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Online Appendix

A. Proof of Proposition 1

Note that the process e~ "g(Y;) is a supermartingale, because r > o. Therefore, the expecta-
tion

x

J(@.y)=E [‘/ e e (V)]
0

is finite.

1. (f is increasing in x) Fix w € Q and (z,y) € €. Let € > 0 be such that z + & < z*. Note that
for every ¢t > 0, it holds that
TP <% P —as.

So,

zte
T*

flr+ey)=E —c/ e~ "tdt
0

+ E [e—TT:~+eg(YTy:+E )i|

>E —c/ e‘”dt} +E [6_”5‘ g(Y¥ }
0

T*
>E —c/ e "tdt
J0

+E [e*”f g(vy )]
= flz,y),
where the last inequality follows from the supermartingale property.

2. (f is increasing in y) Fix w € Q and (z,y) € £. Let € > 0. For any ¢ > 0 it holds that

1
g(yvprey = WEYE

T — U2 r
eyt
PR +9(Y)
>g(YY).

Hence, f(xz,y+¢) > f(x,y).

3. (f is affine iny) Fixx € R, ¥',y” € Ry and A € (0,1). Define y = Ay’ + (1 — \)y”. Note that

for all w € © and all t > 0 it holds that

WO =NV (@)
= M2

Therefore, f (z, Ay’ + (1 — A)y") = Af(z,v") + (1 = N f(z,y").

9 (¥ ()

() 0 ().

4. (there is a unique optimal investment trigger y* ) Since the optimal stopping problem

o(y) = supE eTTF0,YY)], (A1)
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is a standard one, in the sense that the payoff function g is increasing and affine in y, the optimal
stopping time will take the form of the first-hitting time (from below) of some trigger y* that
satisfies the free-boundary problem: find a function ¢ > f(0,-) and a trigger y* > 0 such that
Lo—rp=0 on (0,y%)

Lpo—rp<0 on (y*,00)

e(y") = f(0,y7)

¢'(y") = 1(0,97)

where .Z is the characteristic operator, which, on C? is defined as

1
Loy) = 502270 (y) + poye/(y), ally > 0. (A.2)
Note that v and any y* that solves

solves this free-boundary problem.

To show that a solution to (A.2) solves the optimal stopping problem (A.1), let
Yy ) Einf{t>0|YY>y" }.

Let y* and ¢ € C*(Ryy \ {y*}) solve (A.2). Tt then follows from Dynkin’s formula (see, e.g.,
Oksendal, 2000) that

Ele™ W £(0, You(yey] = Ele™ W (y")]

Ty
—oy) +E [ / L (V) — rp(Y)dt

=¢(y).
Now take any stopping time 7. Then it follows, again from Dynkin’s formula, that
Ele™f(0,Y?)] < E[e"¢(0,YY)]

— o) +E | [ L) - ro(ri)at

< o)
Therefore, ¢ and y* solve (A.2). . To show that (A.3) has a unique solution, define

x(y) & =1f(0,9) +yfy(0,y),
and consider the equation x(y) = 0. Note that
x(0) = —p1f(0,0) + £,(0,0)

_ Bl E + K= Ce—alz* +E e~ T YTl*
r r r—

> 0.
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Since
1

Y.
'(0,y) =E {e‘”* ;} > 0,
I4(0,y) p—
it holds that x(0) < 0 for y large enough. Therefore, there is a unique §* > 0 such that x(§*) = 0.

B. Proof of Proposition 2

The proof of this proposition follows the following steps.
1. The optimal stopping problem (5) is rewritten in a more convenient form.
The corresponding free-boundary problem is stated.

The general solution to the HJB equation is found.

L

Fixing an arbitrary abandonment trigger, yr,, value-matching and smooth-pasting at yr, are
solved to find an auxiliary value function.

This auxiliary value function is shown to be strictly convex with a unique point yz at which

w

smooth pasting with the NPV of operationalization is satisfied. If yr is the point where
abandonment and operationalization have the same NPV it is shown that value-matching at
yp is not satisfied.

6. As yy, is decreased (and the auxiliary value function is changed such that value-matching and
smooth-pasting at yz, remain satisfied) there will be a unique point yg where smooth-pasting
and value-matching are satisfied for the operationalization decision.

7. Those triggers give a continuation region C = (y4,ys) that solves the free-boundary problem.

8. It is shown that a solution to the free-boundary problem gives a solution to the optimal

stopping problem.

