Abstract
The emergence of novel diseases represents a major hurdle for the recovery of endangered populations, and in some cases may even present the threat of extinction. In recent years, epizootics of infectious diseases such as cetacean morbillivirus (CeMV) have emerged as a major threat to marine mammal populations, particularly group-living odontocetes. However, very little research has explored the potential consequences of novel pathogens in naïve, endangered cetacean populations. Here, we present the first study predicting the spread of infectious disease over the social network of an entire free-ranging cetacean population, the southern resident killer whale community (SRKW). Utilizing 5 years of detailed data on close contacts between identified individuals, we build a fine-scale social network describing potential transmission pathways in this population. We then simulate the spread of CeMV over this network to predict likely outbreak sizes, assess the role of social structure in shaping outbreaks, and test potential mitigation strategies. Our analysis suggests that the SRKW population is highly vulnerable to outbreaks of CeMV. The majority of simulations resulted in unusual mortality events (UMEs) where the mortality rate was predicted to be at least twice the recorded maximum annual mortality. We find only limited evidence that the social structure of this population inhibits disease spread. Furthermore, vaccination of a realistic portion of the population prior to an outbreak is not likely to be efficient at reducing the likelihood of UMEs, with over 40 vaccinated individuals (>50% of the population) required to reduce the likelihood of UMEs below 5%. We suggest that these results be considered when evaluating extinction risk in this population, and that the most effective strategy for mitigating potential epizootics is increasing the population’s overall health through the recovery of Chinook salmon stocks.
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Introduction
Infectious diseases, particularly novel pathogens emerging in naïve populations, can have severe consequences for animal populations (Daszack et al. 2000). The consequences of these pathogens are exacerbated in small, endangered populations, where disease can contribute to elevated extinction risk (Pedersen et al. 2007). The prediction of infectious disease outbreaks through epidemic modelling, and the subsequent design of mitigation strategies, is therefore a key task in endangered species management. Traditional epidemic models assume that contact rates are homogenous within a population (Allen 2008). However, this is rarely the case. In populations that are strongly spatially or socially structured, these assumptions may hamper efforts to predict the severity and patterning of disease outbreaks. 
Network-based models have been increasingly used for analyzing disease dynamics in animal populations, because they can incorporate spatial and social structure (Craft & Caillaud 2011; Godfrey 2013; Silk et al. 2017). In social network models, social entities (i.e. individuals or groups) are represented as nodes in a graph, with the edges between nodes representing social connections and thus the opportunity for disease transmission. A great deal of research has modelled disease outbreaks over the social networks of terrestrial mammal populations, with the goals of predicting outbreak sizes, estimating temporal trends in susceptibility, and designing vaccination strategies (e.g. chimpanzees (Pan troglodytes) and orangutans (Pongo pygmaeus): Carne et al. 2014; raccoons (Procyon lotor): Reynolds et al. 2015; Japanese macaque (Macaca fuscata): Romano et al. 2016; chimpanzees: Rushmore et al. 2014; African buffalo (Syncerus caffer): Cross et al. 2004; Verreaux’s sifakas (Propithecus verreaxi): Springer et al. 2017; European badgers (Meles meles): Rozins & Silk et al. 2018). This work has highlighted the importance of considering non-random social structures in wildlife epidemic modelling, and has suggested a role for social structure in containing epidemics in natural populations.
Emergent infectious disease is of increasing concern for populations of cetaceans, many of which are already threatened or endangered (Gulland & Hall 2007; Van Bressem et al. 2009). Relatively little work, however, has been done modelling the disease consequences of cetacean social structure. Guiamares et al. (2007) modelled the spread of a hypothetical pathogen in a subnetwork of mammal eating killer whales (Orcinus orca), finding that the network was particularly vulnerable to disease outbreak. In this analysis, the dynamics of the simulation were not tuned to any particular pathogen. More recently, unweighted versions of networks derived from bottlenose dolphin populations (Tursiops truncatus) have been analyzed as part of comparative and theoretical studies (Sah et al. 2017; Sah et al. 2018). Importantly, no previous study has modelled the spread of specific pathogens over cetacean social networks with the goal of predicting the severity of outbreaks, and none have modelled the spread through a complete population.
Due to the logistical challenges of observing social interactions in wild cetaceans, the vast majority of cetacean social network studies are based on association indices, which estimate the probability that dyads associate in a given sampling period. Criteria for “association” are varied, but researchers typically set a temporal or spatial threshold at which two individuals are considered to be together. A mismatch between association criteria and disease transmission scales may have hampered previous epidemiological studies; most cetacean social network studies that use a spatial threshold define associations on broad scales, from 100 m (e.g. Lusseau et al. 2006) up to 10 km (e.g. Foster et al. 2012). While these association criteria are often justified when trying to understand the patterns of social relationships within a population, many pathogens of interest are typically transmitted over smaller spatial scales, e.g. when animals exchange viruses through the respiratory tract. This mismatch between contacts relevant to infection and network definitions may lead to incorrect inferences about the dynamics of disease outbreaks (Craft 2015). 
A pathogen of particular concern in gregarious cetacean species is cetacean morbillivirus (CeMV). CeMV is an RNA virus belonging to the family Paramyxoviridae, which also contains measles virus, phocine distemper virus, canine distemper virus, feline morbillivirus, and peste des petits ruminants virus (Alfonso et al. 2016).  CeMV is implicated as the cause of several unusual mortality events in wild cetaceans (Van Bressem et al. 1999; Di Guardo et al. 2005). This virus is highly infectious, with high potential for interspecies transmission (Jo et al. 2018) and is likely transmitted via the respiratory tract through the inhalation of aerosolized virus (Van Bressem et al. 2014). Several factors may increase a population’s susceptibility to CeMV, including high polychlorinated biphenyl (PCB) load (Aguilar & Borrell 1994), poor nutrition (Aguilar & Raga 1993) and inbreeding (Valsecchi et al. 2003).
