the residuals between experimental and 

predicted values. The ECDF is a step function that increases by 1/n in every 

data point. Let (X1, …, Xn) be independent, identically distributed real random 

variables with the common cumulative distribution function F(t), then the 

ECDF can be defined as shown in Eq. (8) for a realization (x1, ..., xn). 

 (8)µ

1

number of element in the sample 1
( )

i

n

n X t

i

t
F t I

n n





  

For a fixed t, the indicator  is a Bernoulli random variable with parameter 
iX tI 

p=F(t). The value of the ECDF is the number of samples whose sample value 

is less than or equal to t divided by the total number of samples n. This 

methodology was suggested in the residual analysis of group contribution 

models by Frutiger et al.14, in which the distribution of residuals could not be 

assumed as a normal distribution in advance. Frutiger et al.14 applied the 

approach on a unsegmented data set and repeatedly regressed a group 

contribution model after outliers were excluded. Finally, the model 

performance was improved successfully thanks to the reduction of residual 

dispersion. However, raw data sets are often divided into three subsets for 

training, validation, and test respectively in the modelling of QSPRs based on 

deep learning. Although outliers can be detected on all the three data sets, only 

the outliers in the training and validation sets can be excluded. The test set is 

often utilized to evaluate the generalization ability of a trained model of deep 

learning, which is independent to the training and validation sets and should 

not be evaluated in the model training. Moreover, there is a possibility that 

some compounds included in test sets could drift out of the latent chemical 

space determined by training and validation sets. To depict the latent chemical 

space learned by MDNN and check the changes of chemical space after outliers 

are excluded, we also investigated ADs of the final model from two aspects: 

structural domain and property domain.16

   Molecular features are depicted in a high-dimensional vector output by the 

Tree-LSTM network. As the high-dimensional vector cannot be visualized and 

analysed easily, it is suitable to apply a dimension-reduction algorithm, 

principal components analysis (PCA), on the determination of ADs involving 

training and validation sets62. We decided to assess structural space and 

property space together, i.e., all the high-dimensional vectors and target 

properties in a dataset were combined into a matrix. PCA can reduce 

dimensionality and enable only a few principal components (PCs) to retain the 

most of variance of all data. As such, ADs could be analysed and visualized in 

a lower dimensional space. Another factor is that the scope of an AD should 

be also determined, a strategy based on convex hull was applied to explore the 

AD boundary. For this reason, it is easy to discover whether some compounds 

in test sets exist outside the AD. Meanwhile, the outliers identified by ECDF 

can also be marked in a visualized AD, to investigate relationships between the 

outliers and ADs. The calculation method of convex hull is disclosed in Section 

S7 of the Supporting Information. †

3. Results and discussion

After the time-consuming tuning of hyperparameters was finished in the 

MDNN training, the obtained model was evaluated on the data sets. For each 

property, the model performance was measured in four statistical indicators 

involving MAE, MPE, r and R2. The identified outliers are provided in Table 

S10 of the Supporting information. †Another multi-task learning algorithm, 

partial least square (PLS) 45, were employed to compare with the proposed 

MDNN. Comparisons with the existing predictive models of flammability-

related properties are provided in Section S6 of the Supporting information. †

Two results are presented for two models obtained before and after 

outliers were excluded, respectively. Fig. 4 shows prediction deviations 

obtained by the model (Ⅰ) trained with all data points. After the outliers were 

identified and excluded, the proposed MDNN was re-trained without the 

outliers of training and validation sets. Outliers were identified for the retrained 

model (II) again, Fig. 5 provides predictions of the model (Ⅱ). In Figs. 4 and 

5, diagonal lines represent the equivalence between experimental values and 
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predicted values, while circles, rectangles, and plus signs indicate the predicted 

values of compounds in training, validation, and test sets, respectively. Tables 

7 and 8 present the values of performance metrics for the models (Ⅰ) and (Ⅱ) 

respectively. It suggested that the proposed MDNN model can accurately 

predict the four flammability-related properties with small deviations for most 

compounds.