1. The optimal stopping problem (5) can be written as

T YV n
G(y) :SllpE[—H/ e_”dt—i—e_”max{—T — —,—KH
. o r—jpg T

=supE [ - /s/ et + e (m/ e "tdt + max { T _
T 0 0 = M2

- _g +sup, E [e " max {G1 (YY), Ga(Y))}], (B.1)

S
|
=
——
N——
[E—

where

K K
Gi(y) 2 ﬁ - g +5, and Galy) L —K+ 2.

Note that Gy and G4 are increasing and non-increasing, respectively, that G 4(0) > G;(0) and
G1(y) > Ga(y) for y large enough. They imply that there is a unique point § € (0,1) such that
Gi(y) = Ga().

Define the function G : Ry — R by

é(y) = 1y§z7GA(y) + 1y>z7GI(y)-
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Note that G = G4 V Gy and that G is C% on R, \ {§}. Therefore, one can write

Gy) = —; + sup, E [e—”é(YTy)} . (B.2)

2. From Peskir and Shiryaev (2006) it follows that we need to find (i) a function G € C*, with
second derivatives locally bounded, which dominates G on R, and (ii) a set C C Ry, that,
together, solve the free boundary problem

HAG—-—rG=0 onC,and AHG—-—rG<0 onRyy\C

G>G onCyand G=G onRyy\C (B.3)

oG _ G
dy|ac ~ 9y |ac”

Here %y denotes the characteristic operator of the process Y, i.e. for any ¢ € C?,

1
Lrp(y) = 5039°¢" (v) + 1oy (v)-

Note that the condition
G —rG <0 onRip\C,

is always satisfied since G” = 0 on Ry, \ {#}. Also note that G’ > 0. [The proof that a solution

to the free-boundary problem solves the optimal stopping problem is given under point 8 below.]

3. On R, ., define the functions ¢ : Ry, — Ryy and ¢ : Ry, — Ry, by'?

Py) =y™, and @y) =y™, (B.4)

where 81 > 1 and 32 < 0 are such that 2(31) = 2(82) = 0; cl. (1). The functions ¢ and @ are the
increasing and decreasing solutions to the differential equation 25 — r¢ = 0, respectively. So,

any solution to Ly ¢ — r¢ = 0 is of the form

¢ =Ap+ 4y,
where A and A are arbitrary constants.
4. Fix y; < ¢ and define the mapping y — V (y;y1), by

Viysyr) = Ayr)@(y) + Alyr)#(y), (B.5)

where the constants A(yr,) and A(yr) are given by
) —

Alyr) = Pyr)Galyr) = ¢'(yr)Galyr) _ _ Bo o (
o(yr)' (yr) — ¢ (yr)P(yr) Bi—B2""

. @' (yr)Galyr) — oyr)Guyr) B g, (K

Alve) = 2y)¢ () — &' (yr)plyr)  Bi—Ba b (r K) '

g—K), and

12The results in this part of the proof are standard and can be found in the literature, such as, for example,
Borodin and Salminen (1996). They are collected here for ease of reference.
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[These constants have been obtained from imposing value matching and smooth pasting at yy,.]
From this it easily follows that
BA(Z/L) _ B152 y—ﬁl—l
oYL Br— B2 F
DA
(yr) PP Yo (f _ K) = 0.
r

(f - K) <0, and
"

oy BB h
5. Since A(yz) > 0 and A(yy) > 0 for all y;, < §, the mapping y — V(y; §) is (strictly) convex.

2!

This follows from ¢” > 0 and ¢ > 0. In addition, it satisfies V(-; %) — oo as y — oo or y | 0. So,
there is a unique point yg € (7, 00) such that V/(yz; ) = G4 (ym). Since V/(7;7) = G'4(7) = 0, at

yu it holds that V(yy;9) < G(yn). Also, for y large enough, it holds that V(y;7) > G (y).

6. Since A(yL) decreases in yz, and A(yr) increases in yr, the mapping y — V(y;yr) has the
property that for every y > yg it holds that OV (y;yr)/dyr < 0. So, the point yz € (7, 00)
where V' (yu;y) = G (yu) is decreasing in yy, as is the value V(yu;yz). [This follows from G
being constant and V’(y; yr,) being larger for every y when yy is smaller. So, the value for which
V'(ym;yr) = G4 (yy) must be smaller for lower y;.] Now decrease yy, from § to 0. There will be a
unique y4, with corresponding yr at which V(yr;y4) = Gr(yr) and V' (yr;ya) = G4 (yr). Figure 7

illustrates the argument.