In this study, we use detailed social network data to model disease dynamics in an endangered killer whale population, the southern resident killer whales (SRKW). The SRKW population is an extremely small (less than 80 individuals), closed population of killer whales in the northeastern Pacific, frequenting the inland waters of Washington and British Columbia. This population faces long-term threats from a variety of environmental and anthropogenic factors. The three factors identified as primary hazards to this population are the decline in abundance and quality of their primary prey, Chinook salmon (Oncorhynchus tshawytscha), anthropogenic noise, and persistent organic pollutants (Lacy et al. 2017). In addition, recent analysis of the respiratory microbiome of this population has highlighted pathogens as a potential fourth threat (Raverty et al. 2017). Previous analysis has emphasized CeMV as a pathogen in need of further study and monitoring in this population (Gaydos et al. 2004).
Killer whales are susceptible to CeMV infection; an Atlantic killer whale that stranded in 2002 was found to be seropositive for CeMV antibodies, indicating recent exposure (Rowles et al. 2011). Morbillivirus epizootics have not yet been recorded in any killer whale population and the virus has not been detected in Pacific killer whales, but CeMV has high spillover potential from reservoirs into novel populations (Van Bressem et al. 2014). SRKWs have been observed interacting with other cetacean species which are known carriers of CeMV, including harbor porpoise (Phocoena phocoena), humpback whales (Megaptera novaengliae), and Pacific white-sided dolphins (Lagenorhynchus obliquidens), providing a potential pathway for the introduction of this pathogen into the population. In addition, many of the factors that are thought to increase a population’s susceptibility to CeMV are present in the SRKW community, including high PCB load, inbreeding, and nutritional stress (Krahn et al. 2007; Ford et al. 2018; Ford et al. 2010).
The SRKW live in stable, multilevel social groups, and individuals form distinct social clusters (Bigg et al. 1990; Parsons et al. 2009; Ellis et al. 2017).  The smallest, most stable social unit is the matriline, composed of females and their descendants, which usually contain 2-9 whales. Closely related matrilines form pods that may contain over 40 individuals and exhibit distinct vocal dialects. The southern resident community contains 3 pods, referred to as J, K, and L (Bigg et al. 1990). This social organization creates a modular social network structure, although the implications of this multilevel social structure for disease transmission in this population has yet to be established.
Modular networks have been hypothesized to provide fitness benefits to social species by trapping disease within modules and preventing large-scale epidemics. Simulation studies predict that modular contact networks result in smaller disease outbreaks than non-modular networks (Nunn et al. 2015; Sah et al. 2017; Rozins & Silk et al. 2018). Recent comparative work has suggested that network subgrouping may decrease outbreak size and epidemic probability, dependent on the characteristics of the disease and strength of the subdivisions (Sah et al. 2018). An analysis of parasite load in primate social groups supports the hypothesis that modular organization inhibits disease spread, with individuals in more modular groups generally having lower parasite load (Griffin & Nunn 2012). In addition, the presence of pronounced social preferences may itself aid in preventing disease spread. Strong social preferences result in increased variance in edge weights (Whitehead 2008), and social networks with greater variance in edge weight are predicted to generally experience smaller outbreaks of infectious disease (Yang & Zhou 2012; Wang et al. 2014). It is currently unclear if the modular structure and strong social preferences of the SRKW community are capable of significantly reducing disease spread. Previous work in a closely related species with a similar social structure, the long-finned pilot whale (Globicephala melas), demonstrated that increased mortality after a CeMV epizootic was limited to a subset of social groups (Wierucka et al. 2014), potentially indicating that modular social structures can effectively trap this disease.
Recently, there has been growing interest in applying individualized medical treatment to the SRKW population (e.g. NOAA 2018), following the model of wildlife veterinary care that has been applied in terrestrial systems such as mountain gorillas (Robbins et al. 2011). Such individualized care may include prophylactic vaccination strategies. Although no morbillivirus vaccine is proven to be effective in any cetacean species, a DNA vaccine for CeMV has been tested in bottlenose dolphins (Vaughan et al. 2007) and recent genomic studies could further inform the development of new vaccines (Batley et al. 2018). Logistical challenges and ethical considerations, however, may preclude vaccinations on a large scale in wild populations. Nonetheless, network-based vaccination strategies to mitigate morbillivirus spread have been successfully implemented in another endangered marine mammal, the Hawaiian monk seal (Monachus schauinslandi; Robinson et al. 2018). Furthermore, herd immunity is thought to be more easily induced in modular social networks, as individuals that bridge communities can be targeted for vaccination, preventing global disease spread (Salathe & Jones 2010). It is currently unclear whether vaccinating a realistic portion of the SRKW population would be effective at preventing epizootics.
Here, we use five years of detailed, fine-scale association data to inform a stochastic, network-based model of pathogen spread through the SRKW population. We focus on simulating the epidemic characteristics of cetacean morbillivirus based on previously published research, given its role in mass mortality in other populations and the risk it poses to the SRKW. We further use null models of the social network to determine the role that social structure has in shaping disease outbreaks. Finally, we simulate both random and network-based vaccination strategies to determine if prophylactic treatment could efficiently mitigate epizootics in this population.

