
This is a repository copy of NEIL3 prevents senescence in hepatocellular carcinoma by 
repairing oxidative lesions at telomeres during mitosis.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/175701/

Version: Published Version

Article:

Zhao, Z., Gad, H. orcid.org/0000-0001-6530-1443, Benitez-Buelga, C. et al. (8 more 
authors) (2021) NEIL3 prevents senescence in hepatocellular carcinoma by repairing 
oxidative lesions at telomeres during mitosis. Cancer Research, 81 (15). pp. 4079-4093. 
ISSN 0008-5472 

https://doi.org/10.1158/0008-5472.can-20-1028

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



CANCER RESEARCH | MOLECULAR CELL BIOLOGY

NEIL3 Prevents Senescence in Hepatocellular Carcinoma

by Repairing Oxidative Lesions at Telomeres during Mitosis
Zhenjun Zhao1,2, Helge Gad1,3, Carlos Benitez-Buelga1, Kumar Sanjiv1, Hua Xiangwei4, He Kang2,

Mingxuan Feng2, Zhicong Zhao2, Ulrika Warpman Berglund1, Qiang Xia2, and Thomas Helleday1,3

ABSTRACT
◥

Patients with hepatocellular carcinoma (HCC) suffer from few

treatment options and poor survival rates. Here we report that

endonuclease VIII-like protein 3 (NEIL3) is overexpressed in HCC

and correlates with poor survival. All six HCC cell lines investigated

weredependent onNEIL3 catalytic activity for survival andprevention

of senescence, while NEIL3 was dispensable for nontransformed cells.

NEIL3-depleted HCC cell lines accumulated oxidative DNA lesions

specifically at telomeres, resulting in telomere dysfunctional foci and

53BP1 foci formation. Following oxidative DNA damage during

mitosis, NEIL3 relocated to telomeres and recruited apurinic endo-

nuclease 1 (APE1), indicating activation of base excision repair.

META-FISH revealed that NEIL3, but not NEIL1 or NEIL2, is

required to initiate APE1 and polymerase beta (POLB)-dependent

base excision repair at oxidized telomeres. Repeated exposure of

NEIL3-depleted cells to oxidizing damage induced chromatin bridges

and damaged telomeres. These results demonstrate a novel function

for NEIL3 in repair of oxidative DNA damage at telomeres inmitosis,

which is important to prevent senescence of HCC cells. Furthermore,

these data suggest that NEIL3 could be a target for therapeutic

intervention for HCC.

Significance: This study describes compartmentalization of base

excision repair during mitosis that is dependent on NEIL3, APE1,

and POLB to repair oxidative damage accumulating at telomeres in

hepatocellular carcinoma.
NEIL3 initiates the base excision repair pathway during mitosis to repair oxidative telomere damage.
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Introduction
Hepatocellular carcinoma (HCC) is the most common type of

primary liver cancer and the third leading cause of cancer-related

death worldwide (1, 2). Most new HCC cases and HCC-related

mortalities occur in Africa, China, and Southeast Asia, where it is a

reasonably common disease. HCC is commonly caused by chronic

liver diseases, such as HBV- and HCV-related infection, alcoholic,

metabolically and dietary-induced fatty liver disease, autoimmune

or chronic cholesteric diseases (3, 4). Chronic liver diseases con-

tribute to accumulation of reactive oxygen species (ROS) and

inflammation, leading to cirrhosis and eventually HCC (5). Because

of mild and nonspecific symptoms at early stages, many patients

with HCC are diagnosed at advanced stages, where there are limited

treatment options, are commonly drug resistant and have high

recurrence rates. Although many approaches have been suggested

to treat HCC [e.g., surgery, transarterial chemoembolization

(TACE), immunotherapy and targeted therapies], effective drugs,

and nonsurgical treatment for patients with HCC remain very

limited (6–8).

Cancers have deregulatedmetabolism, redox homeostasis andDNA

damage response and repair (DDR), which all contribute to deregulat-

ed or excessive ROS production (9), which irreversibly induce cell-

cycle arrest, apoptosis and various oncogenic pathways, altogether

fueling genome instability (9, 10). 8-oxodG is the most abundant oxi-

dized lesion in cells and is prone to further oxidation, producing highly

mutagenic hydantoin lesions such as spiroimindiohydantoin (Sp) and
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guanidinohydantoin (Gh), typically repaired through the base excision

repair pathway (BER; refs. 11–13).

ROS production increases during G2–M-phase (14) and induction

of oxidative damage in this phase arrests cells in pro-metaphase

(15), suggesting that the level of endogenous DNA damage varies

during the cell cycle and have more severe effects in certain phases.

It is well established that there is differential DNA repair at telomeres

(16). Telomeres are repeated TTAGGG sequence, which form

G-quadruplex at the end of chromosome and are protected by the

Shelterin complex to ensure the natural ends of chromosome are not

mistaken as DNA damage sites (5, 17, 18). Telomeres are sensitive to

oxidative damage, resulting in cell senescence, chromosome fusion,

and apoptosis (19, 20). While BER pathways are described to be

active at telomeres, information about these processes or potential

differential roles of glycosylases are generally lacking.

The Nei endonuclease VIII-like 3 (NEIL3) is a monofunctional

glycosylase that belongs to the Fpg/Nei family and functions in the

BER pathway. NEIL3 preferentially recognizes G-quadruplexes and

hydantoin lesions (such as Sp andGh; refs. 12, 21). A role of NEIL3 has

been illustrated in fibroblast proliferation, telomere maintenance,

DNA interstrand cross-link unhooking and autoimmunity (22–25).

It has been shown that NEIL3 functions in S phase to maintain

telomere integrity. Silencing NEIL3 resulted in telomere loss, telomere

fusion, extra telomere signals, and telomere associations between

chromosomes (25). However, the increase of NEIL3 expression in

G2–M phase and the observation that oxidative stress has profound

effects in mitosis, suggests that NEIL3 has a crucial role in DNA repair

in this phase.

Here, we find that HCC has high NEIL3 levels and that NEIL3-

dependent BER is required for preventing accumulation of telomere-

specific lesions in mitosis of HCC, which is required to prevent

genomic instability and promote survival of HCC.

Materials and Methods
Clinical specimens

All samples were collected in Department of Liver Surgery, Renji

Hospital, Shanghai Jiao Tong University School of Medicine. Tumor

and nontumor tissues were all collected from 202 patients with

primary HCC undergoing hepatectomy between 2010 and 2015. We

randomly selected 80 pairs of tumors and paired nontumor specimens

to measure NEIL3 expression level with IHC staining. 102 pairs of

tumor and nontumor tissues were collected for RNA isolation. 120

patients with HCC were collected for tissue microarray (TMA) and

patients were followed up regularly.

For the RNA isolation, three groups (normal liver, tumor and

cirrhotic liver tissues; n ¼ 20 for each group) were obtained from

patients undergoing liver transplantation between 2016 and 2018 at

Department of Liver Surgery, Renji Hospital. All specimens were

collected using the same standardization process and were confirmed

by pathologic examination. Written informed consent form was

acquired from all patients before surgery and protocols were approved

by the Institutional Review Board of Shanghai Jiao Tong University

and Ethics Committee of Renji Hospital for the use of samples. The

study was conducted in accordance with the Declaration of Helsinki

and approved by Ethics Committee of Renji Hospital. The Ethical

permit number is KY2019–114.

Data collection and analysis from the database

mRNA sequencing data and clinical data for normal tissue, cirrhotic

tissue, tumor tissue and paired nontumor tissuewas acquired fromThe

Cancer GenomeAtlas Liver Hepatocellular Carcinoma (TCGA LIHC)

database (https://tcga-data.nci.nih.gov/), GEO database (GSE25097)

and IST Online (http://ist.medisapiens.com/).

