
This is a repository copy of Gradeer : an open-source modular hybrid grader.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/175804/

Version: Accepted Version

Proceedings Paper:
Clegg, B., Villa-Uriol, M.-C., McMinn, P. et al. (1 more author) (2021) Gradeer : an open-
source modular hybrid grader. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering Education and Training (ICSE-SEET). 43rd
International Conference on Software Engineering: Software Engineering Education and
Training (ICSE 21), 25-28 May 2021, Virtual conference. IEEE (Institute of Electrical and
Electronics Engineers) , pp. 60-65. ISBN 9781665401388

https://doi.org/10.1109/ICSE-SEET52601.2021.00015

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Gradeer: An Open-Source Modular Hybrid Grader

Benjamin S. Clegg∗, Maria-Cruz Villa-Uriol∗, Phil McMinn∗ and Gordon Fraser†

∗University of Sheffield, †University of Passau

Abstract—Automated assessment has been shown to greatly
simplify the process of assessing students’ programs. However,
manual assessment still offers benefits to both students and
tutors. We introduce Gradeer, a hybrid assessment tool, which
allows tutors to leverage the advantages of both automated
and manual assessment. The tool features a modular design,
allowing new grading functionality to be added. Gradeer directly
assists manual grading, by automatically loading code inspectors,
running students’ programs, and allowing grading to be stopped
and resumed in place at a later time. We used Gradeer to assess
an end of year assignment for an introductory Java programming
course, and found that its hybrid approach offers several benefits.

I. INTRODUCTION

The demand for Computer Science and Software Engineering

education has continued to increase over recent years, with

educational institutions seeing larger cohorts of students

enrolled in such courses [1]. As technology further advances,

future generations of students will drive this demand further,

with universities and schools facing several challenges in

teaching a growing number of students. One of these challenges

is the assessment of a large number of students’ solutions to

programming tasks. Assessment is particularly important, since

it both has the ability to further students’ development through

the provision of detailed feedback, and serves to measure a

student’s understanding of a topic.

Automated grading and feedback techniques offer several

benefits in assessing large numbers of students. Their automated

nature allows users to perform other tasks while grading

is executed. It is also often much quicker to run a series

of automated processes than to manually assess individual

students’ solution programs. This is especially important for

courses with large numbers of students, where manual assess-

ment would consume too much time, and manual feedback

could be provided too late to be of relevance to students’

learning. In addition, automated feedback allows for a large

amount of feedback to be generated, and providing more

pieces of automated feedback has been shown to improve

students’ performance [2]. Automated grading is also more

consistent than manual grading, especially if students’ solutions

are assessed manually by multiple people [3], which would

likely be necessary to improve assessment times.

There are, however, some issues with the use of automated

assessment alone. There is a significant initial time cost of

using automated assessment, with the need to either develop

or configure a tool before assessment can be performed.

Additionally, with the exception of test-based systems, tutors

may find it difficult to adapt an automated assessment system

to meet their requirements [4]. Similarly, there are a wide range

of unique automated assessment approaches [5]–[10], some

of which may be suited to certain tasks, but would require

a significant degree of effort to combine into one grading

tool. Automated assessment also lacks some of the benefits

of manual approaches. Manual assessment has the ability to

capture aspects of grading that are hard to automate, such as

the usefulness of variable names, or the appearance of a GUI.

There is also evidence that manually provided feedback is of

greater benefit to students’ performance than automatically

generated feedback [11].

In this paper, we introduce Gradeer, a hybrid modular

grading system, with the goal of providing the benefits of

both approaches, while mitigating their challenges (Section II).

We used Gradeer to assess an end of year assignment for an

introductory programming course (Section III). We found that

the tool’s hybrid approach allowed for the use of a large number

of consistent automated assessment criteria, and aided in the

provision of detailed manual feedback to students. Gradeer also

provides a degree of automation to assist tutors in manual

assessment, such as automatically launching students’ programs

and code inspectors. We found that these features saved us a

considerable amount of time when manually assessing students’

solutions. The modular nature of grading components allows

a variety of automated grading techniques to be used in

conjunction with one another, while minimising the effort

required to combine their results. Gradeer is available on

GitHub under the GPLv3 license, which allows users to write

their own extensions and integrations for the tool [12].