7. The interval C = (ya,yr) and the proposed function G together solve the free-boundary prob-
lem (B.3). The fact that y4 and yr are the unique triggers that make G a C' function on (y4,yr)

follows by construction.

8. The proof that a solution to (B.3) is also a solution to the optimal stopping problem, i.e. that
G(y) £ Gly) + g =supE [e‘”@(YTy)] 2 sup J7(y),
T T

is standard. Here I will sketch the main argument, for technical details see, e.g., Peskir and
Shiryaev (2006). Obviously, it holds that G(y) < sup, J7(y). To prove the reverse inequality, take

any stopping time 7. It now holds that
Gly)=E [e—"é(yfy)] —-E { / e Ly — r)é(Yty)dt}
0
>Ele G| 2 Ele a0 = (),

where the first equality follows from Dynkin’s formula (@ksendal, 2000), the first inequality follows
from ZG* — rG* < 0, and the second inequality follows from G>aG. Hence, é(y) > sup, J7(y).
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optimal y, /

777I0wyL

value

Figure 7: The function y — V (y;yr,) for different values of yr,.

C. Proof of Proposition 3

Define

G(x:y) = lg<ar (_K) + 193293*G(y)7

so that we can write

F(z,y) = —; +sup E [e‘” (i +d(X® Yy))] .

T 4T
TTE

1. (Description of & +— b(x)) Let (x,y) € C, i.e. F(x,y) > G(x,y). There exists a stopping time

7 < 7F such that
Flo.y) 2 - +E[e (S 4 a(xz,vy)]
r r
> é(x,y) =-K.
Let € > 0. It then holds that

Flo,y+s) > —S+E e (E + G YY)

~ vl
=-S4E {e*” <E+G(X$,Y;!)+1T:Tf it )}
r r T p2

. Y!
> G(z,y)+E {L:Tfe_” E—T}
= 2

G(z,y) = —K = G(z,y +¢).

(A%

Therefore, (z,y + €) € C. Since £ was chosen arbitrarily, we can write b(x) as claimed.

2. (y — F(z,y) is convex and increasing on C) First we prove convexity. Let z < z* and

"y € Ry. Fix A € (0,1) and define y = Ay’ + (1 — A)y”. Note that G is a convex function.
¥,y +
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Therefore,
G(w,y) = Loco (- K) + Li=e-G(y)
< loco (K) + Lo—as (AG(Y) + (1 = NG(y"))
= AG(z,y) + (1= NG(ay"),
which implies that G is convex in y. It then follows that

F(z,y)=— ; + sup E [e‘” (g + @(Xf,Y;’))]

TTZ®

-t (s E ) o (o))

r TTE

TTE

TNERY {—E + s E e (24607 =Yf"’”>)}}

§>\{—E+ supE[e‘”( +G X?Z, Yy }
r

TTE
=AF(z,y") 4+ (1 = N F(z,y").

To prove that y — F(z,y) is increasing on C, consider the points (x,y) € C and (z,y +¢) € C,
for some £ > 0. Let 7¥ be the optimal stopping time when the process (X,Y") starts at (z,y).
There are two possible cases.

1. 7Y = 72, In this case 7Y is also the optimal stopping time for the starting point (z,y + ).

On the event {Y% > ¢} (which has positive probability) it holds that

7Y
< rtdt‘i‘ T G(Y.,-Z{u-i_s)) — <_C/ e_rtdt'i‘e_rTyG(Yqu))
0
( et + e <—(y+€)yfly - Q)) _ (—c /T‘ e At + e (—yyfly - 9))
T — U2 T Jo r— 2 r

=e —7= Vo > 0.
T2

2. 7Y < 72, Let 7YT¢ be the optimal stopping time starting at (x,y + ). Since 7YT¢ > 7Y,

P-a.s., it then holds that

—c / et + e G(Voyse) | = [ —c /
Jo Jo
T N Ty )
= (—c/ e At + e F(XTyYTy)> - (—c/ e "tdt + e (—K))
0 0

= """ [F(Xy,Yru) — K] > 0.

y+te y

eim‘/dt + eirTy G(YTI/ ))

Y

Noting that P(7¥ = 7F) > 0, because, otherwise, (z,y) & C, leads to the conclusion that F(z,y +
g)— F(x,y) > 0.