Heatmaps, genes clustering, and sample clustering were performed

with MeV software. Kaplan–Meier analysis for overall survival and

recurrence and Student t test were carried out with GraphPad Prism

version 8.

HCC TMA IHC and analysis

TMA with 120 HCC tissues was used in this study. All the samples

were applied to evaluate the prognostic value of NEIL3 based on their

detailed survival data. The sections were dewaxed with xylene, grad-

ually hydrated, and then boiled in 10mmol/L citrate buffer (pH6.0) for

5 minutes for antigen retrieval. The sections were blocked with goat

serum, incubated with primary antibody overnight at 4�C. Then TMA

was incubated with 1:200 secondary antibody in blocking buffer at

room temperature following for 1 hour followed by DAPI staining for

10 minutes.

Images for each patient were taken with a confocal microscope. The

NEIL3 integrated intensity in the nucleus was calculated with cell

profiler. Patients were divided into two groups referring to themedian.

Kaplan–Meier analysis for overall survival and recurrence were carried

out with GraphPad Prism software.

Cell lines and cell culture

Human HCC cell line HEP3B and osteosarcoma cell line U2-OS

were purchased from ECACC in 2016 and 2013 respectively and

immortalized epithelial cell line hTERT RPE-1 were purchased from

ATCC in 2016. Huh7, SMMC-7721, MHCC97H, MHCC97L, L-02

and HEPG2 cells were purchased from Shanghai Institutes for Bio-

logical Sciences, Chinese Academy of Sciences in 2013 and were

preserved in the department of Liver Surgery, Renji Hospital, Shang-

hai, China. All cells were identified with STR PCR, and tested

Mycoplasma negative with PCR or MycoAlert Mycoplasma Detection

Kit before the experiment and all cells used in the experiments were

within 15 passages from thawing.

HEP3B cells were cultured in minimum essential media (MEM,

Gibco, 11095080) supplemented with 1% NEAA (Sigma Aldrich,

M7145) and 10% FBS (Gibco, 12662029). Huh7, hTERT RPE-1,

SMMC-7721, MHCC-97L, MHCC-97H, and L-02 cells were cultured

inDMEM(Gibco, 11995065)with 10%FBS (Gibco, 12662029).All cells

were cultured in a humidified incubator containing 5% CO2 at 37
�C.

Proliferation assays

Growth curve

1,000 cells were seeded in triplicates in a 96-well plate. Cell viability

was measured for 5 consecutive days with resazurin and results were

plotted withGraphPad Prism. Clonogenic assay: Cells were cultured to

30–40 confluency and transfected with siRNA overnight. Cells were

seeded at 300 cells/well in 6-well plates the following day and cultured

in complete media (refreshed every 3 days). Colonies were counted

manually after 14 days.

For the clonogenic survival assay with paclitaxel and doxorubicin,

cells were first transfected with siRNA, the day after reseeded in 6-well

plates and on the day 3 treated with the compounds. Fresh media was

added every fourth day and colonies were counted after 12 days. For

the IR experiment, cells were irradiated on day 3 with the TOMO

Therapy Hi�Art radiation source.

siRNA transfections

HEP3B andHuh7 cell were seeded in 6-well polystyrenemicroplates

and incubated until they reached 30% to 40% confluence. Cells were
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transiently transfected with small interfering RNA (siRNA) at a final

concentration of 10 nmol/L with INTERFERin transfection reagent

according to manufacturer’s instructions. The cells were cultured for

48–72 hours, followed by quantification of mRNA using real-time

qPCR or Western blot. The sequences that were used for the siRNA

transfections are summarized in Supplementary Table S1.

All siRNAs were purchased from Qiagen, except POT1 that was

purchased from Eurofins Genomics.

Flow cytometric analysis of apoptosis

To quantify apoptosis, Huh7 andHEP3B cells were transfected with

negative control siRNA or siNEIL3 s2 or s4 for 72 hours. After

transfection, the cells were harvested by trypsinization, washed twice

with PBS and stained with Annexin V: FITC Apoptosis Detection Kit

(#556547, BD Biosciences), following the manufacturer’s protocol.

Apoptosis (AnnexinV�, PIþ) or necrosis (AnnexinVþ, PIþ) cells were

gated and analyzed with FlowJo.

Antibodies

The information on the primary antibodies used is summarised in

Supplementary Table S2.

Quantitative real-time PCR

A standard TRIzol method (Invitrogen) was used to extract total

RNA from tissues and cultured cells and to synthesize complementary

DNA. RT-PCRwas performed using SYBR Premix Ex Taq (Takara) in

an ABI PRISM 7900HT sequence detector. Two housekeeping genes,

b-actin, andGAPDH,were used as endogenous control and the primer

sequences used in this paper are summarised in Supplementary

Table S3.

Western blot analysis

HCC cell line extracts were prepared for immunoblotting analyses

after washing with PBS and scraped in lysis buffer (10 mmol/L HEPES

pH 7.1, 50 mmol/L NaCl, 0.3 mol/L sucrose, 0.1 mmol/L EDTA, 0.5%

Triton X-100, 1 mmol/L DTT and protease inhibitor cocktail). Sam-

ples were kept on ice for 30 minutes and centrifuged at 15,000 � g for

15 minutes. Supernatant was collected and 4x sample buffer (Invitro-

gen) was added with 100 mmol/L DTT (Sigma). and samples were

denatured at 95�C for 10minutes. Proteins were separated on 4%–12%

Bis-Tris acrylamide gels in MES running buffer (Invitrogen). After

separation, proteins were transferred to Hybond ECL nitrocellulose

membranes (GE Healthcare) followed by blocking with 5% milk in

TBS-Tween 20. Blots were probed with primary and secondary anti-

bodies in blocking solution before image acquisition with Odyssey Fc.

EdU staining

Cells were seeded on a coverslip and incubated with 10 mmol/L EdU

(Invitrogen, A10044) in culture media for 30 minutes before the

experiment. Cells were fixed with 4% PFA in PBS and permeabilized

with 0.5% Triton in PBS. Click-it reaction buffer were prepared

according to protocol: 1 mmol/L CuSO4, 10 mmol/L Alexa Fluor

488 azide (Invitrogen, A10266), 100 mmol/L Tris (pH 7.5), and

100 mmol/L ascorbic acid (Sigma, A92902; ref. 26). After 30-minute

incubation with reaction buffer, cells were washed three times

with PBS. Blocking and antibody staining was performed after EdU

staining.

Enzymes and inhibitors

Endonuclease VIII enzyme was purchased from New England

Biolabs. Human NEIL1 was purified in bacteria by expression of the

construct pET28hNEIL1 (kind gift from Susan Wallace) in BL21

(DE3) T1R pRARE2 at 18�C overnight. Bacteria were lyzed using

sonication and the resulting lysate was centrifuged and filtered.

C-terminally His-tagged human NEIL1 was purified using affinity

chromatography using HisTrap HP (GE Healthcare). Fractions con-

taining human NEIL1 eluted from the HisTrap column were pooled

and protein was further purified using gel filtration on HiLoad 16/60

Superdex 200 (GE Healthcare). The purity of the protein was analyzed

using SDS-PAGE.

Proteinase K and RNase A were purchased from Thermo Fisher.

Inhibitors used are as follows: vincristine (Sigma), Colcemid

(Gibco), RO-3306 (CDK1 inhibitor, MedChemExpress), Reversine

(GSK923295, Axon MedChem), APE1 inhibitor (Sigma, CAS 6960–

45–8), PARP inhibitor (olaparib, SelleckChem, 763113–22–0).