Methods
Field observations
Social associations were recorded over five years (2011-2015) of opportunistic photographic identification surveys in the inland waters of Washington and British Columbia conducted by the Center for Whale Research (CWR). The purpose of these surveys was both to capture clear images of every whale present during each encounter and to acquire photographs that could be used for assessment of body condition and social affiliations. As the SRKW are protected by federal law in both the United States and Canada, all field work was carried out under federal permits issued by both countries (NMFS 15569; DFO SARA 272). Surfacing whales were photographed using Canon or Nikon DSLR cameras. Encounters only occurred on days when clear photographic identification was possible (i.e. no rain and sea state less than Beaufort 4). As the CWR has been conducting annual surveys of the SRKW population since 1976, all individuals in this population are well known. Individuals are easily identifiable throughout their lives by unique pigmentation patterns behind their dorsal fins (“saddle patches”), as well as by dorsal fin shape, knicks, and scars they acquire throughout their lives (Bigg et al. 1990). Surveys were typically conducted from small motorized vessels (5.5 m Boston Whaler), although shore-based photographs of sufficient quality to identify individuals and associations were also analyzed. Only in-focus, clear photograph sequences in which all individuals were identifiable were analyzed. Photographs were managed and analyzed using ACDSee Photo Studio.

Social network construction
As CeMV is thought to be contracted primarily through the inhalation of aerosolized virus, our contact network was constructed to reflect close surface associations, with the goal of estimating the frequency of “respiratory contact” between dyads. While much is still unknown about the transmission dynamics of CeMV, including how long the virus remains infectious in the air after exhalation, we chose a restricted association criteria to ensure that our estimates of disease spread were conservative. Therefore, we considered individuals surfacing synchronously or successively within one body length to be in respiratory contact. Synchronous and successive surfacings were recorded from photographic series capturing surfacing sequences. A surfacing was considered successive or synchronous when an individual began surfacing before the previous individual became completely submerged (Figure 1a).
Individuals and social groups within the SRKW population differ in their use of the study area, and were not continuously followed. Therefore, we are unable to directly estimate the total number of contact events between individuals. Instead, we estimate the probability that each dyad came into contact on a given day. We estimated daily respiratory contact probabilities by calculating dyadic simple ratio indices (SRI; Cairn & Schwager 1987):
				(1)
where Xij is the number of days in which individual i was photographed in respiratory contact with individual j, and Dij is the total number of days on which either i or j were photographed. SRI values represent an estimated daily association probability, and thus range from 0 to 1, with zero indicating individuals were never observed in respiratory contact, while 1 indicates individuals were observed in respiratory contact on every day that either was observed. Many cetacean network studies use a half-weight index (HWI) to correct for biases in data collection, namely that individuals are often more likely to be seen apart than together. However, in line with our goal of being conservative in our estimates of disease spread, we chose to use SRI, as a dyad’s SRI value will always be less than or equal to the same dyad’s HWI value.
During surveys, the primary objective was to photograph all whales present, with secondary goals of recording social groupings and assessing the health of individuals. Groups of whales could not be continually followed for all hours of the day, and it was therefore not possible to quantify the amount of time associated dyads spend together on a given day. Moreover, not all individuals could be simultaneously monitored and surveys were likely to miss surface associations. Therefore, our SRI values are prone to underestimating daily contact probabilities, which may lead to overly-conservative estimates of disease outcomes. 
We limit our dataset to sampling days occurring in the summer months (May to September) of each year. This is the period in which the southern residents are most frequently in the study area as they follow returning Chinook salmon runs, and therefore provides the most detailed data on association patterns. While some aspects of SRKW social structure change over longer time-scales, relationships are consistently structured by pod and matriline, and changes are not predictable (Parsons et al. 2009). Therefore, we aggregate association data across the entire study period, as this aggregation allows for more precise estimates of dyadic contact probabilities (Whitehead 2008). In order to avoid biases in estimated contact probabilities due to the births and deaths of individuals, only individuals that were alive for the entire study period were included in our analysis.
To confirm the suitability of this approach, we compared all pairs of networks derived from each year of data collection by calculating the Spearman correlation coefficient between dyadic SRI values across the two years, with Mantel tests with 1,000 permutations to assess statistical significance of the correlations (Hobson et al. 2013). We also tested for seasonal changes within the summer months by constructing aggregated networks for each study month (May-September) across all years and carrying out the same comparison procedure described above.
While the aggregation of several years of data allows for more precise estimates of contact probabilities, it also presents the potential for increasing the density (i.e. number of edges) in our simulated networks relative to the empirical annual contact patterns. Overestimating the density of contact networks can lead to overestimation of disease spread in epidemiological simulations (Risau-Gusman 2011). We carry out a simulation study to confirm that simulations based on the aggregated network do not result in higher density networks that would be expected for a single year of associations. For each year, we simulate associations for each dyad from a binomial distribution, using the observed annual dyadic sampling effort (Dij in eq. 1) as the sample size and the aggregated SRI value as the probability of success. The expected mean annual density is then calculated from these simulated networks. We carry out this procedure 10,000 times to build a distribution of mean densities for our simulations, which is then compared to the mean density of the observed annual networks. If aggregation results in increased density, the observed mean density would be significantly lower than the simulated mean densities.
SRI networks were constructed in R (R Core Team 2017) using the asnipe package (Farine 2018) and custom code, and the vegan package was used to conduct Mantel tests (Oksanen et al. 2018).