The relationships between compound families as well as prediction errors 

have also been investigated according to the model (I). Distributions of 

compounds in various families were presented with MPE in Figs. S15~S18 of 

the Supporting Information. For each property, the MPE of each family was 

calculated on a union set of training, validation and test sets. Since a method 

of random sampling was used to divide data sets, some families with much less 

compounds would be not selected into the validation and test sets. As shown 

in Fig.S15~S18, chemicals in training sets are more diverse than validation and 

test sets. For example, several compound families (e.g., 1-alkenes, alkynes, 

formates, etc.) were not sampled into the validation and test sets for FPT, i.e., 

the diversity of training set is larger than that of validation and test set. Among 

the four properties, compounds correlated with FPT distribute in 79 families, 

the least number of families employed in the correlation of UFL is 67. 

Molecules used to train MDNN on AIT distribute in 73 families, and the 

compounds used in the correlation of LFL distribute in 72 families.

Although the MDNN model predicted FPT accurately on most 

compounds, the MDNN model would produce a large prediction error on a 

small molecule, for example, methane which only has one carbon atom. The 

model provided a good value of MPE within 10% on halogenated 

hydrocarbons only including a single atom of halogen. However, a large 

prediction error output by the MDNN model would show on the hydrocarbons 

halogenated with two different halogen atoms. Furthermore, if C=C double 

bonds existed in a molecule with halogen atoms together, the model would 

give a larger prediction error of FPT. The reason could be due to substitution 

positions of halogen atoms in halogenated olefins, which cause significant 

changes of chemical properties of these molecules. On the other hand, only a 

small number of halogenated olefins were available in the DIPPR801 database, 

MDNN cannot learn enough information of this compound family. For other 

compounds containing other heteroatoms, such as O,N,S,P,Si and other atoms, 

the model can also predict FPT accurately on most of these compounds. It can 

be found that the outliers are mainly concentrated in a few of compounds with 

multiple functional groups, such as dinitrobenzene, ethylene glycol, dimethyl 

chlorosilane. According to the AD analysis, 8 compounds were predicted 

outside the application domain, but only one compound, hexachlorobenzene 

was identified as an outlier because of its large relative error (19.8%). The 

reason could be only 1 to 3 chlorine atoms exist in aromatic hydrocarbons of 

the training set. 

Fig. 4. The experimental versus predicted values of four flammability-related properties for the training, validation and test sets obtained by the model (I): (a) 

FPT; (b) AIT; (c) LFL; (d) UFL.

The model can predict AIT as accurately as existing models. A large 

prediction error was observed mainly on peroxides, since only two compounds 

can be learned by MDNN in the peroxide family. In the other words, not 

enough samples involving the molecular feature “-O-O-” could be learned by 

MDNN. The MDNN model mainly predict LFL inaccurately on three 

compound families including nitriles, monoaromatics and aromatic esters. Five 

compounds were identified as the samples outside the AD of training set of 

LFL, i.e., isobutyl acrylate, benzonitrile, tetrafluoroethylene, hydrazine, and 

trans-decahydronaphthalene. For example, the model can estimate an 

acceptable value of LFL on tetrafluoroethylene, although MDNN did not learn 

the molecule including C=C bonds and four fluorine atoms. Benzoyl chloride 

and difluoromethane were determined as the samples outside AD of training 
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set of UFL, their relative errors were smaller than 20%. The highest prediction 

error of MDNN appeared on the families including mercaptans and 

polyfunctional C, H, O, N for UFL. Only two compounds of mercaptans can 

be used to train MDNN for predicting UFL. Another two compounds involving 

N-methyl-2-pyrrolidone and morpholine in the family of polyfunctional C, H, 

O, N were predicted with the high relative errors for UFL. In short, the MDNN 

model could show more prediction errors on polyfunctional molecules.