II. THE Gradeer GRADING TOOL

Gradeer is an assessment tool which provides tutors with

the benefits of both automated and manual assessment in a

single package. The tool achieves this using a modular design,

allowing a user to choose how to assess a programming task

using simple configuration files, or even define their own

modules for specific purposes. To allow for manual assessment,

Gradeer is designed to be used by tutors on personal computers,

where the user can interact with the program via a CLI. It is

however possible for Gradeer to be integrated with a GUI or

web interface. Gradeer is implemented in Java, and allows for

the assessment of Java programs. Wider language support is

planned for future versions of the tool. This section describes

our design of Gradeer, alongside some of its benefits.

A. Checks

We designed Gradeer with a focus on modular grading

components, called checks, each of which represents a single

grading criterion. Different types of checks are currently

ar
X

iv
:2

10
2.

09
40

0v
1

 [
cs

.C
Y

]
 1

2
Fe

b
20

21

implemented, defining how a criterion’s base score (a decimal

value between zero and one) can be determined for a given

process and student’s solution. Various checks of different types

can be used together in a single run of Gradeer, constructing a

markscheme to assess several learning outcomes. For example,

users can configure Gradeer to use multiple checks to run

various test suites, perform static analysis, and manually assess

several aspects of a solution. Users configure their checks in

JSON files. Users can also implement new checks to add the

functionality of unique and domain-specific grading tools.

One currently implemented type of check is the

TestSuiteCheck, which executes a given JUnit test class

on a student’s solution via Apache Ant [13], then calculates

a score as the proportion of tests that pass. Tutors can assess

individual learning outcomes by grouping tests that evaluate

the same outcome into one class.

We also implemented check types for two static analysis

tools, Checkstyle and PMD [14], [15], in order to automatically

assess the code quality of students’ solutions. Such checks

search the output of their respective tool for a user defined

rule violation. The number of violations in each source file of

a solution is recorded and used to compute a base score. Users

can also define a minimum and maximum number of violations,

which yield base scores of one and zero, respectively.

To support manual assessment, we have implemented a

ManualCheck type, which displays a user-defined prompt

and score limit to the user when executed. This check then

parses numeric input from the user and normalises it to a

score in the range of zero and one. For example, the following

response would produce a base score of 0.6:

How informative are the variable names?

(0 = very poor, 10 = excellent)

6

Each check has an associated weight; a score multiplication

factor to allow a test to have a greater or smaller impact on each

solution’s overall grade, as discussed in Section II-B4. This

weight can be defined by the user. In addition, each check has

associated feedback to provide to a student for their solution.

For most checks, this feedback is determined by mapping a

base score to one of several feedback values that have been

pre-defined by the user. For example, the above manual check

may provide students with feedback for the base scores, bs:

• 0.9 ≤ bs ≤ 1.0: “Your variable names are informative.”

• 0.5 ≤ bs < 0.9: “Some of your variable names could be

more informative.”

• 0.0 ≤ bs < 0.5: “Most of your variable names could be

more informative.”

Manual checks can also read text input from the user, allowing

for additional feedback to be provided on an individual basis.

For example, a tutor may enter “a is not an informative variable

name, leftMotor would be better.”

B. Execution

Figure 1 shows an overview of Gradeer’s execution process.

1) Compilation & Check Loading: First, Gradeer compiles

every students’ solution and every model solution (Section

II-B2). At this stage, any solutions which do not compile

are flagged as such. These solutions are reported to the tutor

for review, and are excluded from further execution. Next,

Gradeer loads every check defined in the JSON files. The tool

also compiles the test classes that are provided by the user. If

enabled, Gradeer automatically generates a test suite check for

each test class which does not have a matching check already

defined by the user.

2) Model Solution Execution: The user can supply a set

of one or more model solutions; entirely correct solutions

to the programming task being assessed. Users can choose

to use multiple model solutions to define different correct

implementations of the programming task. In order to identify

and remove invalid checks, Gradeer executes every check on

each provided model solution. Checks which attain a base score

of less than one on any of the model solutions are considered

to be invalid, and are removed; they falsely claim that a model

solution is partly or completely incorrect. This prevents invalid

checks from being used in the assessment of students’ solutions,

preventing them from unfairly losing or gaining grades, or

being given inaccurate feedback. For example, uncompilable

test classes will not pass on any solutions, so their checks are

removed. The names of invalid checks are stored in a file for

the tutor to review and correct.