Modified comet assay

Cells were suspended in 0.5% lowmelting point agarose in PBS and

transferred onto a frosted glassmicroscope slide precoated with a layer

of 0.5% normal melting point agarose. Slides were immersed in lysis

solution (2.5 mol/L NaCl, 100 mmol/L EDTA,10 mmol/L Tris, 1%

sodium lauryl sarcosinate, 10% DMSO, and 1% Triton X-100 (pH 10)

at 4�C overnight. Cells were washed with enzyme assay buffer

(40 mmol/L HEPES pH 8.0, 0.1 M KCl, 0.5 mmol/L EDTA and

0.2 mg/mL BSA) three times and incubated with NEIL1 or Endonu-

clease VIII in enzyme assay buffer or buffer alone for 30 minutes at

37�C. Electrophoresis buffer (0.3 mol/L NaOH and 1 mmol/L EDTA)

was precooled to 4 degrees and slides were incubated in electrophoresis

buffer for 20 utesmin. Electrophoresis was run at 300 mA, 25 V for 30

minutes in a Comet Assay tank (Thistle Scientific). Slides were washed

in neutralization buffer (0.4 mol/L Tris-HCl pH 7.5) and counter-

stained with 5 mmol/L YOYO-1 dye (Invitrogen). Images were

acquired with a 20� objective in a Zeiss LSM 510 confocal microscope

and tail moment was quantified using Comet IV software. At least

100 comets per sample were analyzed.

Telomere qPCR

Cellswere seeded ina6-well plate andDNAextractionwasperformed

as reported before (27). The DNA concentration was measured with

nanodrop and aliquots of DNA (200 ng each) from each sample were

air-dried at 65�C for 1 hour. Enzyme assay buffer (25 mmol/L Tris-HCl

pH¼ 8, 15mmol/LNaCl, 2mmol/LMgCl2 and0.0025%Tween-20)was

prepared before experiment. Each sample was incubated with NEIL1 or

Endonuclease VIII in enzyme assay buffer or buffer alone at 37�C for

2 hours. qPCR was performed with SYBR Premix Ex Taq (Takara)

in an ABI PRIS 7900HT sequence detector. One-way ANOVA

analysis was performed with GraphPad Prism software.

Telomere primers: F: CGGTTTGTTTGGGTTTGGGTTTGGGT-

TTGGGTTTGGGTT; R: GGCTTGCCTTACCCTTACCCTTACC-

CTTACCCTTACCCT; The single copy gene, 36B4, primers: F: CAG-

CAAGTGGGAAGGTGTAATCC; R: CCCATTCTATCATCAACG-

GGTACAA.

The NEIL3 overexpression constructs and site-directed

mutagenesis

Full-length NEIL3 was inserted at the Sal1 andNot1 restriction sites

of pENTR1A-3xFlag vector by PCR amplification of with Phusion

HF DNA polymerase (Thermo Fisher Scientific), NEIL3 untagged

clone (NM_078248, Origene) and forward primer 50-TATAGTCGA-

CACCATGGTGGAAGGACCAGGCTGTACTCTG-30 and reverse

primer 50-TATAGCGGCCGCGCATCCAGGAATAATTTTTATT-

CCTGGCCC-30. Tomake the NEIL3–3xFlag pENTR1A vector siRNA

A Mitotic Base Excision Repair at Telomeres
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resistant, PCR based site-directed mutagenesis was used to intro-

duce silent mutations in NEIL3 corresponding to the siNEIL3 #4

sequence by substitution of three nucleotides using primers 50-

AAAGCTGCAACCCTGGATATAGCAACAGTGAACTTCAAAT-30

and 50-TTAATTTGAAGTTCACTGTTGCTATATCCAGGGTTGC-

AGC-30 . The K81A mutation was also introduced by site-directed

mutagenesis using primers 50-GTGGAAACTTTGGGGGCCGAGCT-

CTTTATGTACTTTGGACC-30 and 50-GTACATAAAGAGCTCGG-

CCCCCAAAGTTTCCACGCCACTGT-30.

The resulting plasmids were transferred into pLenti CMV Blast

DEST plasmid (Addgene #17451) by LR clonase (Invitrogen). All

plasmids were verified by Sanger DNA sequencing of the inserted

DNA.

The pENTR1A-3xFlag plasmid was made by inserting a 3xFlag-tag

(amino acids DYKDHDGDYKDHDIDYKDDDDK) at the Xho1 and

Xba1 restriction sites of pENTR1Ano ccDB (Addgene #17398). pLenti

CMV Blast DEST (706–1) and pENTR1A no ccDB (w48–1) were gifts

from Eric Campeau and Paul Kaufman (Addgene plasmids #17398

and #17451).

Immunofluorescence and FISH

Cells were seeded on coverslips in 24-well plates (10,000–15,000

cells per well) for observationwith confocalmicroscopy. The cells were

transfected with siRNA for 72 hours or treated with different drugs.

Pre-extraction was performed with 0.1% Triton in PBS for 1 minutes.

Then cells were fixed with 3.7% PFA for 10 minutes followed by cold

methanol (�20�C) permeabilization for 10 minutes. Cells were

washed with PBS twice and blocked for 1 hour at room temperature

with blocking solution (3% BSA complemented with 0.1% Tween-20

in PBS). Cells were incubated with the primary antibody in blocking

solution overnight. Cells were washed three times with PBS-Tween 20

(0.1%) and secondary antibody was diluted in blocking solution for

1 hour at room temperature in dark. Cells were washed three times

with PBS-Tween 20 (0.1%). Cells were refixed with 3.7% PFA, dehy-

drated with graded ethanol (70%, 90%, 100%) and air dried to

complete. Alexa488-labeled C-rich telomere probe (Eurogentec,

PN-TC060–005) or Cy3-labeled centromere probe (Eurogentec,

PN-CN050–005) was diluted in hybridization buffer and incubated

with cells at 80�C for 5 minutes followed by incubation at room

temperature for 60 minutes. After hybridization, cells were washed

with PNA wash A (70% formamide, 10 mmol/L Tris-Cl pH 7.5) twice

followed by three washes with PNAwash B (50mmol/L Tris-Cl pH7.5,

150 mmol/L NaCl, 0.8% Tween-20). DAPI (Invitrogen) was added to

PNAwash B in the second wash to counterstain DNA. Coverslips were

dehydrated with graded ethanol, air dried, and mounted with pro-

longed gold (Life Technologies, P36934). Images were acquired in a

Zeiss LSM-780 confocal microscope with the 40� oil objective. Foci

and colocalization were calculated with Cell Profiler.

Metaphase spread FISH

Metaphase FISH (META-FISH) were performed according to

protocol (28). Cells were synchronized with RO-3306 before the

experiment. Cells were washed five times with PBS and cultured in

complete media with 50 ng/mL Colcemid for 1.5–2.5 hours to accu-

mulate cells in mitosis. Cells were trypsinized and suspended in

hypotonic buffer (2% Trisodium citrate/2% KCl in ddH2O) at

100,000–200,000/mL for 5 minutes. 500 mL of each sample was

centrifuged with Thermo Shandon Cytospin 4 at 2,000 rpm for

10 minutes.

Cells were fixed immediately after centrifuge for 10-minutes with

3.7% PFA followed by KCM buffer for 10 minutes to permeabilize the

cells. Cells were blocked in ABDIL buffer with RNase A for at least

15minutes at 37�C. Primary antibodywas diluted inABDIL buffer and

incubated at room temperature for 1 hour. Cells were washed with

PBS-Tween 20 (0.1%) three times and secondary antibody was diluted

in ABDIL buffer and incubated at room temperature for 0.5 hour.

Telomere PNAprobe hybridization is performed as described in FISH.

At least 20 cells in META-FISH or 200 cells in FISH were analyzed in

each sample.