Network metrics
To evaluate the precision of our social network, we estimated the correlation between our measured association indices and the underlying association probabilities. We first calculate the coefficient of variation (CV) of our observed SRI values, and then estimate the CV of the underlying association probabilities (S) via maximum likelihood, assuming the underlying associations follow a beta distribution.  The ratio of S to the observed CV is an estimate of the portion of variance in SRI values that is accounted for by the variance in association probabilities, rather than sampling variance, and therefore approximates the correlation between true and observed association indices. Correlations greater than 0.4 are generally considered to indicate useful representations of the underlying social structure (Whitehead 2008). Parameter fitting was performed in R, using the VGAM package for beta-binomial likelihood calculation (Yee 2018).
We measure the extent to which individuals formed subgroups by performing community detection on the contact network. We use a walktrap community detection algorithm implemented in the igraph R package to detect communities (Csardi & Nepusz 2006). The modularity of the community division found by this algorithm is a network-level measure of how strongly individuals associate within rather than across social clusters.

Temporal independence of respiratory contacts
A key assumption of our disease transmission model (see below) is that the probability of a dyad coming into respiratory contact on a given day is constant, and therefore independent of contacts in previous days. Biologically, this would indicate that contacts dissolve and reform within a single day according to constant contact probabilities, leading to temporal independence of associations.
We test this assumption by calculating the lagged association rate (LAR) across several time-lags in our dataset. The LAR at time-lag τ estimates the probability that a dyad associated in a given day will also be associating τ days later. Most analyses of LAR analyze extremely large values of τ (i.e. over 1,000 days) in order to investigate the long-term temporal structure of associations. However, as we are interested in transmission dynamics over considerably shorter timescales (see below), we only investigate LARs for values of τ from 1 to 20 days.
Whitehead (1995) suggests comparing LARs to null association rates that represent the expected patterns if individuals associated randomly. As our model does not assume random mixing, but rather temporal independence, we use an alternative null association rate that approximates the expected LAR if associations dissolve and reform between each sampling period with a constant probability of association for each dyad. Let aij be the probability of an association between individuals i and j in each sampling period (approximated by SRIij). The probability that i and j associate twice in any two sampling periods, given independence, is then aij2. The expected LAR across all time-lags under temporal independence (LARnull) is then:
				(2)
We calculated 95% confidence intervals for LARs at each τ using jackknife resampling (Whitehead 1995). LARnull represents our null hypothesis of temporal independence, and we rejected this null hypothesis at a given τ if the 95% confidence interval of the LAR at τ did not include LARnull. All temporal analyses were performed using custom R code available in the supplementary material.

Disease outbreak model
We simulate the spread of CeMV using a stochastic individual-based susceptible-infected-removed (SIR) model over the killer whale respiratory contact network. Note that in SIR models, there is no difference between dead and recovered, immune individuals; they are removed from the population and cannot become infected again or spread the pathogen to others. While this framework is potentially overly simplistic for some pathogens, recovery from CeMV confers life-long immunity and the virus has no carrier state, meeting the basic assumptions of an SIR model (Van Bressem et al. 2014).
The model simulates a situation in which an interaction with a CeMV infected individual of another species (e.g. Pacific white-sided dolphin, humpback whale, harbor porpoise) leads to the introduction of the disease to the SRKW population via a single seed individual. Interspecific interactions are rarely observed, and therefore we assume no further interspecific transmission after the initial introduction. As CeMV has not been detected in this population in over 40 years of observations, all non-infected individuals start as susceptible. Each time-step in the model represents a single day. We therefore model the probability that an infected individual j transmits the disease to a susceptible individual i at time t (λtij) as the joint probability that i and j come into contact on that day and that a given contact effectively transmits the disease. As the fine-scale transmission dynamics of CeMV have not been resolved, we make the simplifying assumption that for each day a susceptible individual is exposed to an infected individual, there is a constant probability of transmission. We further simplify the model by assuming that daily contacts are independent of one another. We use our estimated SRI values to approximate daily contact probabilities, and so
				(3)	
where β is the transmission coefficient, representing the per-contact probability of transmission, and Itj is an indicator variable that takes the value of 1 if j is infected at time t, and 0 otherwise. The probability that susceptible individual i will become infected during timestep t (Tti) is then
			(4)
The probability that individuals already infected at the beginning of timestep t will be removed by timestep t+1 is denoted by α (mean infectious period = 1/α). Individuals that become infected during t cannot infect others or be removed until timestep t+1. The model run is terminated when there are no infected individuals left, or until the time limit is reached. We limit the number of daily time-steps to 150, as our dataset represents association patterns during a five-month period of the year. We do not include non-pathogen induced baseline mortality in the model, as mortality rates over a single 5-month period would be too low to have a significant impact on model predictions. The disease simulation model was coded in R and is available in the supplementary materials.