3) Solution Grading (for each Student’s Solution):

a) Pre-checks: In order for some checks to function

properly, a series of pre-checks are executed on each solution.

For example, checks for Checkstyle and PMD require pre-

checks which execute their corresponding static analysis tool

on the solution under test and store its output in memory.

b) Solution Inspection: To support effective manual

grading, Gradeer includes a solution inspector which can

perform two processes, as configured by the user. The first

executes a student’s solution in a separate thread before running

any manual checks. This allows the user to be able to interact

with the solution, and to observe its user interface, which

may be relevant to the rubric of manual checks. The solution

execution thread is closed following the completion of every

manual check on a given solution. The second opens each of

the solution’s source files in an external user defined text editor,

such as Atom. This allows for the user to perform manual code

inspection, for example to determine the quality of variable

names or comments. The solution inspector removes the need

for the user to manually run a student’s solution to interact

with it, or open its source files to inspect it, saving time.

c) Checks: The final step of a solution’s grading process

is to run every check on it. In order to improve execution time,

Gradeer runs automated checks in parallel by default. Manual

checks are only executed in the main thread, however, as they

require user input, and henceforth could result in the occurrence

of race conditions otherwise. In order to prevent some JUnit

checks from taking too long to execute, Gradeer has a user

configurable global test timeout, where any tests that take

longer than this time are treated as failing. This is particularly

Model
Solutions

Unit Tests

Check
Configs

Students'
Solutions

Compiler

Compiler

Compiler

PreprocessorsPre-checks

Preprocessors
PreprocessorsPreprocessorsCheck

Generators

Check
Executor

Valid
Checks

Solution
Inspector

State
Restoration

Stored
Check
Results

Grade &
Feedback

CSVs

Grade
Calculator
& Output

Writer

Checks

Check
Executor

Check
Results

PreprocessorsPre-checks

Students'
Solutions

Model
Solutions

Compilation & Check Loading Model Solution Execution Solution Grading Output

Fig. 1: Overview of Gradeer’s flow of execution. The dotted areas indicate different phases of the execution. Waved boxes are

files, parallelograms are internal data, and regular boxes are processes.

important, since some students’ solutions may contain bugs that

prevent them from halting, such as incorrect loop conditions.

4) Output: After executing every check on every solution,

Gradeer stores the appropriate grades and feedback for each

solution in various CSV files. The final grade of each solution

is stored in one CSV file. This grade is calculated by:

Grade (s) =

∑
c∈C

w(c) · Base Score(c, s)
∑

c∈C
w(c)

,

where s = Student’s solution,

C = Set of enabled checks,

w(c) = Weight of check c

Similarly, the combined feedback of each solution across

all checks is also stored in a CSV file. Gradeer also stores

a CSV file with the individual base scores and feedback of

every check for each solution. This file also includes the weight

of each check. This allows for final changes to be made in

spreadsheet software if absolutely necessary. For example, the

user can post-process the students’ grades by adjusting the

checks’ weights, and recalculating the final grades in the same

manner as Gradeer. Users can also gather valuable information

on students’ performance for the grading criteria, facilitating

the provision of group feedback to the entire student cohort.

C. State Restoration

Following the completion of checks on a solution,

Gradeer stores the results and feedback for every check in a

JSON file. When Gradeer is executed with such files present,

it uses them to restore these check results for every applicable

solution, and skips the corresponding checks when processing

these solutions again. This has numerous advantages:

• A tutor can effectively pause the grading process and come

back to it at a later time. This is particularly advantageous

when using manual checks, as programming tasks with

many students’ solutions can take hours to manually assess.

State restoration allows this arduous process to be split

into more manageable marking sessions.

• Assessment tasks can be allocated to multiple users, such

as TAs. Tutors can adjust users’ Gradeer configurations to

use different solutions or checks. By allocating different

manual checks to different users, grading can be completed

more quickly without reducing consistency. By merging

the users’ JSON files and re-running Gradeer, the final

grades and feedback can be generated.