Results
NEIL3 dysregulation correlates with unfavorable prognosis in

HCC

To identify potentialDDRgenes that correlatedwith poor prognosis

in HCC, we analyzed fivemajor DNA repair pathways, including BER,

nucleoid excision repair, mismatch repair, homologues recombination

and non-homologous end-joining pathways, in publicly available

databases. All of the DDR pathways were consistently overexpressed

in cancer as compared with paired noncancer tissues but heteroge-

neously activated within HCC (Supplementary Fig. S1A and S1B). We

established a prognosis risk model with genes in the 5 major DDR

pathways in which NEIL3, MUTYH, XRCC5, GTF2H1, CUL4A1, and

RFC3 were found to be independent markers for overall survival (OS)

and NEIL3, APEX1, ERCC8, DDB1, and MLH1 markers for progres-

sion-free survival (PFS) in patients with HCC (Supplementary

Fig. S1C–S1F). The OS and PFS risk score were calculated according

to their HR and was significantly correlated with OS and PFS,

respectively (Supplementary Fig. S1G and S1H). Furthermore, we

analyzed all of the genes in the prognosis risk model and NEIL3 was

found to be the most promising prognostic marker in HCC, being

significant for both OS and PFS (Supplementary Fig. S1I).

Interestingly, we found that NEIL3 expression is high in the fetal

liver, thymus and the bone marrow and significantly reduced in adult

liver tissues (GSE2361 database and IST online, Supplementary

Fig. S2A). The NEIL3 expression increases from normal, nontumor

tissue to cirrhotic tissue and peaks in tumor tissue (GSE25097 data-

base, Supplementary Fig. S2B). To determine whether the high level of

NEIL3 is functionally relevant for tumor survival, we compared the

tissues from the HCC cohort with paired nontumor tissues and

correlated with advanced TNM staging, accelerated proliferation and

found unfavorable outcome such as reduced OS and PFS (TCGA

database, Fig. 1A and B; Supplementary Fig. S2C and S2D; ref. 29).

To validate these results, we used a separate database with a cohort

of 202 patients with HCC collected in Renji Hospital in between 2010–

2015. By RT-qPCR analysis, we could observe an increase in NEIL3

mRNA expression in HCC tissues compared with paired nontumor

tissue and increased from normal liver, to cirrhosis and tumor tissue

(Fig. 1C and D; Supplementary Fig. S2E). Furthermore, by IHC

analysis, we found that theNEIL3 expression was negatively correlated

with survival and progression-free survival of patients with HCC and

positively correlates with the advances in TNM staging (Fig. 1E–I;

Supplementary Fig. S2F and S2G; Table 1).

HCC cell lines require NEIL3 for cell proliferation in vitro

We hypothesized that the high NEIL3 levels in HCCmay relate to a

functional role in cancer cell survival and we wanted to further

investigate the role ofNEIL3 in cell survival ofHCC cell lines. Silencing

NEIL3 by siRNA (Supplementary Fig. S3A) reduced the clonogenic

ability for all of the 6 HCC cells tested but had no significant effect on

normal L-02 liver cells or nontransformed RPE-1 hTERT retinal cells

(Fig. 2A). NEIL3 depletion in HEP3B and Huh7 cells significantly
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Figure 1.

NEIL3 overexpression correlates with unfavorable outcome in HCC. A, NEIL3 mRNA overexpression correlates with reduced overall survival and progression-free

survival (PFS). TCGA LIHC cohort, Cox regression from 370 patients. B, NEIL3 mRNA is overexpressed in HCC compared with nontumor tissue. TCGA LIHC

cohort, medians, and quartiles from 50 patients each. C,NEIL3mRNA is overexpressed in HCC compared with nontumor tissue in Renji HCC cohort. Results from 102

patients; Student t test. D, NEIL3 mRNA level increases from normal tissue, cirrhotic liver tissue to HCC tissue. Medians and quartiles from 20 patients each. E, IHC

staining quantification (average optical density, AOD) showed that NEIL3 increases in HCC compared with paired nontumor tissue. Means � SEM from Renji

#1 Cohort, 80 patients. F, Images of NEIL3 staining in different TNM stages. Scale bar, 200 mm. G, Percentage of patients in different TNM stages with high or low

NEIL3 level. (n ¼ 82). H, NEIL3 level in different TNM stages. Medians and SD from 84 patients. I, NEIL3 overexpression correlates with reduced overall survival

and PFS in Renji #2 Cohort. Cox regression analysis from 82 patients. � , P < 0.05; �� , P < 0.01; ���� , P < 0.0001; Student t test.
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reduced cell viability (Fig. 2B; Supplementary Fig. S3B and S3C)

and the proliferation of HEP3B cells, measured by EdU staining,

was slightly reduced after NEIL3 silencing (Supplementary

Fig. S3D). In HEP3B cells, overexpressing WT NEIL3-flag, but not

catalytically dead mutant K81A, increased clonogenic outgrowth

and cell viability (Fig. 2C and D; Supplementary Fig. S3E). This

indicates that the catalytic activity is important for the observed

effect on cell proliferation.

To investigate whether NEIL3 knockdownwould cause cell death in

HCC cells, wemeasured apoptosis withAnnexinV and PI staining and

necrosis with Cytox blue staining. However, we did not find any

significant differences in apoptosis or necrosis in NEIL3-depleted cells

compared with wild-type cells (Supplementary Fig. S3F). In contrast,

when we analyzed NEIL3-silenced HEP3B and Huh7 cells in the

b-galactosidase (b-gal) senescence assay, we could observe increased

percentage of b-gal–positive cells as compared with control cells

(Fig. 2E and F; Supplementary Fig. S3G and S3H). By site-directed

mutagenesis, we designed a rescue system in which both wild-type

(WT) and catalytically dead mutant (K81A) NEIL3-flag vectors are

sensitive to NEIL3 siRNA sequence 2 (s2) but resistant to siRNA

sequence 4 (s4) (Supplementary Fig. S3I). Overexpression of WT

NEIL3, but not the catalytic-dead mutant, could rescue the induced

senescence (Fig. 2E and F). We could also show that NEIL3 knock-

down induced senescence by using p21 and p16INK4 antibodies

(Supplementary Fig. S3J–S3L). Furthermore, NEIL3 knockdown did

not increase the sensitivity to commonly used cancer treatments such

as ionizing radiation (IR), paclitaxel and doxorubicin in a clonogenic

survival assay (Supplementary Fig. S3M and S3N).

NEIL3 maintains telomere integrity by removing oxidized

lesions

Here, we wanted to identify the molecular mechanism of NEIL3 in

maintaining genome stability inHCC.NEIL3 has been shown to have a

broad substrate specificity (30), to be active at telomeres and to be

highly expressed in the G2–Mphase (25), suggesting that it could have

a role for BER in mitosis. We started by validating that silencing of

NEIL3 induces DNA double-strand breaks (DSB) in cancer cells (31).

After siRNA-mediated NEIL3 knockdown in HEP3B and Huh7 cells,

we observed an increase in 53BP1 foci (Supplementary Fig. S4A and

S4B). Overexpressing WT but not the catalytically dead mutant could

rescue the 53BP1 foci formation after NEIL3 knockdown (Supple-

mentary Fig. S4C). To validate that the catalytic activity of NEIL3 is

needed to repair oxidized lesion in liver cancer cells, we performed a

modified comet assay with endonuclease VIII and NEIL1. Both

enzymes recognize and excise Sp and Gh lesions in DNA, similarly

to NEIL3 (30, 32), and treatment with recombinant enzymes would

Table 1. Comparison of clinicopathologic profiles between low and high NEIL3 expression in patients with HCC from Renji Hospital

Cohort.