Model parameters and output
The outcome of our model is influenced by the removal probability α, and the transmission coefficient β. We therefore sought to estimate values of these parameters that most closely resemble those of previous CeMV outbreaks in wild odontocetes. In the absence of data on CeMV outbreaks in killer whale populations, we estimate the likely range of epidemic parameters of CeMV from previously published epidemic modelling and social network studies of western Atlantic bottlenose dolphins. We note that CeMV strains vary in their epidemiology, and that there are likely differences in recovery rates and infectiousness between host species (Jo et al. 2018). The derived parameter values should therefore be viewed as rough estimates based on the best available knowledge.
Morris et al. (2015) estimated a reproductive ratio for CeMV (the average number of secondary cases expected from a single infected individual, R) of 2.58 during the peak of an epidemic (95% CI = 2.08-3.17) and a removal rate of 0.12 (95% CI = 0.1-0.14). While the overall rate at which infected individuals infect others was estimated in this analysis, this study did not estimate a per-contact transmission probability.
To estimate the per-contact transmission probability of CeMV during this previously observed epidemic, we use a social network study carried out by Titcomb et al. (2015) on a subpopulation of western Atlantic bottlenose dolphins in the Indian River Lagoon to estimate the mean strength ⟨s⟩ of association networks in this population. This study is the only large-scale social network study we are aware of in this species that uses the same daily sampling period as our analysis, and spatially overlaps the CeMV outbreak from which the other epidemic parameters were derived. This study reports a mean weighted degree in the dolphin social network of 1.88 (95% CI = 1.63-2.13). We note that this study defined associations over broader spatial scales than our analysis (100 m) and HWI was used, rather than SRI. These factors are likely to produce estimates of ⟨s⟩ larger than our methodology, potentially leading to an underestimation of the transmission coefficient for CeMV and making our estimates of CeMV spread conservative.
For each set of simulations, we generate a set of α, ⟨s⟩, R0, and seed individuals via Latin hypercube sampling using the “lhs” R package (Carnell 2019). This sampling technique allows for a more efficient exploration of the entire parameter space than sampling each variable independently (Seaholm et al. 1988). Parameter values for α, ⟨s⟩, and R0 were drawn from continuous uniform distributions with ranges equal to their reported 95% confidence intervals, while the seed individual is draw from a discrete uniform distribution on [1, N], where N is the total number of individuals in the network (Table 1). We then calculate β for each parameter set using a simple estimate of the reproductive ratio for epidemics on weighted graphs (Kamp et al. 2013):
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which can be re-arranged to
				(6)
Our baseline simulation to assess overall vulnerability of the network consisted of 100,000 model runs. We evaluate the outcome of the model first by calculating the probability that an outbreak results in an “unusual mortality event” (UME; Gulland & Hall 2007). We use a simple heuristic to define UMEs, and say a UME has occurred when a simulation results in predicted mortality at least 2x higher than the highest recorded annual mortality rate in this population, which was 8.24% in 2016. Therefore, our definition of a simulated UME was a simulation in which at least 16.47% of the population is predicted to die. While the mortality rate of CeMV infected cetaceans is not known, individuals infected with viruses of this family tend to exhibit mortality rates of 70% - 80% (Diallo et al. 2007). We therefore assume that mortality rates due to CeMV were 70% of the final outbreak size, and thus our threshold outbreak size for UMEs was 23.53% of the population infected. While we use this threshold in the rest of the text, our general results were robust to alterations to this heuristic. We also calculated the mean and standard deviation of the outbreak size (the proportion of the population infected) during runs in which UMEs occurred as a measure of predicted UME severity. 
We also conducted a sensitivity analysis to determine which of our two parameters, α and β, was most influential on the outcome of our simulation. We did this by calculating partial Spearman rank correlation coefficients for the final outbreak sizes of our 100,000 model runs and their respective values of these two parameters (Wu et al. 2013). Higher absolute values of these coefficients indicate a greater amount of variance in the outcome of the simulation being due to variance in the parameter of interest, controlling for other parameters.