• If Gradeer halts unexpectedly, perhaps due to a wider

system error, the user’s grading progress is not lost.

• Tutors can either directly modify the result files to adjust

the results of individual checks, or delete them outright to

re-assess a solution. Running Gradeer again will update

the final output files (as described in Section II-B4). Tutors

can also choose to add new checks after initial executions

of the tool to capture additional assessment requirements.

III. CASE STUDY

In this section, we discuss our application of Gradeer in an

end of year introductory Java programming assignment with

171 students’ solutions.

A. The Assignment

The assignment required students to parse a series of

structured input files into a provided data structure, then

implement a set of methods that query this data. The assignment

also required students to plot graphs using this data in a GUI

using Java’s Swing library. A primary goal of the assignment

was to provide students with experience in working on a multi-

faceted project with codependent systems, which are more

akin to real software than the simpler introductory programs

used earlier in the course. As an end of year assessment, the

assignment had a fairly wide span of learning outcomes. Such

learning outcomes included the use of polymorphism, bespoke

data structures, the choice and use of various Java Collections,

text manipulation, GUI programming, algorithm design, and

the use of good quality code and programming style.

We first determined the overall assignment specification,

then focused on creating a model solution that captured this

specification. We then created a set of grading unit tests,

ensuring that they were valid and that the model solution passed

on each of them. Following this, we duplicated the model

solution to create a skeleton project, from which we removed

the classes and methods that students were to implement.

B. Release

We distributed the skeleton project to students. We also

provided the students with a set of input data files that were to

be read by their implemented parsers. These data files were a

subset of those that we later used when grading the assignment.

Around a week after we released the assignment, we also

provided students with a set of public tests. We designed

these tests to ensure that students’ code included the basic

functionality of the assignment. This provided students with

a degree of feedback as they worked on the assignment, and

dissuaded students from submitting solutions which are not

compatible with our grading environment, such as including

incorrect class names.

C. Check Configuration

We configured Gradeer to use 45 checks:

• 26 test suite checks (each check executed one unit test),

• six PMD checks,

• six Checkstyle checks, and

• seven manual checks (for GUI functionality and subjective

aspects of code review, such as variable names).

By using these checks together, we were able to use Gradeer to

assess all of our learning outcomes. The manual checks were

important in this regard, since the design of the GUI and some

aspects of code quality cannot be fully graded automatically.

D. Assessment

While Gradeer supports the use of all types of checks in

a single execution, we split the checks across two separate

execution configurations; one for automated checks and one

for manual checks. This was necessary since we anticipated

that some solutions would be problematic, containing issues

that would prevent compilation or execution. As such, running

manual checks on some of these solutions would have been a

waste of effort if the solutions could not be executed properly.

By splitting the checks we were able to first compile the

students’ solutions and run the automated checks to identify any

problematic solutions, and to assess the working solutions. We

identified 48 problematic solutions. We repaired these solutions

where possible so that they could still be graded with Gradeer,

but added a penalty for doing so when post-processing the

grades. We repeated the automated grading for these repaired

solutions. However, 11 of the solutions could not be repaired

due to severe issues. We wrote individual feedback for each

of these solutions to explain the nature of these problems.

Finally, we re-executed Gradeer with only the manual checks

on every working and repaired solution. Table I shows the

average amount of time that various aspects of running the

assessment with Gradeer took for each applicable solution,

alongside the time taken to manage problematic solutions.

TABLE I: Average time to perform each assessment task on

each applicable solution.

Assessment Task Average Time Per Solution

Compilable Solutions

Compilation ∼1.6 seconds

38 Automated Checks ∼28.2 seconds

7 Manual Checks ∼2 minutes

Problematic Solutions

Problem Identification ∼11.3 minutes

Solution Repair ∼11.4 minutes

Individual Feedback ∼10 minutes

Once we completed grading the assignments, we performed

some post-processing on the results. In particular, we added

some more specific feedback and adjusted the weights of some

of the checks. Providing the additional feedback revealed the

possible benefit of being able to add specific feedback when

running Gradeer, leading us to later implement the ability to

add user entered feedback for manual checks. We also provided

more detailed and general feedback to the entire student cohort

using the distribution of solutions’ base scores for individual

checks. In addition, we used this check performance data

to adjust the checks’ weights. For example, we found that

the scores of some checks would vary considerably between

solutions, such as a PMD check for cyclomatic complexity,

for which approximately half of the solutions achieved < 0.5.