3. (x — F(x,y) is non-decreasing on C) We first show that  — F(z,y) is non-decreasing on
C. Take (z,y) € C, ¢ > 0 such that z + ¢ < 2* and a stopping time 71 < 7%, P-a.s. Define

72 = 7' A 7€, Consider the following mutually exclusive and collectively exhaustive events.
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L { X% (w)<z* }Nn{ X% (w) <z* }. On this event 7' = 72 and, thus,
T

_c/

0

.

- —(:/

0

=0.

2

Tl
e—rtdt_'_e—rTQG(Xf;—s)) _ (—C/ e Tt +6_TT1G(X_::1+E))
0

7_1
e—”dt+e—”1(—K)> - (—(:/ e—”dt+e—”1(—K)>
0

1

2. { X% z* N { X7 ¢(w) =2* }. On this event it holds that 72 < 7! and we get

7_1
—c 7rtdt_|_efr7 (v(Xm+€)) _ (—C/ ertdt—FeTTlG(Xfl"'E))
J0o

<
( c —rtdt+e—rr G(Y ,+s)> _ (—c/T e_rtdt'f'e_rTl(—K))

o\

c\

A%

r+5
—c —rtdt+e—r7 ) —Ttdt+e—rr ( K))

_Ttdz‘JrP_rT (— K)) - ((’/ e_”dtJre_”l(K))
0

3. {X L(w) = Xf;“(w =z* } On this event it holds that 7' > 72. Consider the process H,
defined by

:\

vV

o\

o, 2 —% tert (i + G(Yt)) .

Note that E[H;|-%5] < X, for all t > s, i.e., that H is a supermartingale. This follows from

E[H | Z] = — (1— ™) 7‘7 + e‘rsE[e_’"(t_s)G(n)‘ﬂs]
<—(1—-e) g + e "*G(Yy)
- (1) S e G(Y)
= Hg,

where the first inequality follows from the fact that e~ G(Y) is a supermartingale, it being

the solution to an optimal stopping problem. From this it follows that

(<

Since 7! was taken to be an arbitrary stopping time, it, therefore, follows that F(z+e,y) > F(x,y).

2

eTMdt + e T G(XE 5)) — (—c / e—”dt+e—"lG(Xfl+f)> > 0.
0

4. (x — b(x) is non-increasing and continuous) Let (x,y) € C with z < z*. Then there exists a

stopping time 7 < 7% such that
c —rr (€ A T
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Let € > 0 be such that z + ¢ < 2*, and define + £ 7 A 7%+¢. Note that # < 7, P-a.s.. Since,

Flx+e,y) > -

e[ (£ )
el (ven)

> Gr,y) = —K =Gz +¢,y),

I\/
ﬁl’}ﬂl(‘

it holds that (x +¢,y) € C and, thus, that b(x + &) < b(zx).

To prove continuity, suppose, ad absurdum, that at some & < x* there is a jump in b(z). This
jump can only be downwards, as b is a non-increasing function. Consider (&,b(Z)). It holds that
F(2,b(2)) = —K. Now consider the right-hand limit of & on the boundary i.e. F(Z+,b(Z+)).
Since both points are on the boundary, it holds that F(z,b(%)) = F(Z+,b(2+)) = —K. However,
because of the downwards jump, it must be the case that b(&) > b(Z+). Now consider the point
F(i+,b(x)). Since Fy(x,y) > 0, we know that F'(Z+,b(2)) > F(Z+,b(z+)). So, it, therefore, also
holds that F(Z+,b(2)) > F(&,b(£)). This, however, contradicts results from the general theory
of optimal stopping, e.g., Krylov (1980, Theorem 3.1.5), that show that the value function F is

continuous. u

D. Proof of Proposition 4

1. As in the proof of Proposition 1, there is a trigger y* such that the optimal stopping time is
the first exit time of the interval (0,y*). As before, the trigger y* should satisfy the first-order
condition

x(y) = yFy(0,y) — B1F(0,y).

It holds that
x(0) = =1 F(0,0) = 51K > 0.