NEIL3 level

Low (n ¼ 43) High (n ¼ 42)

Variables No. of patients % No. of patients % OR 95% CI P Value

Age, yrb

<50 15 34.9% 16 38.1% 0.871 0.360–2.107 0.758

≥50 28 65.1% 26 61.9%

Genderb

Female 9 20.9% 9 21.4% 0.971 0.343–2.748 0.955

Male 34 79.1% 33 78.6%

HBV-DNAb

<500 copies/mL 21 60.0% 13 50.0% 1.500 0.539–4.176 0.437

≥500 copies/mL 14 40.0% 13 50.0%

Cirrhosisb

Absent 5 11.6% 7 17.1% 0.639 0.185–2.203 0.476

Present 38 88.4% 34 82.9%

Alpha-fetoproteina,b

≤500 ng/mL 24 60.0% 15 36.6% 2.600 1.061–6.374 0.035

>500 ng/mL 16 40.0% 26 63.4%

Tumor sizeb

≤5 cm 23 53.5% 15 36.6% 1.993 0.832–4.774 0.120

>5 cm 20 46.5% 26 63.4%

Multinodular tumorb

No 34 79.1% 30 73.2% 1.385 0.505–3.797 0.526

Yes 9 20.9% 11 26.8%

Histological gradeb

I–II 27 62.8% 25 61.0% 1.080 0.448–2.606 0.864

III–IV 16 37.2% 16 39.0%

BCLC stagea,b

A 26 60.5% 13 31.7% 3.294 1.342–8.086 0.008

B–D 17 39.5% 28 68.3%

pTNM stagea,b

I–II 28 65.1% 17 41.5% 2.635 1.090–6.371 0.030

III–IV 15 34.9% 24 58.5%

Abbreviations: BCLC, Barcelona Clinic Liver Cancer staging; HBV-DNA, hepatitis B virus DNA; lymph node, metastasis classification; pTNM, pathologic tumor.
a
P < 0.05, x2 test significant.
b
x
2 test.
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Figure 2.

NEIL3 modulates proliferative potency of liver cancer cells and protects against senescence. A, Clonogenic survival of 6 liver cancer cell lines and two normal

cell lines (L-02 and hTERT RPE-1). Cells were transfected with NEIL3 siRNA s2, NEIL3 siRNA s4, or nontargeting control (siCtrl). Means � SEM from

three independent experiments. B, The proliferation curves of HEP3B cells. Cells were transfected with NEIL3 siRNA s2, s4, or nontargeting control (siCtrl).

Means � SEM from three independent experiments. C, The proliferation curves of HEP3B cells with empty vector (EV), wild-type (WT), and catalytic dead

(K81A) FLAG-tagged NEIL3. Means � SEM from three independent experiments. D, Clonogenic survival of HEP3B cells overexpressing wild-type (WT)

and catalytic dead (K81A) FLAG-tagged NEIL3. Means � SEM from three independent experiments. E, Images of b-gal staining in wild-type HEP3B (left) and

in HEP3B cells–overexpressing wild-type (WT) and catalytic dead (K81A) FLAG-tagged NEIL3 (right). Cells were transfected with NEIL3 siRNA s2, s4, or

nontargeting control (siCtrl). Scale bar, 100 mm. F, Quantification of b-gal–positive cells per field in wild-type HEP3B (top) and HEP3B cells overexpressing

wild-type (WT) and catalytic dead (K81A) FLAG-tagged NEIL3 (bottom). Means� SEM from three independent experiments; at least 200 cells were analyzed.
� , P < 0.05; ��, P < 0.01; ��� , P < 0.001; Student t test.
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introduce nicks in the DNA that would be detected in the alkaline

comet assay.We validated the assay by treatment ofHEP3B cells with 1

and 5 mmol/L KBrO3 for 2 hours, and this treatment induced

increased tailmoment afterNEIL1 or EndoVIII digestion as compared

to undigested control (Supplementary Fig. S5A). NEIL3 knockdown in

HEP3B orHuh7 cells dramatically increased the amount ofNEIL1 and

Endo VIII–dependent lesions, indicating that NEIL3 is involved in

removing endogenous oxidized lesions in nuclear DNA (Fig. 3A and

B; Supplementary Fig. S5B–S5E). As for 53BP1 foci, oxidized lesions

could be rescued by overexpressing ofWTNEIL3 but not by the K81A

mutant (Fig. 3C and D; Supplementary Fig. S5F and S5G). Further-

more, overexpression of WT NEIL3 could reduce the basal level of

oxidized lesions in HEP3B cells, while the catalytic mutant could not,

indicating that the catalytic activity of NEIL3 is needed for removing

oxidized lesions in cells (Fig. 3E and F).

It’s been shown that NEIL3 knockdown can induce both replication

stress and telomere instability (25, 33). To distinguish between these

possibilities, wemeasured colocalization of DNA lesions by 53BP1 foci

and determined whether these preferentially located to collapsed

replication forks by EdU co-staining or to telomere dysfunction foci

(TIF), respectively. No significant increase in 53BP1/EdU colocaliza-

tion could be observed while the TIFs increased after silencing of

NEIL3 in HEP3B and Huh7 cells (Fig. 3G and H; Supplementary

Fig. S5H and S5I). The increase in TIFs after NEIL3 siRNA could be

rescued byWTNEIL3 overexpression, but not K81Amutant (Fig. 3I),

demonstrating NEIL3 catalytic activity is required to supress TIFs. To

analyze whether NEIL3 is involved in repair of damaged telomeres, we

performed a telomere qPCR assay on genomic DNA incubated with

recombinant Endo VIII or NEIL1 enzymes to measure the oxidative

lesions on telomeres (34). Briefly, after siRNA transfection, genomic

DNA was isolated and incubated with Endo VIII or NEIL1 enzymes

that would excise the damaged base and introduce a nick in the DNA.

In a subsequent qPCR reaction, telomeres withmany nicks would have

reduced amplification of the DNA and a lower signal. We observed

decreased telomere amplification in the NEIL3 silenced group, indi-

cating that NEIL3 knockdown increased oxidized lesions on telomeres

(Fig. 3J). The increase in damaged telomeres after NEIL3 siRNA

silencing could be rescued by overexpression ofWTNEIL3, but not the

K81A mutant (Fig. 3K). It has been shown that prolonged mitotic

arrest, for example by microtubule inhibition by vincristine, induce

ROS (35). However, treatment with the microtubule inhibitor vin-

cristine did not further decrease the telomere level after NEIL3

silencing (Supplementary Fig. S5J). We also noted that silencing of

NEIL3 caused a slight decrease in relative telomere intensity (telomere/

centromere intensity; Supplementary Fig. S5K and S5L), suggesting

that NEIL3 could be involved in telomere length maintenance.

NEIL3 relocates to damaged telomeres and recruits APE1 during

mitosis

In a previous study, it was suggested that the expression of NEIL3 is

regulated via the Ras dependent ERK-MAP kinase pathway and that

the NEIL3 level peaks in G2–M phase (36). To understand if NEIL3 is

recruited to damaged telomeres in G2-phase or in mitosis, we arrested

cells in G2 phase with the CDK1 inhibitor RO-3306 or in mitosis with

vincristine, followed by immunofluorescence analysis. Results show

that vincristine treatment induced an increase in NEIL3 foci colocated

to telomeres and increased NEIL3-positive TIFs (Fig. 4A and B). The

accumulation of ROS in mitosis can be prevented by cotreatment with

reversine, an Mps1 inhibitor that prevents spindle assembly check-

point (SAC)-mediated mitotic arrest (37). Here we found that cotreat-

ment with reversine prevented recruitment of NEIL3 to damaged

telomeres, demonstrating that a mitotic arrest is required for NEIL3

recruitment to TIFs. In contrast, NEIL3 foci was not induced by

RO-3306-mediated G2 phase arrest (Fig. 4B), showing that NEIL3 is

involved in repair duringmitosis but not in theG2 phase of the cell cycle.

We could also observe a similar recruitment of NEIL3 to telomeres and

to TIFs after inducing telomere damage by silencing the Shelterin

complex protein POT1 or TPP1 (Supplementary Fig. S6A–S6C), which

induced unprotected telomeres. Altogether, these data show that NEIL3

is recruited to telomeres when the DDR is activated.