Influence of social structure on disease outbreaks
We next sought to determine the extent to which the structure of SRKW social relationships shapes disease spread. We do this by performing simulations of disease outbreaks on two null models. The first is a mean-field null model, in which all contact probabilities between individuals are set to the mean contact probability in the observed network. This model simulates a population that associates entirely at random, and is therefore equivalent to traditional epidemic models that assume random mixing. The second null model is an edge randomization, in which observed edge weights are randomly shuffled between dyads. This retains the heterogeneity of social preferences, but removes the higher-order structure of the network. In both null models, the mean strength (i.e. an individual’s average contacts per time step) from the observed network is retained.
We carry out the same simulation procedure outlined above on the null-model networks, and examine the influence of network structure on disease dynamics by comparing the UME probability and mean UME size between the observed network and the two null models.

Effectiveness of vaccination
We next investigated whether a prophylactic vaccination strategy would be effective in this population.  We simulate the implementation of three potential vaccination strategies. The first is a random vaccination, in which V randomly chosen individuals are set as removed prior to the start of the simulated outbreak. The other two strategies are both based on individuals’ centrality in the network. In many networks, targeting vaccinations towards individuals with high weighted degree is the most effective strategy to induce herd immunity (Rushmore et al. 2014), however in networks with community structure, targeting high betweenness individuals that bridge communities is sometimes more effective (Salathe & Jones 2010). We simulate scenarios in which individuals are targeted either based on their weighted degree or weighted betweenness. In both scenarios, the V individuals with the highest centrality are set as removed prior to the start of the simulation.
We evaluate vaccination effectiveness relative to a “conservative coverage threshold” (Rushmore et al. 2014). We therefore define an effective vaccination coverage when UMEs do not occur in 95% of simulations. We simulate values of V from 1 to 50 (coverage of 1%-70%), with 50,000 simulations for each value of V and each vaccination strategy. We stress that safely vaccinating 50 free-ranging killer whales is most likely an unrealistic management goal, even if a safe and effective CeMV vaccine is developed for this species. Nonetheless, we simulate these high values to better illustrate the degree to which vaccination may be effective in this population.

Results
Respiratory contact structure
The final respiratory contact network contained a total of 72 individuals sighted over the course of 314 days of observation. All individuals were photographed on at least 30 different days throughout the study period, with a median of 82 days per individual. Estimation of social differentiation and subsequent comparison to the observed CV suggested a highly differentiated social structure and a good correlation between our observed network and the true underlying association probabilities (S = 1.50, r = 0.70).
All pairs of yearly networks were significantly positively correlated (range of r values= 0.41-0.58, all p < 0.001), as were monthly networks (range of r values = 0.38-0.56, all p < 0.001). We therefore conclude that there is no evidence for significant changes in the patterns of social relationships within the summer months during our study period, nor was there evidence that social structure shifted significantly across the 5 years of the study. The mean density of annual networks was not different from the expected density given aggregated SRI values and sampling effort (Supp. Figure 1).
The aggregated SRKW respiratory contact network formed a single, highly connected component (Figure 1b). Over 70% of dyads had a non-zero contact probability during the study period. Non-zero edge weights ranged from 0.005 to 0.62, with the mean contact probability over all dyads being 0.03 (median = 0.01, IQR = 0.03).
In agreement with previous studies (Parsons et al. 2009; Ellis et al. 2017), the network was distinctly modular (Q = 0.52) and was divided into six social clusters. All but one cluster contained members of a single pod, the exception being J pod’s cluster, which contained individual L87, an adult male that has frequently changed social affiliation since his mother’s death in 2005 and has travelled with J pod since 2010 (Center for Whale Research 2018). L pod showed the most significant sub-pod structure, with three identified social clusters. In contrast, J pod formed a single, large cluster (Figure 1).
Analysis of lagged association rates showed that the temporal patterns of association in the observed data are largely similar to the expected patterns under temporal independence, given the observed association preferences. While the LAR is typically slightly above the expected LAR, jackknifed 95% confidence intervals overlap LARnull (Supp. Figure 2). We conclude that our model’s assumption of temporal independence is unlikely to significantly bias the results of our simulations.

Simulated disease outbreaks
As expected, the outcome of the baseline simulation showed distinct bimodality; the disease either failed to spread far beyond the initially infected individual, or most of the population became infected (Figure 2). The network was extremely susceptible to simulated CeMV outbreaks. The majority of simulations resulted in unusual mortality events (UME probability = 0.69). When UMEs occurred, the disease typically infected around 90% of the population (mean UME size = 0.89, SD = 0.09).
Sensitivity analysis using partial correlation coefficients suggested that the outcome of our model was more sensitive to variation in the per-contact transmission rate than the recovery rate. The partial rank correlation between outbreak size and transmission rate was 0.33, while the correlation with removal rate was -0.18. This is not surprising, as our values of the removal rate were based on the results of explicit epidemic modelling, while our estimates of the transmission rate were derived from a combination of previously reported epidemic parameters and social network metrics. The uncertainty in our estimates of the transmission rate therefore incorporate the uncertainty in recovery rate, basic reproductive number, and contact rates.  While our range of recovery rates was 0.1 to 0.14, our final values of the transmission rate ranged from 0.1 to 0.27. This result highlights the need for further studies into the transmission dynamics of CeMV to inform modelling and management efforts. We note, however, that our estimates for the per-contact transmission rate of CeMV are highly conservative compared to the known transmission rates of other morbilliviruses (e.g. the 90% transmission rate found in measles; Hamborsky et al. 2015).