Note that F(0,) > f(0, ) and that, for y large enough, F(0,y) and f(0,y) can be arbitrarily
close. [Intuitively, when y is very large the exit option is so unlikely to ever be exercised that it
is worthless.] Since F(0,-) is a convex function and f(0,-) is an affine function it must, therefore,
hold that f}(0,-) > Fy(-). For the optimal investment trigger of the problem without exit option,

*

y* it, therefore, holds that
so that x(§*) < 0. Therefore, there exists y* € (0, §*) such that x(y*) = 0.

2. Take the continuation region to be C = (0,y*) and consider the value function

ely) ify<y”
V(y) = ,
F0,y) ity >y
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where

y B
oly) £ <—> F(0,y%).
Y
On C it holds, by construction, that £V — rV = 0. It remains to check that £V —rV < 0 on

C°¢. To establish this we use the facts that (i) z — F(x,y) is a convex mapping, (ii) Lx yF =rF

on (0,7*] x Ry, where #x y is the characteristic operator of the process (X,Y), i.e., for ¢ € C?,
1 1
Ly v(,y) & 5ot (2,y) + 503y 0y, (2,y) + i (2,y) + ey (@, y),
and (iii) £ > 0. It then follows that, on [y*, c0),
LV (y) —rVi(y) = L F0,y) —rF(0,y)

1

1
= — 501 (0.9) — m 7 (0,9)

1
< —iafF;’ (0,) < 0.

x

3. The proof that V and C solve the optimal stopping problem (7) follows along the same lines as

in point 8 of the proof of Proposition 2. [ ]
E. Proof of Proposition 5
1. Suppose that C and ¢ solve (13). Let

oV Emf{t > 0: (X7, YY) € Cl,

be the first exit time of C'. Since p; > 0 it holds that Té’y < 00, a.8., so that for all (z,y) € €&,

Dynkin’s formula gives that

T,y

.,y . Tc ) . .
E e p(X 2, V)] = elan)E [ | e et v - et v a

xz,y

= ¢(z,y)E [/OTU

z,y

To .y
— ¢(r,y)=E |:_C/O et +e7TTe (175"”<Tf(_K) + 175‘”27’5G(Y‘%))

et cdt]

2. Let 7 be any stopping time. For every o < x* it then holds that 7 £ 7 A 7% < 0o a.s., so that

Dynkin’s formula gives
£ [ N C/(: el + 7T (Lrarr (< K) + Le=rr G(YE)) ]
<E[- / T T (LXE V) — (XY dt 4 (L (<K 1 Leers G(YY)) |
= p(a,y) — E[eTo(XE YD) + E[e7 (Lears (- K) + 1o=r: G(YY)) |
= p(x,y).

Therefore, F' = ¢ and the first exit time of C' is the optimal stopping time. [ ]
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F. Additional Figures
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Figure 8: Value at t = 0 (top-left panel), optimal investment trigger (top-right panel), Value ration (middle-left
panel), probability of investment in 10 years (middle-right panel), investment triggers upon completion in the model
with abandonment option (bottom-left panel), and 81 (bottom-right panel) as a function of po. All other parameter
values are as in the base-case scenario.
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Figure 9: Value at t = 0 (top-left panel), optimal investment trigger (top-right panel), Value ration (bottom-left
panel), and the probability of investment in 10 years (bottom-right panel) as a function of o1. All other parameter
values are as in the base-case scenario.
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Figure 10: Value at t = 0 (top-left panel), optimal investment trigger (top-right panel), Value ration (bottom-left
panel), and the probability of investment in 10 years (bottom-right panel) as a function of z*. All other parameter
values are as in the base-case scenario.
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Figure 11: Value at t = 0 (top-left panel), optimal investment trigger (top-right panel), Value ration (bottom-left
panel), and the probability of investment in 10 years (bottom-right panel) as a function of c¢. All other parameter
values are as in the base-case scenario.
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Figure 12: Value at t = 0 (top-left panel), optimal investment trigger (top-right panel), Value ration (bottom-left
panel), and the probability of investment in 10 years (bottom-right panel) as a function of K. All other parameter
values are as in the base-case scenario.
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Figure 13: Comparative statics for wider economic benefits: the project’s current value (top-left panel), the optimal
investment trigger (top-right panel), the value ratio (bottom-left panel), and the probability of investment within
10 years (bottom-right panel). All other parameter values are as in the base-case scenario.
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