Next, we wanted to understand if NEIL3 is recruited to damaged

telomeres inmetaphase cells after induction ofDNAdamage.With the

META-FISH assay, we could show increased recruitment of NEIL3 to

TIFs after KBrO3 treatment during mitosis or prolonged vincristine

treatment (which induce ROS and TIFs) in both HEP3B and U2OS

cells (Fig. 4C andD; Supplementary Fig. S6D). Interestingly, the BER

pathway proteinAP endonuclease (APE1)was also recruited to TIFs in

metaphase cells and APE1 colocalized with NEIL3 after inducing TIFs

by KBrO3, both in HEP3B and U2OS cells (Fig. 4E; Supplementary

Fig. S6E). To explore whether the APE1 recruitment to TIFs during

mitosis is NEIL dependent, we silenced NEIL1, NEIL2, and NEIL3

respectively (Supplementary Fig. S6C) and measured recruitment of

APE1 to TIFs by the META-FISH assay. The result showed that

recruitment of APE1 during mitosis is impaired after NEIL3, but not

after NEIL1 or NEIL2, silencing (Fig. 4F; Supplementary Fig. S6F).

Furthermore, the APE1 recruitment to damaged telomeres during

mitosis was rescued by overexpression of WT NEIL3 but not by the

catalytically dead mutant (Supplementary Fig. S6G).

Telomere DNA damage is repaired during mitosis by base

excision repair

Next, wewanted to further understand the role ofNEIL3 in telomere

maintenance and repair duringmitosis. It has been shown that the later

steps of DSB repair are inhibited during mitosis to prevent telomere

fusions (38). However, whether DNA single-strand breaks or oxidized

lesions are repaired during mitosis has not been explored. Here we

focused on the role of BER duringmitosis by treatingHEP3B cells with

KBrO3 at different time points while synchronizing cells to mitosis. In

brief, cells were synchronized with RO-3306 in the G2 phase of the cell

cycle and followed by colcemid treatment to accumulate cells in

metaphase. Cells were either kept in colcemid as negative control

(group 0), cotreated with KBrO3 from at the beginning (group B, C) or

toward the end (groupA) of the colcemid treatment. Cells would either

recover in control media (group B) ormedia supplemented with APE1

inhibitor or PARP inhibitor (group C) (Fig. 5A). BER at telomeres was

measured by Meta-FISH assay and the number of APE1-positive TIFs

was analyzed. Treatment with KBrO3 (group A) increased both the

number of TIFs and the number of APE1-positive TIFs in mitotic cells

as expected and both were reduced after repair in control media for

1 hour (group B). Treatment with APE1 inhibitor or the PARP

inhibitor olaparib prevented repair of the DNA damage (Fig. 5B and

C). Similar results could be observed in telomerase negative U2OS cells

subjected to a 2-hour repair period (Supplementary Fig. S7A and S7B).

In addition, similar results were observed when analyzing the repair of

XRCC1-positive TIFs inmitotic HEP3B cells (Supplementary Fig. S7C

and S7D).

It has been shown that XRCC1 interacts with polymerase beta

(PolB) to coordinate efficient BER (39) and that PolB is essential for the

excision step of both short- and long-patch BER (40, 41). To dem-

onstrate that the repair of telomere DNA damage mitotic cells is

dependent on PolB andNEIL3, we silenced these genes in HEP3B cells

and performed the Meta-FISH telomere DNA damage repair assay
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Figure 3.

NEIL3 silencing induces oxidative damage on telomeres. A and B, Images (A) and quantification (B) of modified comet assay with Endo VIII in HEP3B cells after

NEIL3 silencing. Medians and quartiles; at least 100 cells were analyzed in each group. C and D, Images (C) and quantification (D) of modified comet assay with

Endo VIII in HEP3B cells overexpressing wild-type (WT) and catalytic dead (K81A) FLAG-tagged NEIL3. Cells were transfected with NEIL3 siRNA s2, s4, or

nontargeting control (siCtrl). Medians and quartiles; at least 100 cells were analyzed in each group. E and F, Images (E) and quantification (F) of modified

comet assay with Endo VIII in HEP3B overexpressing EV, NEIL3 WT, or NEIL3 K81A. Medians and quartiles; at least 100 cells were analyaed in each group.

G, Images of 53BP1 (red) and telomeres (TTAGGG; green) in HEP3B cells by anti-53BP1 IF and telo-FISH. Cells were transfected with NEIL3 siRNA s2, s4, or

nontargeting control (siCtrl). H, Quantification of TIFs (53BP1/telomere colocalization) in HEP3B and Huh7 cells after NEIL3 silencing. Means � SEM of three

repeats; at least 200 cells were analyzed in each group. I, Quantification of TIFs in HEP3B cells overexpressing wild-type (WT) and catalytic dead (K81A)

FLAG-tagged NEIL3 after NEIL3 silencing. Means � SEM of three repeats; at least 200 cells were analyzed in each group. J, Telomere qPCR with Endo VIII

or NEIL1 incubation in HEP3B cells. Cells were transfected with NEIL3 siRNA s2, s4, or nontargeting control (siCtrl). K, Telomere qPCR with Endo VIII

incubation in NEIL3 WT- or K81A-expressing HEP3B cells. Cells were transfected with NEIL3 siRNA s2, s4, or nontargeting control (siCtrl). Means � SEM of

three repeats. Scale bars: A, C, and E, 50 mm; G, 5 mm. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001; Student t test.

A Mitotic Base Excision Repair at Telomeres

AACRJournals.org Cancer Res; 81(15) August 1, 2021 4087

on August 4, 2021. © 2021 American Association for Cancer Research. cancerres.aacrjournals.org Downloaded from 

Published OnlineFirst May 27, 2021; DOI: 10.1158/0008-5472.CAN-20-1028 



D
M

S
O

VC
R

VC
R
 +

 R
EV

R
O
33

06
0

20

40

60

80

100

120

****

T
IF

s
 (

%
)

0

10

20
*

*

N
E

IL
3

 p
o

s
it
iv

e
 T

IF
s
 (

%
)

D
M

S
O
VC

R

VC
R
 +

 R
EV

R
O
33

06
0.0

0.3

0.6

0.9

1.2
**

NEIL3 TTAGGG γH2AX MERGE

D
M

S
O

K
B

rO
3

V
C

R

D
M

S
O

KBrO
3

VC
R

0

2

4

6

8

R
e
la

ti
v
e

T
IF

s

****
**

0

2

4

6

8

R
e

la
ti
v
e

N
E

IL
3
/T

e
lo

 c
o
lo

c
.

****

**

0

3

6

9

12

R
e

la
ti
v
e

N
E

IL
3

p
o
s
it
iv

e
T

IF
s

***

****

0

1

2

3

R
e

la
ti
v
e

A
P

E
1

 p
o

s
it
iv

e
 T

IF
s
 (

%
)

*

***

0.0

0.5

1.0

1.5

2.0

R
e
la

ti
v
e
 A

P
E

1
/N

E
IL

3
/T

e
lo

 

c
o

lo
c
 (

%
) *

**

0.0

0.5

1.0

1.5

2.0

R
e

la
ti
v
e

A
P

E
1

 o
n

 t
e

lo
m

e
re

KBrO3

* *

0.0

0.5

1.0

1.5

R
e

la
ti
v
e

A
P

E
1

 p
o

s
it
iv

e
 T

IF
s

*

***

siCtrl

siNEIL1

siNEIL2

siNEIL3 s2

siNEIL3 s4

KBrO3

N
E

IL
3
/T

e
lo

 c
o
lo

c
. 
(%

)

0

5

10

15

****
****

A

B

C

D

E

F

N
E

IL
3

 f
o

c
i 
(%

)

D
M

S
O
VC

R

VC
R
 +

 R
EV

R
O
33

06

D
M

S
O

VC
R

VC
R
 +

 R
EV

R
O
33

06

D
M

S
O

KBrO
3

VC
R

D
M

S
O

KBrO
3

VC
R

D
M

S
O

KBrO
3

VC
R

D
M

S
O

KBrO
3

VC
R

DMSO           VCR

M
E

R
G

E
  
  
  

 γ
H

2
A

X
  

 T
T
A

G
G

G
N

E
IL

3

Figure 4.