Among four flammability-related properties, the learned models (Ⅰ) and 

(Ⅱ) both provide the highest accuracy on FPT. For AIT, the values of MPE 

are also acceptable for the test set, however, the data points show more 

dispersion with smaller R2 and larger MPE than other properties. For LFL and 

UFL, these two models also provide an acceptable accuracy for most 

compounds while a few compounds deviate from the diagonal lines as shown 

in Fig. 4(c, d) and Fig. 5(c, d). It is worth noting that the magnitudes of LFL 

and UFL are smaller than those of FPT and AIT. Since the smaller absolute 

values tend to result in larger deviation in MPE, outliers can result in the higher 

MPE and lower R2 especially for LFL. As the distribution of raw data points 

of AIT are more disperse than those of other properties, these two models 

perform unexpectedly on AIT. However, the models can still predict properties 

precisely on the test sets. It suggested that the correlations between properties 

and molecular structures were learned by the proposed MDNN without 

calculating descriptors. Four empirical cumulative distribution functions 

(ECDFs) of prediction residuals are described in Fig. 6 for the model (Ⅰ). The 

two horizontal lines at the bottom and top of each subplot of Fig. 6 represent 

the probabilities, 0.025 and 0.975, respectively. Data points that are not 

reasonably likely expected to occur according to the empirical CDF can be 

considered as outliers, i.e. data points can be considered as outliers below the 

0.025 or above the 0.975 probability levels. The list of outliers is presented as 

Table S10 of the Supporting Information. † As shown in Table 8, the model 

(Ⅱ) performs better on the training and validation sets for FPT, AIT, and LFL 

according to MPE. The higher values of MPE is obtained by the model (Ⅱ) on 

UFL, despite higher values of r and R2. Comparing Table 7 and Table 8, we 

can see that the exclusion of outliers does not always provide better results for 

the deep learning model. Except for UFL, the model (II) provides worse 

performance on the test sets of other properties.

In this research, our interest is particularly focused on the changes of ADs 

caused by the exclusion of outliers. The matrix of an AD was reduced into a 

three-dimensional (3D) space for visualization, consisting of the molecular 

feature vectors and target properties of molecules. The three principal 

components (PCs) can explain more than 85% of variances in the raw space of 

training sets (33 dimensions). After the convex hull of AD was determined on 

training and validation sets, the compounds which may appear outside the AD 

were identified from a test set. For the model (Ⅰ), Fig. 7 presents the scatters 

of three PCs for training sets, validation sets, and test sets of the four properties, 

respectively. Meanwhile, the outliers are also marked in Fig.7, which was 

identified by ECDFs. The visualized ADs of models (Ⅰ) and (Ⅱ) are shown 

as 3D convex hulls in Figs. S11-S14 of Supporting Information. †

A convex hull defines an interpolation region formulated by experimental 

data and molecular feature vectors for a property. The boundary of a convex 

hull describes the smallest convex area covering a training set and the 

corresponding validation set. When a compound appears outside the convex 

hull, the compound will be extrapolated by the model built on the training and 

validation sets. Notably, the model has abilities to predict flammability 

properties on compounds outside ADs. For example, when the proposed model 

predicted FPT on squalene, the model still provided an accurate result (only 

3.33% relative errors), but the model did not learn the complicated molecular 

structure which included so many carbon atoms.

When the convex hulls and outliers are observed together (see Figs. S6-

S9 of Supporting Information †), more outliers appear near the boundaries of 

convex hulls or in the low-density region of scatters. Once the outliers were 

excluded according to residual ECDFs (see Fig. S10 in the Supporting 

Information†), the convex hulls would cover smaller ranges. The ADs of LFL 

and FPT became significantly narrower, while the ADs of AIT and UFL 

changed slightly. As discussed earlier, the exclusion of outliers did not result 

in better performance of the retrained model on test sets. In other words, the 

generalization ability of retrained models could be declined since less samples 

remains in the downsized training sets. It can be also observed that the convex 

hulls representing ADs also include some considerable empty space. If more 

outliers are blindly excluded, the ADs will be narrower and the empty space 

will be reduced. Although not each point in the convex hulls can correspond 

to a potentially feasible molecular structure, the outlier exclusion still may 

reduce the interpolation space of learned models and make predictive models 

meaningless.  As the empty space a learned model of interpolation covers, 

declines, so does the need to include property-space in the assessment.