Influence of social structure on disease outbreaks
Comparison of results of simulations on the observed network to the two null models revealed that the structuring of contacts in the observed network provided limited protection from disease outbreaks (Figure 2). While UME probability was larger in the null models, the changes in UME probability were small (mean-field UME probability = 0.74; edge-randomized UME probability = 0.72). Similarly, the size of UMEs was slightly larger in both null models (mean-field: mean = 0.95, SD = 0.05; edge-randomized: mean = 0.93, SD = 0.06).  In terms of number of individuals infected during UMEs, these differences amount to an average increase of 3 individuals in the edge-randomized model, and 5 individuals in the mean-field model. While these results suggest that both the strength and patterning of social preferences may lead to measurable reductions in epidemic probability and size, they also clearly demonstrate that these effects are likely not significant from the perspective of conservation planning in this population.

Effectiveness of vaccinations
Our network measures used to design vaccination strategies, weighted degree and betweenness, were not strongly correlated (Spearman’s r = 0.24), indicating that there would be significant differences between vaccination strategies based on these measures. Both targeted vaccination strategies performed better than the random vaccination strategy at reducing the probability of outbreaks, and both targeted strategies performed similarly to one another. However, the differences in conservative coverage thresholds were modest. Given random vaccination, 45 individuals (62.5% coverage) were required to reduce UME probability below 0.05, compared to 40 individuals (55.6% coverage) in the betweenness strategy and 42 individuals (58.3% coverage) in the weighted degree strategy.