In such cases, we increased the check’s weight, as it better

differentiated students’ solutions. However, we attempted to

maintain similar total weights between the broader groups of

learning outcomes, such as overall correctness and code quality,

to assess students in a well-rounded manner.

E. Benefits of Gradeer

We found that Gradeer’s hybrid grading approach provided

several benefits when assessing this programming assignment:

1) Fast Manual Assessment: Gradeer provides a particular

benefit in allowing for quick manual assessment. This is

mostly due to Gradeer’s solution inspector, which automatically

executes students’ solutions, and displays their source files in

a text editor. Without this feature, a tutor must manually open

the correct directory, enter a command to run the solution, and

open the source files, before beginning the manual assessment.

By removing the need to follow these steps for every solution,

Gradeer removes a significant bottleneck in manual grading.

2) Automated Grading: By using automated grading wher-

ever possible, we were able to reduce the number of manual

checks. For example, we used some static analysis checks

to evaluate the style of students’ solution programs, such as

ensuring that they used camel case formatting in variable names.

By using these checks, the tutor did not have to look for these

issues when performing the manual code inspection. Similarly,

the use of unit tests to assess correctness of some elements

of the program removed the need for the tutor to identify

faults in these elements manually. The additional benefit of

automated grading is that the checks are applied consistently

across solutions. Any two students’ solutions which have the

same faults will be assessed the exact same way.

3) High Quality Feedback: We found that Gradeer was

capable of providing useful feedback to students. While

automated checks only provide simple feedback, the large

number of these checks gave students a very wide range of

feedback; they could gain a good understanding of where they

succeeded and where they can improve. This is supported by

Falkner et al.’s findings that students’ performance improves

as more pieces of automated feedback are provided [2]. This

feedback is further augmented by Gradeer’s support for manual

checks, the scores of which we used to determine which of

several pieces of feedback to give to a student. The ability to

provide manual feedback at runtime in the current version of

Gradeer supports this even further.

4) Reusable: In the past, we typically used unique autograd-

ing scripts for each assessment. Developing these scripts is a

time consuming process, and may involve repeated effort of

implementing similar functionality across multiple assessments.

Conversely, Gradeer can be reused in different assessments,

only requiring modifications to simple configuration files.

F. Challenges

When assessing the assignment, we found that uncompilable

solutions introduced the greatest time cost. Around 48 of the

171 solutions initially could not be compiled or executed, due

to missing files, syntax errors, or modifying files that should be

unmodified. It is possible that such problems could be mitigated

by preventing students from uploading broken solutions, such

as by integrating Gradeer with the solution upload system, and

reporting to students if an issue is detected.

Running the automated checks did take a considerable

amount of time, at ∼28.2 seconds per solution using an AMD

Ryzen 1700 CPU. The main source of this time cost is setting

up the test execution environment. We plan to investigate a

possible workaround for this issue in the future. In addition,

the version of Gradeer that we used for this assessment did

not support multithreading. After implementing multithreading,

we observed an execution time of ∼10.9 seconds per solution.

We found that some static analysis rules can present a

unique challenge in being used in an automated grader. In

particular, Checkstyle’s indentation rules can only be used with

one tutor defined indentation width, while indentation widths

may vary between solutions. This is an issue since several

different indentation widths are commonly used in software,

any of which may be acceptable provided that they are used

consistently. It may be possible to use multiple similar checks

and only use the highest base score as a workaround.

While using software such as Gradeer requires less effort

than writing a unique grading script, some tutors may be

dissuaded by not understanding its internal functionality.

Providing tests may increase tutors’ confidence in such tools.