NEIL3 recruits APE1 to TIFs during mitosis. A, Images of NEIL3 foci (red) and telomere (TTAGGG; green) colocalization by anti-NEIL3 IF and telo-FISH in HEP3B

cells. Cells were treated with DMSO, 24-hour vincristine (VCR; 20 nmol/L), 24-hour vincristine (20 nmol/L) þ 24-hour Reversine (REV; 0.5 mmol/L) or 24-hour

RO-3306 (10 mmol/L). Scale bar, 5 mm. B, Quantification of NEIL3 foci–positive cells (top left), TIFs (top right), NEIL3 on telomere (bottom left), and

NEIL3-positive TIFs (bottom right) in HEP3B cells. Means � SEM; at least 200 cells were analyzed. C, Images of NEIL3 foci (red), telomere (TTAGGG, green),

and gH2AX foci (cyan) colocalization by anti-NEIL3, PNA telC probe, and anti-gH2AX IF in HEP3B metaphase spread. Cells were treated with 24-hour

vincristine (20 nmol/L) or synchronized in 1-hour colcemid (20 ng/mL) with 30 min KBrO3 (5 mmol/L) or DMSO. White arrowheads, NEIL3/telomere/gH2AX

colocalization. Scale bar, 5 mm. D, Quantification of relative TIFs (left), NEIL3 on telomere (middle), or NEIL3-positive TIFs (right) in HEP3B metaphase spread.

Means � SEM; at least 20 metaphase cells were analyzed in each group. E, Quantification of APE1 foci on telomere (left) and APE1/NEIL3 colocalization (right)

in HEP3B metaphase spread. Cells were treated with 24-hour vincristine (20 nmol/L) or synchronized in 1-hour colcemid (20 ng/mL) with 30-minute KBrO3

(5 mmol/L) or DMSO. Means � SEM; at least 20 metaphase cells were analyzed in each group. F, Quantification of APE1 on telomere (left) and APE1-positive

TIFs (right) after NEIL1, NEIL2, or NEIL3 silencing in HEP3B metaphase spread. Means � SEM; at least 20 metaphase cells were analyzed in each group.
� , P < 0.05; ��, P < 0.01; ��� , P < 0.001; ���� , P < 0.0001.
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NEIL3 repairs telomere damage through base excision repair in mitotic cells. A, Schematic of mitotic telomere damage repair assay. Cells were treated with

10 mmol/L RO-3306 for 16 hours to synchronize cells in G2 phase. No damage was induced in group 0 and oxidative damage was induced in groups A–C. Group

A represents no repair, group B 1 hour of repair, and group C 1 hour of repair in the presence of inhibitors. DNA repair at telomeres were analyzed by META-

FISH. B, Images of APE1 foci (red), telomere PNA probe (TTAGGG, green), and gH2AX (cyan) by anti-APE1, anti-gH2AX IF, and telo-FISH in HEP3B metaphase

spread. Cells were treated as indicated in A with 10 mmol/L APE1 inhibitor or 10 mmol/L PARP inhibitor (olaparib). White arrowheads, APE1/telomere/gH2AX

colocalization. Scale bar, 5 mm. C, Quantification of TIFs (left) and APE1-positive TIFs (right) in HEP3B metaphase spread described in B. Means � SEM; at least

20 metaphase cells were analyzed in each group. �, P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001. D, Quantification of TIFs (top) and APE1-positive

TIFs (bottom) in HEP3B metaphase spread described in A. Cells were transfected with NT siRNA and siRNA targeting PolB or NEIL3 for 72 hours. Means� SEM;

at least 20 metaphase cells were analyzed in each group. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001. E, Telomere qPCR of NEIL1 digestion in HEP3B cells

transfected with NEIL3 siRNA s2, s4, or nontargeting control (siCtrl) for 72 hours. After transfection, cells were synchronized in G1 with 2 mmol/L thymidine,

followed by synchronization in G2 with RO-3306. Cells were released into mitosis and treated with 2.5 mmol/L KBrO3 for 30 minutes, followed by recovery
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with KBrO3 treatment (Supplementary Fig. S7E). The result show that

cells failed to repair the mitotic TIFs after silencing of PolB or NEIL3

(Fig. 5D, top). The APE1 positive TIFs were repaired in cells trans-

fected with nontargeting siRNA while the siPolB-transfected cells did

not repair the damaged telomeres (Fig. 5D, bottom). Surprisingly, in

NEIL3-silenced cells, the recruitment of APE1 to the TIFs was

impaired, but APE1-positive TIFs that were induced were not repaired

(Fig. 5D, bottom). This indicates that the repair of KBrO3 induced

TIFs in mitotic cells are both BER and NEIL3-dependent and that the

recruitment of APE1 to damaged telomeres is NEIL3-dependent.

To validate that NEIL3 is involved repair of oxidized lesion at the

telomere during the M-phase, we transfected cells with NEIL3 siRNA

and synchronized cells with thymidine block for 24 hours followed by

RO-3306 G2-phase arrest for additional 18 hours. Cells were released

into mitosis in the presence of colcemid and treated with 2.5 mmol/L

potassium bromate for 30 minutes. Samples were recovered for 1 hour

before the oxidized lesions at the telomeres were measured using the

telomere qPCR assay with NEIL1 digestion. The relative telomere

signal in samples was reduced after potassium bromate treatment and

in control siRNA transfected cells, the oxidized lesions was partially

repaired after the 1 hour of recovery (Fig. 5E). In contrast, the NEIL3

siRNA–transfected samples did not repair to the same degree com-

pared with the control. This would further support the model that

NEIL3 is involved in repair of oxidized lesions in mitosis.

NEIL3 maintains genome stability and prevents telomere

shortening

Previously, it has been shown that unrepaired telomere lesions can

lead to genomic instability and senescence (42). To explore the

outcome of failure in repairing oxidative telomere damage induced

in mitosis, we silenced NEIL3 in HEP3B and U2OS cells and syn-

chronized them in mitosis by RO-3306 and colcemid. Oxidative DNA

damage was induced by KBrO3 treatment for 30 minutes followed by

release for 3 hours as shown in Fig. 6A. Enhanced genome instability,

characterized by the formation of micronuclei and chromatin bridges,

was observed in NEIL3-silenced cells challenged with KBrO3, but not

in control siRNA transfected cells nor in uninduced, NEIL3-silenced

cells (Fig. 6B and C; Supplementary Fig. S7F).

To demonstrate the protective role of NEIL3 in cells undergoing

long-termoxidative stress, we treatedHEP3B cells, overexpressingWT

or K81ANEIL3 or the empty vector control, with 1mmol/L KBrO3 for

30-minute periods, once a day for 6 or 12 consecutive days (Fig. 6D).

By relative telomere length (T/S ratio) measurements, we could show

that this treatment induced telomere shortening and that overexpres-

sion of WT NEIL3, but not the K81A mutant, could prevent the

telomere shortening (Fig. 6E). Furthermore, to assess whether long-

term exposure to KBrO3 accumulates oxidative damage at telomeres

and if overexpression of NEIL3 could protect cells from damage, we

measured the uncleaved telomeric or nontelomeric DNA by qPCR

after 2-hour incubation with endonuclease VIII. Although no differ-

ence was observed in the nontelomeric DNA level (Fig. 6F), telomere

levels significantly increased in NEIL3 WT–overexpressing HEP3B

cells, and decreased in NEIL3 K81A mutant–overexpressing cells and

in control HEP3B cells (Fig. 6G). These findings indicate NEIL3

preferentially prevents oxidative lesions at telomeres (compared with

nontelomere DNA) under chronic oxidative stress.