Table 7. The performance statistics of the initially learned MDNN model (Ⅰ)

FPT (K) AIT (K) LFL (%) UFL (%)

MAE Training set 10.17/8.448a 38.14/32.41a 0.2918/0.2867a 2.032/1.472a

Validation set 12.27/10.51a 49.59/41.16a 0.3564/0.3449a 2.055/1.686a

Test set 10.96/10.45b 45.34/44.76b 0.3663/0.3445b 1.815/1.806b

MPE Training set 2.990/2.449a 6.069/4.925a 22.76/14.51a 14.50/11.75a

(%) Validation set 3.575/3.046a 8.143/6.409a 48.28/12.82a 14.77/11.68a

Test set 3.101/3.010b 7.218/7.071b 19.52/19.14b 15.39/15.40b

r Training set 0.9712/0.9856a 0.8757/0.9302a 0.9728/0.9736a 0.8880/0.9699a

Validation set 0.9561/0.9779a 0.7911/0.8847a 0.9608/0.9617a 0.7947/0.8920a

Test set 0.9660/0.9698b 0.8305/0.8237b 0.9702/0.9558b 0.8582/0.8521b

R2 Training set 0.9394/0.9680a 0.7632/0.8550a 0.9449/0.9464a 0.7883/0.9404a

Validation set 0.9060/0.9538a 0.6256/0.7623a 0.9164/0.9171a 0.6114/0.7602a

Test set 0.9303/0.9387b 0.6778/0.6780b 0.9138/0.8828b 0.6134/0.5294b

NOTE: a This value was obtained on the data set without the outliers identified by ECDF; b This value was obtained on the data points only involved in the AD 

determined by training and validation sets.

Table 8. The performance statistics of the finally re-trained MDNN model(Ⅱ)

FPT (K) AIT (K) LFL (%) UFL (%)

MAE Training set 10.15/8.995a 34.02/30.21a 0.2398/0.3207a 2.366/1.759a

Validation set 11.49/9.695a 40.65/32.74a 0.2772/0.3066a 3.026/2.430a

Test set 13.56/12.59b 56.12/54.34b 0.3881/0.2617b 2.439/2.505b

MPE Training set 3.120/2.729a 5.367/4.519a 16.27/17.77a 18.77/13.46a

(%) Validation set 3.401/2.937a 6.443/5.490a 19.87/12.10a 18.99/17.32a

Test set 4.001/3.762b 9.234/8.889b 19.26/16.77b 24.15/24.45b

r Training set 0.9808/0.9871a 0.9421/0.9204a 0.9754/0.9880a 0.9623/0.9633a

Validation set 0.9643/0.9836a 0.9135/0.9389a 0.9809/0.9812a 0.7832/0.8608a
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Test set 0.9554/0.9595b 0.8020/0.8015b 0.8876/0.9736b 0.8752/0.8490b

R2 Training set 0.9541/0.9775a 0.8845/0.9067a 0.9877/0.9586a 0.9238/0.9693a

Validation set 0.9214/0.9616a 0.8173/0.8778a 0.9619/0.9625a 0.5703/0.6254a

Test set 0.9022/0.9105b 0.5985/0.5920b 0.7435/0.9417b 0.6868/0.6107b

NOTE: a This value was obtained on the data set without the outliers identified by ECDF; b This value was obtained on the data points only involved in the AD 

determined by training and validation sets.

To the best of our knowledge, there is a lack of equivalent and available 

deep-learning models on the flammability-related properties that makes it 

difficult to compare the proposed MDNN with other existing models. 

Moreover, most existing models predict a single flammability-related property 

according to the manually selected molecule features. The proposed MDNN 

can correlate four flammability-related properties in a single model with 

molecular structures but not using pre-defined descriptors. Despite the large 

differences between the proposed model and existing single-task models, the 

proposed MDNN was still compared with the existing classical models 

(Section S6 of Supporting information †). The results show that the accuracy 

of the MDNN model is competitive to that of other types of classical models. 

Unlike some other studies those employ both experimental and prediction 

values, only the experimental values were used in this work. For the deep 

learning model, the smaller data sets could make the model performance less 

remarkable. 

In addition, a multi-task model, although it is not a deep learning model, 

was built based on PLS45 and Joback63 group-contribution method and used to 

compare with the proposed MDNN. The multi-task PLS has been implemented 

in the previous study45, but it requires all values of molecular features and 

target properties available for a compound at the same time; the finally 

employed data were less in PLS than those data correlated in the training of 

proposed MDNN.