IV. RELATED WORK

Some existing automated grading tools also feature modular

assessment elements [16]. For example, Nexus’s assessment

components implemented as Docker micro-services [17]. Web-

CAT uses modular plug-ins [18], [19]. JACK and ArTEMiS

both use multiple software components that can be split across

multiple servers, and interchanged to support different grading

functionalities [20], [21]. These tools are designed to be used as

scalable web services, which can be beneficial for large courses

and MOOCs. Such approaches do have considerable advantages,

and may allow tutors to view students’ source code, but tutors

cannot run and interact with students’ solutions directly, which

limits their ability to perform manual assessment. By contrast,

Gradeer specifically accommodates manual assessment.

It is not uncommon for assessment tools to take a “semi-

automatic” approach, with support for user intervention and

manual assessments alongside automated processes [22]. Web-

CAT allows tutors to manually inspect students’ source code,

and provide feedback or additional grades [19]. Praktomat

grants TAs the ability to provide manual feedback by adding

comments to students’ code [23]. It also allows TAs to add

manual scores for learning outcomes. JACK enables tutors to

provide manual corrections for generated grades, and manual

feedback [20]. Jackson’s grading tool displays the contents of a

solution’s files before reading the user’s input to determine the

scores of a series of manual assessment elements [24]. While

these tools have provisions for manual assessment, none of

them automate the process of launching students’ programs for

tutors to interact with them. This may be problematic, as the

bottleneck of manually running each solution is still present

when evaluating user interaction. Gradeer’s solution inspector

removes this bottleneck entirely. Gradeer also combines the

results of automated and manual checks into a single grade,

without additional user intervention.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented Gradeer, a modular grading

tool to support both the automated and manual assessment of

students’ programs. We have also discussed our experiences

in using the tool to assess an end of year assignment for an

introductory programming course. We find that Gradeer can

effectively support tutors in providing quality feedback to

students, while maintaining a low time cost of assessment.

Gradeer also provides tutors with detailed data on students’

performance, which can be used to inform and improve teaching

quality, future assessment design, and feedback. Gradeer is

available at https://github.com/ben-clegg/gradeer [12].

In our future work, we will extend our evaluation of Gradeer,

by comparing the time saved using our solution inspector versus

manually running each solution, and by surveying more end

users. We plan to improve Gradeer, such as enhancing its

modularity, by further separating check modules from the rest

of the system, and modularising other components (such as pre-

checks and language-specific functionality) as well. We also

intend to add web integration to the tool, to inform students

when they have submitted solutions with significant problems.

REFERENCES

[1] BCS Press Office, “Record numbers choosing Computer Sci-
ence degrees - new data reveals.” [Online; accessed 2021-01-
26] https://www.bcs.org/more/about-us/press-office/press-releases/record-
numbers-choosing-computer-science-degrees-new-data-reveals/.

[2] N. Falkner, R. Vivian, D. Piper, and K. Falkner, “Increasing the
effectiveness of automated assessment by increasing marking granularity
and feedback units,” SIGCSE 2014 - Proceedings of the 45th ACM

Technical Symposium on Computer Science Education, pp. 9–14, 2014.
[3] I. Albluwi, “A Closer Look at the Differences between Graders in

Introductory Computer Science Exams,” IEEE Transactions on Education,
vol. 61, pp. 253–260, aug 2018.

[4] H. Keuning, J. Jeuring, and B. Heeren, “Towards a systematic review of
automated feedback generation for programming exercises — Extended
Version,” tech. rep., Utrecht University, 2016.

[5] X. Liu, S. Wang, P. Wang, and D. Wu, “Automatic Grading of
Programming Assignments: An Approach Based on Formal Semantics,”
2019 IEEE/ACM 41st International Conference on Software Engineering:

Software Engineering Education and Training (ICSE-SEET), pp. 126–137,
2019.

[6] D. Insa and J. Silva, “Automatic assessment of Java code,” Computer

Languages, Systems and Structures, vol. 53, pp. 59–72, 2018.
[7] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback

generation for introductory programming assignments,” Proceedings

of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), vol. 48, pp. 15–26, jun 2013.
[8] S. Parihar, Z. Dadachanji, P. K. Singh, R. Das, A. Karkare, and

A. Bhattacharya, “Automatic Grading and Feedback using Program
Repair for Introductory Programming Courses,” in Annual Conference

on Innovation and Technology in Computer Science Education, ITiCSE,
2017.