Discussion
In this study, we assessed the vulnerability of a critically endangered killer whale population to outbreaks of an infectious disease that has previously been identified as a potential hazard. In our analysis, designed to replicate the observed properties of cetacean morbillivirus, most simulations resulted in outbreaks that would likely result in unusual mortality events, and in these cases nearly the entirety of the population became infected. Our results further suggest that the social structure of this population offers only limited protection from disease outbreaks, and that vaccination programmes, even with relatively high coverage and ideal targeting of individuals, are unlikely to efficiently reduce the risk of outbreaks. Given its fragile state, it is unlikely that this population would recover from the sudden increase in mortality that would result from a majority of the population becoming infected with CeMV. While this model was specifically parameterized to simulate the spread of CeMV, the general vulnerability suggested by this analysis is likely to be applicable to other highly infectious pathogens that can be spread via aerosols.
Theoretical models and comparative studies suggest that subgrouping in social networks reduces the risk of disease spread (Griffin & Nunn 2012; Sah et al. 2018). Our findings generally support this result, with the important caveat that the protection provided seems unlikely to be significant in a conservation context for this population. This agrees with recent simulation experiments suggesting that disease spread is only significantly inhibited at extreme modularity values, and that network fragmentation may be more important than modularity (Sah et al. 2017). We suggest that this lack of significant protection is due to the sheer density of connections in the killer whale network; while there were clear preferences for associating within clusters, associations across clusters were still common. In addition, modular structures are predicted to be most effective at trapping disease with low transmissibility (Sah et al. 2018). Social structure may therefore be less effective at trapping pathogens such as morbilliviruses, which are highly transmissible.
[bookmark: _Hlk16500371]Both the distribution of contact probabilities and the degree of subgrouping had small but measurable effects on the outcomes of simulated epidemics. The effect of edge weight variance may partially be driven by the density of non-zero edges, as all individuals had the opportunity to interact in the mean-field model, while the edge-randomization maintained the portion of edges from the original network, although overall interaction rates were the same between the two models. In most cases, both the portion of non-zero edges and variance in edge weights are the result of social preferences in association networks (Whitehead 2008). Therefore, our findings suggest that both the intensity of social preference and the patterning of relationships may be determinants of disease spread on animal social networks. However, our study also demonstrates that small populations with strong social preferences and clear divisions between social units may still be highly vulnerable to the emergence of novel pathogens.
It is important to note that factors not included in the model, such as potential changes in social behavior after infection (e.g. Lopes et al. 2016; Stroeymeyt et al. 2018), the duration of daily social contacts, transitivity effects in the daily contacts, the potential for continued interspecies transmission, and variation in epidemic parameters, are likely to influence the actual outcome of CeMV outbreaks in this population. Our analysis draws particular attention to current uncertainty about the per-contact transmission rate of CeMV. We suggest that future empirical work address these knowledge gaps to better inform management efforts. Regardless, the results of our model are concerning, and suggest that the possibility of widespread disease outbreaks and their potential impact on SRKW vital rates should be accounted for in future population assessments.
Our results demonstrate that it is difficult to induce effective herd immunity in the SRKW population by partial vaccination of the population, even when vaccinations are ideally targeted based on network centrality. At least 40 vaccinations (> 50% of the network) were required to reduce UME probability below 0.05, even with network-informed vaccination strategies. Modularity in contact structures is thought to generally make targeted vaccination more effective (Salathe & Jones 2010), however the multilevel nature of resident killer whale society complicates this; since family groups typically move together, there are no single individuals responsible for the majority of the spread between modules that can be targeted for vaccination. The logistical challenges of vaccinating and monitoring individuals at sea and the potential stress these activities may cause the animals likely make the prospect of wide-scale vaccinations impractical, as well as potentially unethical.
As individualized treatment is unlikely to be efficient, we suggest that management of potential disease outbreaks is likely best addressed by increasing the overall health of the population. Since the 1990s, the SRKW population has declined from nearly one hundred individuals to 73 at the time of writing. The most severe pressure contributing to this ongoing decline is reduced availability of prey (Lacy et al. 2017). As a result of consistently low food availability, visibly poor body condition is widespread in this population (Fearnbach et al. 2018), as is hormonal evidence of nutritional stress (Ayres et al. 2012). Poor nutrition may increase this population’s vulnerability to CeMV and other pathogens (Aguilar & Raga 1993). While inbreeding and PCB concentration are also of concern due to their link to CeMV outbreaks (Aguilar & Borrell 1994; Valsecchi et al. 2003), these hazards are less readily addressed by conservation efforts. Therefore, in line with previous recommendations, we suggest that management actions designed to increase the abundance of Chinook salmon available to the SRKW are critical to mitigating the potential impact of epizootics in this population.
Our analysis highlights the importance of applying modelling techniques in conservation planning, while also highlighting the limitations of targeted vaccination as a disease management strategy. As conservation interventions are always limited by both resources (Bottrill et al. 2008) and potential negative impacts on individual animals (e.g. Woodroffe 2001), maximizing the payoff of management actions is crucial. Individualized medical interventions in general, and vaccinations in particular, are increasingly central to a number of conservation efforts. Previous work has demonstrated that modelling techniques can often inform low-impact, effective, and efficient vaccination programs in endangered wildlife populations, particularly in primarily solitary species (Robinson et al. 2018) and in group-living species with well-defined territories (Haydon et al. 2006). Our analysis suggests that such actions may be less effective in highly social, group-living populations with frequent social contact between subgroups, even when these groups are well defined. These social structures may also be generally vulnerable to disease outbreaks, despite their apparent modularity. Such social structures are prevalent in several taxa of conservation concern, including cetaceans, elephants, and primates (Grueter et al. 2012). We recommend that similar simulation studies be implemented when evaluating infectious disease risk and management strategies in these systems.
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Figure 1. Respiratory contacts in the southern resident killer whale population. a) Example photographic sequence of a successive surfacing between two individuals (J42 and J16). J42 is identifiable from her saddle patch in (i), and as J42 begins to submerge in (ii), J16 begins surfacing within one body length. In (iii), J16 is fully identifiable. b) Final respiratory contact network for the population from 2011 to 2015. Edge thickness corresponds to estimated daily probabilities of respiratory contact. Node colors indicate pod membership (blue = J, green = K, orange = L) and dotted lines indicate clusters found by walktrap community detection algorithm.

Figure 2. Distribution of disease outcomes in the observed network and two null models. Violin plots indicate the density of disease outcomes (in proportion of the population infected). Dotted line indicates our threshold for an unusual mortality event. Boxplots indicate quantiles for the runs in which the epidemic resulted in a UME.

Figure 3. Results of simulated vaccination strategies. Lines indicate UME probability for each vaccination strategy (solid = random, dashed = weighted degree, dotted = betweenness) under different levels of coverage.  Red dotted line indicates our conservative vaccination target, at which UMEs are predicted to occur in less than 5% of cases.
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Table 1. Parameters and values used for disease simulations. All parameter ranges were derived from studies of social interactions and CeMV epizootics in western Atlantic T. truncatus.
	Parameter
	Interpretation
	Value
	Source

	α
	Probability of removal per day
	0.10 – 0.14
	Morris et al. 2015

	1/ α
	Mean infectious period
	7.14-10.00
	Morris et al. 2015

	R0
	Mean number of secondary cases per infected individual during an outbreak
	2.08 – 3.17
	Morris et al. 2015

	⟨s⟩
	Mean number of contacts per individual per day
	1.63 – 2.13
	Titcomb et al. 2015

	β
	Per-contact transmission probability
	
	Kamp et al. 2013
















Supplementary Figures
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Supplementary Figure 1. Results of simulation comparing density of annual networks to aggregated network. Histogram represents the mean density of annual networks simulated from the aggregated contact probabilities and yearly dyadic sampling effort. Red line indicates the observed mean density of annual networks.

[image: ]
Supplementary Figure 2. Lagged association rates of respiratory contacts. Black line is the calculated LAR at each daily time-lag, with error bars indicating jackknifed 95% confidence intervals. Dotted red line indicates the expected LAR under temporal independence, given the observed association preferences (as in equation 2).
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