Discussion
As there are limited treatment options and poor survival outcomes

for patients with HCC there is a large unmet clinical need of new

anticancer therapies. Inducing DNA damage by radio- or chemother-

apy is a current treatment for HCC. The development of PARP

inhibitors in BRCA1- or BRCA2-mutated cancers demonstrate that

targeting the DDR may be an effective way of generating cancer-

specific DNA damage in a highly tolerable way (43, 44). Here we

wanted to identify if targeting a specific nonessential DDR protein

could offer a potential therapy in HCC.

Here, we describe that NEIL3 was upregulated in many HCC and

that the level of NEIL3 correlated to poor prognosis. It has been

reported that NEIL3 is essential in many biological contexts, such as

fibroblast proliferation, telomeremaintenance in the S phase of the cell

cycle, DNA interstrand cross-link unhooking, and autoimmune

diseases (22–25). However, the role of NEIL3 in cancer, especially in

liver cancer is unclear. Here we found the elevated levels of NEIL3 in

tumor correlated with unfavorable outcome in both the TCGA HCC

database and our own validation HCC cohort from the Renji hospital.

This is in agreement with other studies showing NEIL3 is over-

expressed inmany cancer tissues, includingmalignantmelanoma (45),

compared with normal tissue (46). In this study, we also show that

NEIL3, and its catalytic activity, is important for liver cancer cell

proliferation and to prevent premature senescence. These data support

that a small-molecule inhibitor of NEIL3 could be a potential ther-

apeutic target for HCC.

In previous studies, it was shown that later steps of DDR are

inhibited during mitosis, although the primary signal events, such as

Histone modifications, still occur (38). It is believed that the DDR

signaling is haltered to prevent telomere fusions in mitotic cells. This

would, on the other hand leave damaged DNA unrepaired until the G1

phase of the cell cycle, forming 53BP1 bodies that are eventually

repaired. Here, we show NEIL3-dependent BER occur in mitosis.

Generally, the BERprocess is less reliant on theDDR signaling than the

DSB repair pathways and repair of oxidative damage on telomere

during mitosis appears important to promote survival. Here, we

showed that the relocation of NEIL3 to telomere damage sites is

damage-oriented rather than Shelterin complex-dependent. We also

demonstrated that the recruitment ofNEIL3 to TIFs also occurs during

mitosis and that NEIL3 and its catalytic ability, but not NEIL1 or

NEIL2, can recruit APE1 to TIFs during mitosis, indicating NEIL3 is

involved in the initiation of BER pathway on telomeres.

To further address the mechanism of BER on telomeres during

mitosis, we designed a mitotic telomere repair assay by inducing

oxidative damage then leaving cells to recoverwhile arrested inmitosis.

Results showed a significant decrease in TIFs after repair, which could

be prevented by either APE1 inhibitor or PARP inhibitor treatment.

Silencing NEIL3 or PolB abolished the mitotic BER on telomeres.

Taken together, our result proves that oxidative damage on telomeres

can be repaired by NEIL3 initiated PARP-dependent BER pathway.

The level of ROS as well as the oxidation of biomolecules increases

during mitosis in freely cycling cancer cells (14) and many antimitotic

drugs can induce elevated ROS (47), at least partly by targeting

mitochondria during prolonged mitotic arrest (48). Indeed, oxidative

stress can induce mitotic arrest, perhaps through oxidation of cysteine

residues in mitotic proteins (48). Because the telomeres are more

susceptible to DNA damage compared with the rest of the genome,

especially during mitosis, the cell needs to repair toxic lesions during

mitosis to prevent aneuploidy and genomic instability. In a previous

study, it was shown that NEIL3 interacts with APE1, FEN1, and TRF1

by its C-terminal domain (25) and in this study we could show that

NEIL3 is needed for APE1 recruitment to damaged telomeres. This

suggest that NEIL3 has unique features combining DNA glycosylase

activity of oxidized nucleotides and protein binding domains to recruit
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other DNA repair proteins to the telomere and could thus act as a

scaffold in BER of telomere damage during mitosis.

It has been shown in vitro that NEIL3 has a broad substrate

specificity that includes hydantoins, such as Sp and Gh, as well as

thymine glycol (Tg), FapyA and FapyG (12, 49). NEIL3 can recognize

oxidized lesion in single-stranded regions such as G-quadruplexes,

bubbles and single-stranded DNA, typical structures for telomere and

promoter regions. We have demonstrated by both modified comet

assay and telomere qPCR, using recombinant hNEIL1 and ecoEndo-

VIII enzymes, that NEIL3 eliminates oxidized lesions on telomeres.

Introducing the K81A point mutation in the catalytic domain of

NEIL3, reducing its activity, prevented the repair of the lesions. These

results indicate that NEIL3 functions in removing oxidized DNA

damage in telomeres as well as in genomic DNA. Because NEIL3,

hNEIL1 and ecoEndoVIII all have broad substrate specificity, it is still

unclear exactly which lesions are recognized by NEIL3 at the telomere.

In conclusion, we described NEIL3 as an independent prognosis

marker and a novel molecular target in HCC proliferation and

progression. Mechanistically, we showed that NEIL3 relocates and

recruits APE1 to TIFs duringmitosis and that TIFs can be repaired in a

NEIL3-dependent BER pathway. Removing NEIL3 had effects on cell

growth but did not induce cell death; however, combining the knock-

down with an oxidizing reagent showed a more pronounced effect on

cell viability and genomic stability, suggesting that the endogenous

damage in cancer cells is not enough to cause cell death. This could be

important in a therapeutic perspective when developing NEIL3 inhi-

bitors, and perhaps a combination treatment with a NEIL3 inhibitor

and oxidizing compounds (e.g., elesclomol) could prove to be a good

strategy to induce ROS and prevent its repair in the tumor. In

summary, these findings suggest that NEIL3 and telomere damage

repair pathway are promising targets for cancer treatment and drug

discovery.
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Figure 6.

NEIL3maintains telomere integrity during long-term oxidative damage.A, Schematic ofmitotic telomere damage release assay.B,Micronucleus in HEP3B cells. Left,

images ofDAPI (blue), telomere (green), and centromere (red) in HEP3B.White arrowhead,micronucleus. Right, quantification ofmicronuclei number per 100 cells in

HEP3B cells treated as inA. Means� SEM; at least 200 cells were analyzed in each group. C, Chromatin bridges in HEP3B cells. Left, images of DAPI (blue), telomere

(green), and centromere (red) in interphase cells (left top) and mitotic cells (left bottom). White arrowheads, chromatin bridge. Right, quantification of number of

micronuclei per 100 cells in HEP3B cells described in A. Cells were transfected with NEIL3 siRNA s2 and s4 or nontargeting siRNA (siCtrl). Means � SEM; at least

200 cells were analyzed in each group. D, Schematic of chronic induction of telomere damage. E, Measurement of telomere length with qPCR. Telomere

length of HEP3B cells overexpressing empty vector (EV), NEIL3 WT, and NEIL3 K81A was measured after 0, 6, or 12 days of treatment with KBrO3, as indicated

in D. Means � SEM of three repeats. F, Telomere and nontelomere qPCR after Endo VIII incubation. HEP3B cells overexpressing empty vector, NEIL3 WT,

and NEIL3 K81A were treated as indicated in G. Telomere damage (left) and nontelomere damage (right) were measured with qPCR. Means� SEM of three repeats.
� , P < 0.05; �� , P < 0.01; ��� , P < 0.001. Scale bars, 5 mm.
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