[9] B. C. Wünsche, T. Suselo, W. Van Der Mark, Z. Chen, K. C. Leung,
A. Luxton-Reilly, L. Shaw, D. Dimalen, and R. Lobb, “Automatic
assessment of OpenGL computer graphics assignments,” in Annual

Conference on Innovation and Technology in Computer Science Education,

ITiCSE, pp. 81–86, 2018.
[10] S. Sridhara, B. Hou, J. Lu, and J. DeNero, “Fuzz Testing Projects in

Massive Courses,” in Proceedings of the Third (2016) ACM Conference

on Learning @ Scale - L@S ’16, pp. 361–367, ACM Press, 2016.

[11] A. Leite and S. A. S. A. Blanco, “Effects of human vs. automatic feedback
on students’ understanding of ai concepts and programming style,” in
Proceedings of the 51st ACM Technical Symposium on Computer Science

Education (SIGCSE ’20), vol. 20, pp. 44–50, Association for Computing
Machinery, feb 2020.

[12] B. S. Clegg, “Gradeer Repository.” [Online; accessed 2020-10-18]
https://github.com/ben-clegg/gradeer.

[13] The Apache Software Foundation, “Apache Ant.” [Online; accessed
2020-10-16] https://ant.apache.org/.

[14] Checkstyle, “Checkstyle.” [Online; accessed 2020-10-16]
https://checkstyle.sourceforge.io/.

[15] PMD, “PMD.” [Online; accessed 2020-10-16] https://pmd.github.io/.
[16] S. Zschaler, S. White, K. Hodgetts, and M. Chapman, “Modularity

for Automated Assessment: A Design-Space Exploration,” in Software

Engineering 18, pp. 57–61, 2018.
[17] S. Zschaler, S. White, K. Hodgetts, and M. Chapman, “Nexus:

a micro-service architecture for automated feedback and grad-
ing systems.” [Online; accessed 2020-10-08] http://www.steffen-
zschaler.de/publications/nexus architecture.pdf, 2017.

[18] S. H. Edwards and M. A. Pérez-Quiñones, “Web-CAT: Automatically
grading programming assignments,” in Proceedings of the Conference

on Integrating Technology into Computer Science Education, ITiCSE,
(New York, New York, USA), p. 328, ACM Press, 2008.

[19] S. H. Edwards, “What is Web-CAT? - Web-CAT.” [Online; accessed
2020-10-15] http://web-cat.org/projects/Web-CAT/WhatIsWebCat.html.

[20] M. Goedicke, M. Striewe, and M. Balz, “Computer aided assessments
and programming exercises with JACK,” tech. rep., 2008.

[21] S. Krusche and A. Seitz, “ArTEMiS - An Automatic Assessment
Management System for Interactive Learning,” in Proceedings of the 49th

ACM Technical Symposium on Computer Science Education - SIGCSE

’18, vol. 2018-Janua, (New York, New York, USA), pp. 284–289, ACM
Press, feb 2018.

[22] D. M. Souza, K. R. Felizardo, and E. F. Barbosa, “A systematic literature
review of assessment tools for programming assignments,” Proceedings

- 2016 IEEE 29th Conference on Software Engineering Education and

Training, CSEEandT 2016, pp. 147–156, apr 2016.
[23] J. Breitner, M. Hecker, and G. Snelting, “Der Grader Praktomat,” Autom.

Bewertung der Program. Digit., 2017.
[24] D. Jackson, “A Semi-Automated Approach to Online Assessment,” in

Proceedings of the Conference on Integrating Technology into Computer

Science Education, ITiCSE, vol. 32, pp. 164–167, ACM, sep 2000.

	I Introduction
	II The Gradeer Grading Tool
	II-A Checks
	II-B Execution
	II-B1 Compilation & Check Loading
	II-B2 Model Solution Execution
	II-B3 Solution Grading (for each Student's Solution)
	II-B4 Output

	II-C State Restoration

	III Case Study
	III-A The Assignment
	III-B Release
	III-C Check Configuration
	III-D Assessment
	III-E Benefits of Gradeer
	III-E1 Fast Manual Assessment
	III-E2 Automated Grading
	III-E3 High Quality Feedback
	III-E4 Reusable

	III-F Challenges

	IV Related Work
	V Conclusions and Future Work
	References