Fig. 5. The experimental and predicted values of four flammability-related properties for the training, validation and test sets obtained by the model (II): (a) 

FPT; (b) AIT; (c) LFL; (d) UFL.

The multi-task PLS model can also correlate four properties in a single 

model successfully, but its predictions are less accurate. Fig. 8 presents the 

deviations between the predicted values and experimental values obtained by 

the multi-task PLS. The PLS model provides lower values of Pearson 

correlation coefficient r than those given by the MDNN model. The PLS model 

performs undesirably on AIT and shows some lower errors on other three 

properties. This could be attributed to the data dispersion of properties. In 

particular, the combustion reaction is complicated and related to various 

factors, e.g., chemical equilibrium, mass transfer, kinetics, etc. It is possible 

that uncertainty and inconsistent configurations in experiments may cause 

different measured values, and the impact of the gas composition is not 

frequently considered in experiments.64 All these factors are not always 

available for each compound in the common-used databases, although the used 

data were carefully reviewed in DIPPR801 database.

      The proposed multi-task learning strategy could be an approach to employ 

a unified molecular representation to correlate multiple properties in one 

model. We admit that it might be easier to obtain acceptable results via the 

previous single-task models specially designed for a unique property and with 

a particular representation of a molecule structure. However, these previous 

single-task models often describe molecular structures by various descriptors 

and their used data sets of properties could also be far different. As such, the 

ADs of various models are often different and there is a potential risk that 

various models may output different values on same compounds. The 

molecular representation can be unified in various models if the employed set 

of descriptors contains all the information of a chemical structure, however, 

this is practically impossible65. In this work, the proposed approach learns the 

molecular graphs directly, which aims to depict a molecule in 2D graphs as 

much as possible and unify the molecular representations for correlating 

various properties simultaneously, though all the precise information of 
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molecules cannot be still perfectly recorded. In other words, the selection and 

calculation of molecular descriptors can be eliminated in the modelling of 

QSPRs through the proposed strategy.

Fig. 6. The residual ECDFs for the training, validation, and test sets of: (a) FPT; (b) AIT; (c) LFL; (d) UFL, resulted by the model (Ⅰ) 

4. Conclusions

To accelerate the process development at least during initial assessments and 

thus enable early go/no-go decisions in screening of the banned or restricted 

products based on the hazardous properties, a new methodology has been 

developed.  This involves building QSPR models based on multi-task deep 

learning, involving data preparation, model training, outlier detection and AD 

determination. The methodology was successfully employed to correlate a new 

multi-task model for the simultaneous prediction of four flammability-related 

properties with a good accuracy. Compared with the multi-task learning 

technique of PLS, the proposed MDNN does not require that each molecule in 

the training set have a complete set of properties. Thus, the proposed MDNN 

can be applied on more samples and provides more accurate prediction. The 

proposed method can solve challenges in the descriptor-based QSPR 

modelling, e.g., the development of a suitable descriptor for property 

correlation, the selection of descriptor and correlation analysis. As MDNN 

employs 2D structures (SMILES) rather than 3D, it is much easier to do 

massive screening of previously-unknown compounds without having to do 

3D structural determination or prediction before property prediction. To avoid 

the risks of using the deep learning model, the outlier identification and AD 

determination were introduced into the evaluation of MDNN models. The 

residual ECDF was employed to identify these outliers. This study illustrates 

that it is feasible to observe the position of outliers in the latent chemical space 

with AD analysis based on PCA and the calculation of convex hulls. The 

results suggest that the ADs became narrower after outliers were excluded 

from training and validation sets. It can be also found that some compounds 

included in test sets appear outside the ADs. The exclusion of outliers could 

not necessarily improve the prediction ability of MDNN. The proposed method 

can identify whether the properties of a compound are estimated inside or 

outside the ADs of a deep learning model. Our strategy can open new avenues 

for modelling QSPRs with multiple-property outputs using the multi-task deep 

learning. This can be used as a promising tool for the data-driven virtual 

screening of green chemicals.
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Fig. 7. The data points obtained with PCA of four flammability-related properties in the 3D space

Fig. 8. The prediction versus the experimental values of the four flammability-related properties by the PLS-based multi-task model
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